

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE 4-4: ICN REGISTER MAP	TABLE 4-4:	ICN REGISTER MAP
-----------------------------	------------	------------------

		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	D:4 7					1			All
		(4)						2.10	DILO	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
'	030 011	15PDE ⁽¹⁾	CN14PDE ⁽¹⁾	CN13PDE ⁽¹⁾	CN12PDE	CN11PDE	—	CN9PDE ⁽²⁾	CN8PDE	CN7PDE ⁽²⁾	CN6PDE(1)	CN5PDE ⁽¹⁾	CN4PDE ⁽¹⁾	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
5	058	_	CN30PDE	CN29PDE	_	CN27PDE ⁽²⁾	_	_	CN24PDE ⁽²⁾	CN23PDE ⁽¹⁾	CN22PDE	CN21PDE	_	_	—	_	CN16PDE ⁽²⁾	0000
5	062 CN	N15IE ⁽¹⁾	CN14IE ⁽¹⁾	CN13IE ⁽¹⁾	CN12IE	CN11IE	_	CN9IE ⁽¹⁾	CN8IE	CN7IE ⁽¹⁾	CN6IE ⁽²⁾	CN5PIE ⁽²⁾	CN4IE ⁽²⁾	CN3IE	CNIE	CN1IE	CN0IE	0000
;.	064	_	CN30IE	CN29IE	_	CN27IE ⁽²⁾	_	_	CN24IE ⁽²⁾	CN23IE ⁽¹⁾	CN22IE	CN21IE	_	_	—	_	CN16IE ⁽²⁾	0000
1	06E CN1	15PUE ⁽¹⁾	CN14PUE ⁽¹⁾	CN13PUE ⁽¹⁾	CN12PUE	CN11PUE	—	CN9PUE ⁽¹⁾	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE ⁽²⁾	CN5PUE ⁽²⁾	CN4PUE ⁽²⁾	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
1	070	—	CN30PUE	CN29PUE	—	CN27PUE ⁽²⁾	—	_	CN24PUE ⁽²⁾	CN23PUE ⁽¹⁾	CN22PUE	CN21PUE	—	_	—	_	CN16PUE ⁽²⁾	0000
	062 CN 064 06E CN1	N15IE ⁽¹⁾ — N15PUE ⁽¹⁾	CN14IE ⁽¹⁾ CN30IE CN14PUE ⁽¹⁾	CN13IE ⁽¹⁾ CN29IE CN13PUE ⁽¹⁾	CN12IE — CN12PUE	CN11IE CN27IE ⁽²⁾ CN11PUE		CN9IE ⁽¹⁾ — CN9PUE ⁽¹⁾	CN8IE CN24IE ⁽²⁾ CN8PUE	CN7IE ⁽¹⁾ CN23IE ⁽¹⁾ CN7PUE ⁽¹⁾	CN6IE ⁽²⁾ CN22IE CN6PUE ⁽²⁾	CN5PIE ⁽²⁾ CN21IE CN5PUE ⁽²⁾	CN4IE ⁽²⁾ — CN4PUE ⁽²⁾		_		CN3IE CNIE CN1IE CN3PUE CN2PUE CN1PUE	CN3IE CNIE CN0IE CN16IE ⁽²⁾

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'.

