

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

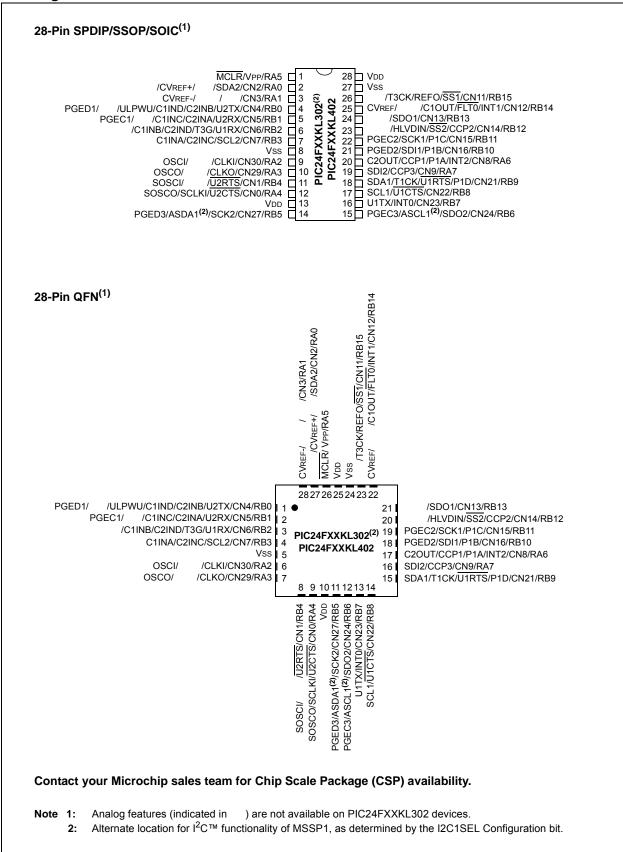
E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201-e-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:


- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Dual Rail-to-Rail Analog Comparators with Programmable Input/Output Configuration
- On-Chip Voltage Reference

Special Microcontroller Features:

- Operating Voltage Range of 1.8V to 3.6V
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 40 Years Minimum
- Self-Programmable under Software Control
- Programmable Reference Clock Output

- Fail-Safe Clock Monitor (FSCM) Operation:
 - Detects clock failure and switches to on-chip, Low-Power RC (LPRC) oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT):
 - Uses its own Low-Power RC oscillator
 - Windowed operating modes
 - Programmable period of 2 ms to 131s
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via 2 Pins
- Programmable High/Low-Voltage Detect (HLVD)
- Programmable Brown-out Reset (BOR):
 - Configurable for software controlled operation and shutdown in Sleep mode
 - Selectable trip points (1.8V, 2.7V and 3.0V)
 - Low-power 2.0V POR re-arm

Pin Diagrams: PIC24FXXKL302/402

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description				
ASR	Arithmetic shift right source register by one or more bits.				
SL Shift left source register by one or more bits.					
LSR	Logical shift right source register by one or more bits.				

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 8.1** "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24F16KL402 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using Table Read and Table Write operations, similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24F16KL402 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 23.0 "Special Features"**.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24F16KL402 FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant wo	ord I	east significant wo	rd	PC Address (Isw Address)
	23	16	8	0	
000001h	0000000				000000h
000003h	0000000				000002h
000005h	0000000				000004h
000007h	0000000				000006h
			\sim		
	Program Memory 'Phantom' Byte (read as '0')	Instruc	tion Width		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable bit		
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit	
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit,	read as '0'	

bit 15	WR: Write Control bit
	 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete 0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enables Flash program/erase operations
	0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	 1 = An improper program or erase sequence attempt, or termination, has occurred (bit is set automatically on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12	PGMONLY: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	1 = Performs the erase operation specified by NVMOP<5:0> on the next WR command
	0 = Performs the program operation specified by NVMOP<5:0> on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erases entire boot block (including code-protected boot block) ⁽²⁾
	1001xx = Erases entire memory (including boot block, configuration block, general block) ⁽²⁾
	011010 = Erases 4 rows of Flash memory ⁽³⁾
	011001 = Erases 2 rows of Flash memory ⁽³⁾
	011000 = Erases 1 row of Flash memory ⁽³⁾ 0101xx = Erases entire configuration block (except code protection bits)
	0101xx = Erases entire comiguration block (except code protection bits) $0100xx = \text{Erases entire data EEPROM^{(4)}}$
	0011xx = Erases entire general memory block programming operations
	0001xx = Writes 1 row of Flash memory (when ERASE bit is '0') ⁽³⁾
	All other combinations of the NVMOP<5:0> bits are no operation.
2:	Available in ICSP™ mode only. Refer to the device programming specification.

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM. It is implemented only in devices with data EEPROM.

. .. . _

.....

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	0 R/W-0	R/W-0 ⁽³⁾	U-0	U-0	U-0	R/W-0	R/W-0			
TRAP	R IOPUWR	SBOREN	_	_	_	CM	PMSLP			
bit 15							bit 8			
R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EXTR	R SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR			
bit 7							bit 0			
Legend:			:4		a a material in the second					
R = Read		W = Writable b	IT	•	nented bit, read					
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	TRAPR. Tra	p Reset Flag bit								
bit io		Conflict Reset has	occurred							
		Conflict Reset has		b						
bit 14	IOPUWR: III	egal Opcode or L	Jninitialized V	V Access Reset	Flag bit					
	1 = An illega	al opcode detecti	on, an illegal	address mode	or an Uninitial	ized W register	r is used as an			
		Pointer and cau								
	-	al opcode or Unin		-	is not occurred					
bit 13		SBOREN: Software Enable/Disable of BOR bit ⁽³⁾ 1 = BOR is turned on in software								
		urned on in softw urned off in softw								
bit 12-10	Unimpleme	nted: Read as '0								
bit 9	CM: Configu	CM: Configuration Word Mismatch Reset Flag bit								
		1 = A Configuration Word Mismatch Reset has occurred								
	•	uration Word Mis			ed					
bit 8		• •	am Memory Power During Sleep bit							
		memory bias vo memory bias vo								
h:+ 7					y Sleep					
bit 7		EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred								
		r Clear (pin) Rese								
bit 6	SWR: Softwa	are Reset (Instru	ction) Flag bi	t						
		instruction has t								
		r instruction has r								
bit 5	SWDTEN: S	oftware Enable/D	Disable of WE)T bit ⁽²⁾						
	1 = WDT is e									
1.11.4	0 = WDT is 0									
bit 4		chdog Timer Time	-							
		e-out has occurre								
Note 1.	All of the Depart	tatua hita may ha	act or closer	d in coffword C	atting one of th	ana hita in aaft	wara daga nat			
Note 1:	All of the Reset s cause a device F	•	set of cleare	eu în soitware. S	beaung one of th	IESE DIIS IN SOT	ware upes not			
2:	If the FWDTEN (is '1' (unprog	rammed), the V	VDT is always o	enabled, regard	dless of the			
	SWDTEN bit set	-		,-						
3.	The SBOREN bi	it is forced to '0' v	vhen disabler	d by the Config	iration hits BO	REN<1.0> (FP				

3: The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in the Flash Configuration Word (FOSCSEL); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

PIC24F16KL402 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the power-up timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the BOR Reset does not automatically enable the PWRT.

7.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function, as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit only operates in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

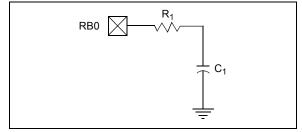
Note: Even when the BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption. This feature provides a low-power technique for periodically waking up the device from Sleep mode.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.


The time-out is dependent on the discharge time of the RC circuit on RB0. When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.