TABLE 4-6	: т	IMER	REGIS	TER N	IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Reg	gister							0000
PR1	0102								Tir	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000
PR2	0108	_	_	_	_	_	_	_	_	Timer2 Period Register								
T2CON	010A	_	_	_	_	_	_	_	_	- T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0							0000	
TMR3	010C									Timer3 Reg	gister							0000
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	—	Timer4 Period Register								
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	—	T40UTPS3 T40UTPS2 T40UTPS1 T40UTPS0 TMR40N T4CKPS1 T4CKPS								
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	_	_	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1				1				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	—	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	V1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_			Capture/Co	mpare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	- <u> </u>							0000	
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_	Capture/Compare/PWM3 Register Low Byte								0000
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	—	—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	-	HLSIDL	_	—	-	_	_	VDIR	BGVST	IRVST	-	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY		_	_		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	-	-	—	—		_		NVM Key Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	_	ULPSIDL		—	_		ULPSINK		_		_	_		_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	T4MD	T3MD	T2MD	T1MD	_	_		SSP1MD	U2MD	U1MD		—	_		ADC1MD	0000
PMD2	0772	_	—	—	_	—	—	_	-	_	_	—	_	—	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_			CMPMD	_	-	—	_	_		—	_	SSP2MD	—	0000
PMD4	0776		—	_	_	_	_	-	—	ULPWUMD		_	EEMD	REFOMD	—	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing it is not recommended.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 5.5 "Programming Operations"**.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE	—	_	T3IE
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IE	CCP2IE	_		T1IE	CCP1IE	—	INTOIE
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable t	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
L:4 / C			- 1-14				
bit 15		/I Interrupt Enabl request is enabl					
		request is not er					
bit 14	Unimpleme	nted: Read as '0	,				
bit 13	AD1IE: A/D	Conversion Com	plete Interrup	t Enable bit			
		request is enabl					
L:1 40	-	request is not er		bla b :4			
bit 12		RT1 Transmitter request is enabl	•	DIE DIT			
		request is not er					
bit 11	U1RXIE: UA	RT1 Receiver In	terrupt Enable	e bit			
		request is enabl					
	-	request is not er					
bit 10-9	-	nted: Read as '0					
bit 8		3 Interrupt Enable					
		request is enabl request is not er					
bit 7		2 Interrupt Enable					
		request is enabl					
	0 = Interrupt	request is not er	nabled				
bit 6		pture/Compare/F	-	ot Enable bit			
		request is enabl request is not er					
bit 5-4		nted: Read as '0					
bit 3	-	Interrupt Enable					
bit 5		request is enabl					
		request is not er					
bit 2	CCP1IE: Ca	pture/Compare/F	WM1 Interru	ot Enable bit			
		request is enabl					
L:1 4		request is not er					
bit 1	-	nted: Read as '0					
bit 0		rnal Interrupt 0 E request is enabl					
		TEQUEST IS ETIDDI	6U				

REGISTER 8-30: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15				•		·	bit 8
U-0		R-0					R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit (
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 14	0 = No interr	vhen the CPU p upt request is le aintain as '0'			errupt priority)		
bit 14	Reserved: M			0			
bit 13	VHOLD: Vect	tor Hold bit					
	1 = VECNUN current in 0 = VECNUN	//<6:0> will cor nterrupt //<6:0> will con	tain the value	e of the highe of the last Ac	rupt is Stored in st priority pend knowledged inte ther interrupts a	ling interrupt, i errupt (last inte	instead of the
bit 12	Unimplemen	ted: Read as ')'				
bit 11-8	1111 = CPU • • • 0001 = CPU	w CPU Interrup Interrupt Priorit Interrupt Priorit Interrupt Priorit	y Level is 15 y Level is 1	el bits			
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0	VECNUM<6:	0>: Vector Num	ber of Pendin	g Interrupt bits	5		
	0111111 = Ir • •	nterrupt vector p	pending is Nu	mber 135			
		nterrupt vector p nterrupt vector p					

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC oscillator. OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)

Note 1: Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	
ULPEN		ULPSIDL	_	—	_		ULPSINK	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—		—			
bit 7							bit 0	
l							1	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	ULPEN: ULP	WU Module En	able bit					
	1 = Module is							
	0 = Module is	disabled						
bit 14	Unimplemen	ted: Read as '	כ'					
bit 13	ULPSIDL: UL	PWU Stop in I	dle Select bit					
				ne device enters	s Idle mode			
	0 = Continues	s module opera	tion in Idle mo	de				
bit 12-9	Unimplemen	Unimplemented: Read as '0'						
bit 8	ULPSINK: UL	_PWU Current	Sink Enable bi	t				
	1 = Current si	ink is enabled						
	0 = Current si	ink is disabled						
bit 7-0	Unimplemen	ted: Read as '	כ'					

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.1.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.2 Configuring Analog Port Pins