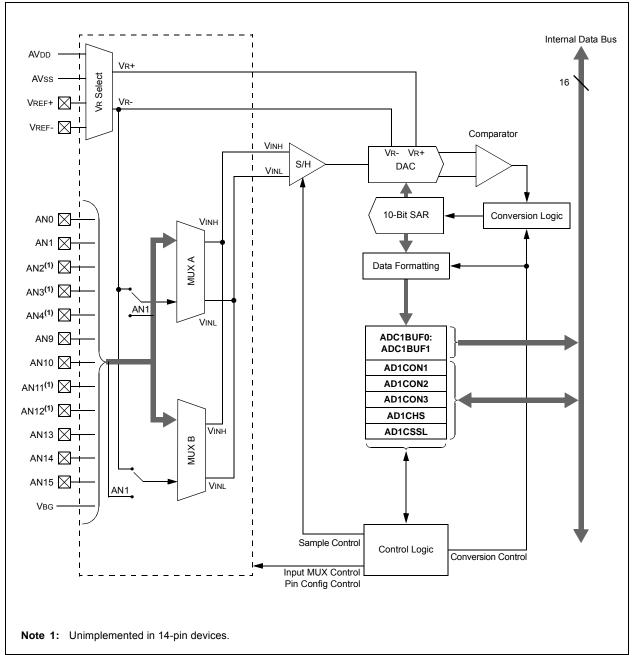
See Example 10-2 for initializing the ULPWU module.

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN2/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION


/ / * * * * * * * * * * * * * * * * * *
// 1. Charge the capacitor on RB0
/ / * * * * * * * * * * * * * * * * * *
TRISBbits.TRISB0 = 0;
LATBbits.LATB0 = 1;
for(i = 0; i < 10000; i++) Nop();
/ / * * * * * * * * * * * * * * * * * *
//2. Stop Charging the capacitor on RB0
/ / * * * * * * * * * * * * * * * * * *
TRISBbits.TRISB0 = 1;
/ / * * * * * * * * * * * * * * * * * *
//3. Enable ULPWU Interrupt
//*************************************
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC20bits.ULPWUIP = 0x7;
/ / * * * * * * * * * * * * * * * * * *
//4. Enable the Ultra Low Power Wakeup module and allow capacitor discharge
/ / * * * * * * * * * * * * * * * * * *
ULPWCONbits.ULPEN = 1;
ULPWCONbits.ULPSINK = 1;
//*************************************
//5. Enter Sleep Mode
//*************************************
Sleep();
//for Sleep, execution will resume here

	(10-1. 1200									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
bit 15							bita			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0			
bit 7							bit (
Legend:										
R = Readal	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
oit 15-7	Unimplemen	ted: Read as '	כ'							
oit 6-3	T2OUTPS<3:	T2OUTPS<3:0>: Timer2 Output Postscale Select bits								
	1111 = 1:16 Postscale									
	1110 = 1:15 Postscale									
	•	•								
	0001 = 1:2 Postscale									
	0000 = 1:1 Po									
oit 2	-	TMR2ON: Timer2 On bit								
		1 = Timer2 is on								
	0 = Timer2 is off T2CKPS<1:0>: Timer2 Clock Prescale Select bits									
oit 1-0			k Prescale Sel	ect bits						
	10 = Prescale									
	00 = Prescale	-								

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_		—		<u> </u>		—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾	
bit 7							bit (
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown	
bit 15-6	Unimplement	ted: Read as '	0'					
bit 5-4	-			it 0 for CCPx Mo	odule bits			
		Compare mode						
	Unused.							
	Unused. <u>PWM mode:</u>							
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh	
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh	
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0>	ant bits (DCxB< :: CCPx Module	<9:2>) of the d	uty cycle are fou			cle. The eigh	
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2 ^{>}) of the d	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge	<9:2 ^{>}) of the d e Mode Select ecial Event Trig	uty cycle are fou	und in CCPRxL	 tch (CCPxIF bi	t is set)	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on co bin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1001 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the die e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c oin high; on con n low; on compar dge ge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI	

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

FIGURE 19-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

REGISTER 19-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	OFFCAL ⁽¹⁾		CSCNA	—	—
bit 15							bit 8

R-x	U-0	R/W-0	R/W-0	R/W-0 R/W-0		r-0	R/W-0
r	—	SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS
bit 7							bit 0