The use of the ANSx and TRISx registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANS register for each port (ANSA and ANSB, Register 11-1 and Register 11-2). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality. If a particular pin does not have an analog function, that bit is unimplemented.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_						_
oit 15							bit
R/W-0	R/W-0					R/W-0	R/W-0
-		R/W-0	R/W-0	R/W-0	R/W-0		
PM1	PM0	DC1B1	DC1B0	CCP1M3 ⁽²⁾	CCP1M2 ⁽²⁾	CCP1M1 ⁽²⁾	CCP1M0 ⁽²⁾
oit 7							bit
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
oit 15-8	Unimplemen	ted: Read as '	י'				
bit 7-6	-	hanced PWM (ration bits			
		2> = 00, 01, 10					
		ssigned as a ca		ompare output;	P1B, P1C and	P1D are assign	ed as port pir
	<u>If CCP1M<3:2</u>	•				0	
		ge output reve	rse: P1B is mo	dulated; P1C is	active; P1A ar	nd P1D are ina	ctive
		dge output: P	1A, P1B are	modulated wit	h dead-band	control; P1C	and P1D a
		d as port pins					
		ge output forwa utput: P1A, P1E				are inactive	9
L:L T 4	-	-					
bit 5-4		PWM Duty Cyc			Daule bits		
	Unused.	Compare mode	<u>s</u> :				
	PWM mode:						
		e the two Leas	t Significant bi	ts (bit 1 and bit	0) of the 10-b	it PWM duty cy	cle. The eid
		ant bits (DC1B<					, e. e. e. e. g
bit 3-0	-	ECCP1 Modu	-				
		mode: P1A an			nd P1D are acti	ve-low	
		mode: P1A an					
		l mode: P1A an					
		I mode: P1A an		0		0	
		pare mode: Spe					
		oare mode: Ge ts I/O state)	nerates softwar	re interrupt on c	compare match	(CCPTIF DIUS	set, CCPT p
		pare mode: Initia	alizes CCP1 pi	n hiah: on comp	pare match. for	ces CCP1 pin lo	w (CCP1IF b
	is set			J , F F	,	P	\
	1000 = Com bit is	pare mode: Init	ializes CCP1 p	oin low; on com	pare match, fo	rces CCP1 pin	high (CCP1
		ure mode: Ever	y 16th rising e	dge			
	0110 = Captu	ure mode: Ever	y 4th rising ed				
	•	ure mode: Ever					
		ure mode: Ever	y falling edge				
	0011 = Rese	rved bare mode: Tog	ales output on	match (CCD1)	E bit is cot)		
	0010 = Comp 0001 = Rese		gies output on				
		ure/Compare/P	WM is disabled	d (resets CCP1	module)		
Note 1:	This register is im	plemented only	y on PIC24FX)	(KL40X/30X de	evices. For all o	other devices, C	CCP1CON is
	configured as Reg					,	
-	000414 -0-0- 1						

2: CCP1M<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCP1 match.

REGISTER 16-6: CCPTMRS0: CCP TIMER SELECT CONTROL REGISTER 0⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	_	—	—
bit 15							bit 8
U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
_	C3TSEL0	—	—	C2TSEL0	_	—	C1TSEL0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	known
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6	C3TSEL0: CO	CP3 Timer Sele	ction bit				
		es TMR3/TMR4					
		es TMR3/TMR2					
bit 5-4	•	ted: Read as '0					
bit 3	C2TSEL0: CO	CP2 Timer Sele	ction bit				
		es TMR3/TMR4					
	0 = CCP2 use	es TMR3/TMR2					
	1.1	ted: Read as '0)'				
bit 2-1	Unimplemen	teu. Reau as c					
bit 2-1 bit 0	-	CP1/ECCP1 Tir		t			
	C1TSEL0: CO		ner Selection bi	t			

Note 1: This register is unimplemented on PIC24FXXKL20X/10X devices; maintain as '0'.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾
UARTEN		USIDL	IREN ⁽¹⁾	RTSMD		UEN1	UEN0
bit 15							bit 8
R/C-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
1			L :4			L	
Legend:	bla bit	C = Clearable W = Writable t			re Clearable bit		
R = Readat			DIC	•	nented bit, read		
-n = Value a		'1' = Bit is set		'0' = Bit is clea	areo	x = Bit is unkn	own
bit 15		ARTx Enable bit					
DIUTS		s enabled; all U/	NPTy nine are	controlled by I		ed by LIENZ1.0	
		s disabled; all U					
bit 14	-	ted: Read as '0	,				
bit 13	-	Tx Stop in Idle N					
		nues module op		device enters lo	lle mode		
		es module opera					
bit 12		Encoder and De					
		oder and decod					
bit 11		boder and decod					
		oin is in Simplex		L			
		oin is in Flow Co					
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	UEN<1:0>: L	JARTx Enable b	its ⁽²⁾				
	10 = UxTX, 01 = UxTX,	UxRX and UxB(UxRX, UxCTS a UxRX and UxR and UxRX pins a ches	and UxRTS pir TS pins are er	ns are enabled habled and use	an <u>d used</u> d; UxCTS pin is	controlled by	port latches
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	cleared i	will continue to n hardware on t			upt is generate	ed on the fallin	g edge, bit is
bit 6		-up is enabled ARTx Loopback	Mode Select I	oit			
DILO		Loopback mode		JIL			
		k mode is disab					
bit 5	ABAUD: Aut	o-Baud Enable I	oit				
	cleared i	baud rate meas n hardware upo e measurement	n completion		er – requires re	ception of a Sy	nc field (55h);
bit 4		eive Polarity Inve					
	1 = UxRX Id	-					
	0 = UxRX Id						
	This feature is is Bit availability de			G mode (BRGH	l = 0).		