Legend:	r = Reserved bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

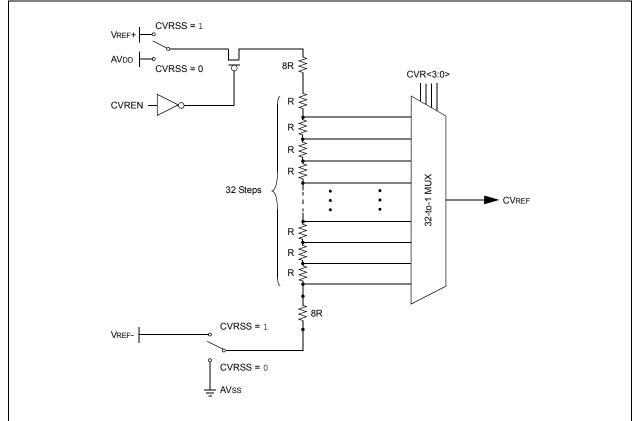
VCFG<2:0>	VR+	VR-
000	AVdd	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
lxx	AVDD	AVss

bit 12	OFFCAL: Offset Calibration bit ⁽¹⁾
	1 = Conversions to get the offset calibration value

0 =Conversions to get the actual input value

- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for MUX A Input Multiplexer bit
 - 1 = Scans inputs
 - 0 = Does not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 Reserved: Ignore this value
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 =
 - Reserved, do not use (may cause conversion data loss)
 - - 0010 = 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 - 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 **Reserved:** Always maintain as '0'
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 0 = Always uses MUX A input multiplexer settings
- **Note 1:** When the OFFCAL bit is set, inputs are disconnected and tied to AVss. This sets the inputs of the A/D to zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter in this mode. The conversion result is stored by the user software and used to compensate subsequent conversions. This can be done by adding the two's complement of the result obtained with the OFFCAL bit set to all normal A/D conversions.

21.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

23.3 Unique ID

A read-only Unique ID value is stored at addresses, 800802h through 800808h. This factory programmed value is unique to each microcontroller produced in the PIC24F16KL402 family. To access this region, use Table Read instructions or Program Space Visibility. To ensure a globally Unique ID across other Microchip microcontroller families, the "Unique ID" value should be further concatenated with the family and Device ID values stored at address, FF0000h.

REGISTER 23-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '0'
-----------	----------------------------

bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 01001011 = PIC24F16KL402 family

bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 00000001 = PIC24F04KL100

00000010 = PIC24F04KL101

00000101 = PIC24F08KL200 00000110 = PIC24F08KL201

00001010 = PIC24F08KL301 00000000 = PIC24F08KL302

00001110 = PIC24F08KL401 00000100 = PIC24F08KL402 00011110 = PIC24F16KL401 00010100 = PIC24F16KL402

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					ditions
	Vol	Output Low Voltage						
DO10		All I/O Pins	—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V
	Vон	Output High Voltage						
DO20		All I/O Pins	3	—	—	V	Юн = -3.0 mA	VDD = 3.6V
			1.6	—	—	V	Юн = -1.0 mA	VDD = 2.0V
DO26		OSC2/CLKO	3	—		V	Iон = -1.0 mA	VDD = 3.6V
			1.6	—	—	V	Юн = -0.5 mA	VDD = 2.0V

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

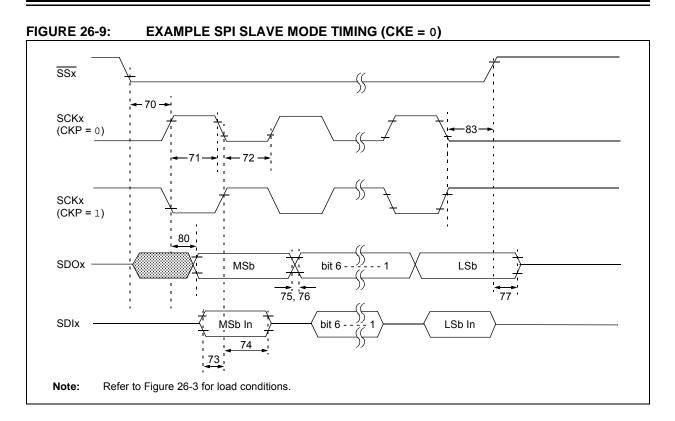

Note 1: Data in "Typ" column is at +25°C unless otherwise stated.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $				
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
		Program Flash Memory					
D130	Ер	Cell Endurance	10,000 ⁽²⁾	—	—	E/W	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VміN = Minimum operating voltage
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current During Programming	—	10	—	mA	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

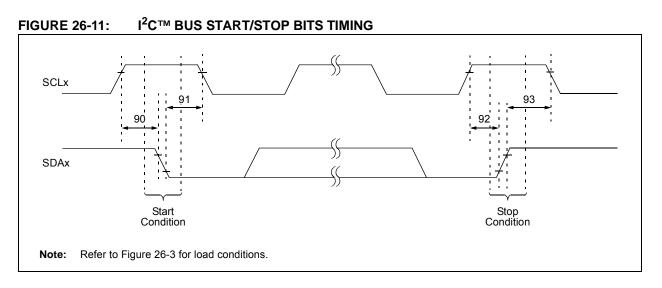


TABLE 26-29: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge		40	_	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		—	10	MHz	

Note 1: Requires the use of Parameter 73A.

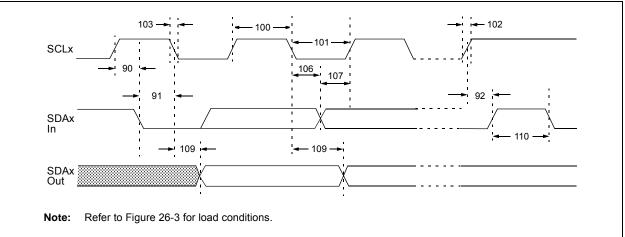

2: Only if Parameters 71A and 72A are used.

TABLE 26-31: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first
		Hold Time	400 kHz mode	600	_		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	—		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

FIGURE 26-12: I²C[™] BUS DATA TIMING

DC Characteristics	
BOR Trip Points	
Comparator	
Comparator Voltage Reference	
Data EEPROM Memory	
High/Low-Voltage Detect	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Device Features for PIC24F16KL20X/10X	
Devices (Summary)	
Device Features for PIC24F16KL40X/30X	
Devices (Summary)	11

Е

Electrical Characteristics	
Absolute Maximum Ratings	199
Thermal Operating Conditions	201
Thermal Packaging Characteristics	201
V/F Graph, Extended2	200
V/F Graph, Industrial	200
Enhanced CCP	125
Equations	
A/D Conversion Clock Period	164
UARTx Baud Rate with BRGH = 0	150
UARTx Baud Rate with BRGH = 1	150
Errata	7
Examples	
Baud Rate Error Calculation (BRGH = 0)	150

F

Flash Program Memory	
Control Registers	
Enhanced ICSP Operation	
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	

G

Inter-Integrated Circuit. See I ² C.	
Internet Address	257
Interrupt Sources	
TMR3 Overflow	119
TMR4 to PR4 Match (PWM)	123
Interrupts	
Alternate Interrupt Vector Table (AIVT)	65
Control and Status Registers	68
Implemented Vectors	67
Interrupt Vector Table (IVT)	65
Reset Sequence	65
Setup Procedures	
Trap Vectors	67
Vector Table	66

Μ

Master Synchronous Serial Port (MSSP) 13	
I/O Pin Configuration for SPI1	35
Microchip Internet Web Site	57
MPLAB Assembler, Linker, Librarian	88
MPLAB ICD 3 In-Circuit Debugger 18	89
MPLAB PM3 Device Programmer18	89
MPLAB REAL ICE In-Circuit Emulator System 18	89
MPLAB X Integrated Development	
Environment Software1	87
MPLAB X SIM Software Simulator 18	89
MPLIB Object Librarian 18	88
MPLINK Object Linker 18	88

Ν

Near Data	Space	34

0

101
101
102
119

Ρ

Packaging	
Details	228
Marking	225
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Descriptions	
PIC24F16KL20X/10X Devices	18
PIC24F16KL40X/30X Devices	14
Power-Saving	109
Power-Saving Features	105
Clock Frequency, Clock Switching	105
Coincident Interrupts	106
Instruction-Based Modes	105
Idle	106
Sleep	106
Selective Peripheral Control	109
Ultra Low-Power Wake-up (ULPWU)	107
Product Identification System	259
Program and Data Memory	
Access Using Table Instructions	45
Program Space Visibility	46
Program and Data Memory Spaces	
Addressing	43
Interfacing	43

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group – Pin Count —— Tape and Reel FI Temperature Rar Package ———		 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	