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

19.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 10-Bit High-Speed A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- · Up to 12 analog input pins
- External voltage reference input pins
- · Internal band gap reference input
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Two-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes

Depending on the particular device, PIC24F16KL402 family devices implement up to 12 analog input pins, designated AN0 through AN4 and AN9 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins. A block diagram of the A/D Converter is displayed in Figure 19-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure port pins as analog inputs and/ or select band gap reference inputs (ANSA<3:0>, ANSB<15:12,4:0> and ANCFG<0>).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
 - Configure A/D interrupt (if required):
 - a) Clear the AD1IF bit.

2.

b) Select A/D interrupt priority.

REGISTER 20-1: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to VBG/2
 - 10 = Inverting input of the comparator connects to the CxIND $pin^{(2)}$
 - 01 = Inverting input of the comparator connects to the CxINC $pin^{(2)}$
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** If EVPOL<1:0> is set to a value other than '00', the first interrupt generated will occur on any transition of COUT, regardless of if it is a rising or falling edge. Subsequent interrupts will occur based on the EVPOLx bits setting.
 - 2: Unimplemented on 14-pin (PIC24FXXKL100/200) devices.

REGISTER 20-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	—	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC
—	—	—	—	—	—	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinues operation of all comparators when device enters Idle mode 0 = Continues operation of all enabled comparators in Idle mode
bit 14-10	Unimplemented: Read as '0'
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-2	Unimplemented: Read as '0'
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

Note 1: These bits are unimplemented on PIC24FXXKL10X/20X devices.

DC CHARACTERISTIC	DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical ⁽¹⁾	Max	Units	its Conditions				
IDD Current								
DC20	0.154	0.350	m (1.8V	1951/20			
	0.301	0.630	- mA	3.3V	+85V°C	0.5 MIPS,		
		.500	mA	1.8V	+125°C	Fosc = 1 MHz		
	—	.800		3.3V	+125 C			
DC22	0.300			1.8V	105%0	1 MIPS,		
	0.585	_	- mA	3.3V	+85°C	Fosc = 2 MHz		
DC24	7.76	12.0	m (3.3V	+85°C	16 MIPS,		
		18.0	- mA	3.3V	+125°C	Fosc = 32 MHz		
DC26	1.44	_	m۸	1.8V	+85°C	FRC (4 MIPS),		
	2.71	_	- mA	3.3V	+05 C	Fosc = 8 MHz		
DC30	4.00	28.0		1.8V	195%			
	9.00	55.0	μA	3.3V	- +85°C - +125°C	LPRC (15.5 KIPS),		
		45.0		1.8V		Fosc = 31 kHz		
	_	90.0	μA	3.3V				

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IDD is measured with all peripherals disabled. All I/Os are configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)⁽²⁾

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:} 1.8V \ to \ 3.6V \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$				
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions			
Idle Current (IIDLE)							
DC40	0.035	0.080	~^^	1.8V	195°C		
	0.077	0.150	- mA	3.3V	- +85°C	0.5 MIPS,	
	_	0.160	~^^	1.8V	+125°C	Fosc = 1 MHz	
	_	0.300	- mA	3.3V	+125 C		
DC42	0.076	_		1.8V	195°C	1 MIPS,	
	0.146	_	- mA	3.3V	+85°C	Fosc = 2 MHz	
DC44	2.52	3.20	mA	3.3V	+85°C	16 MIPS,	
	_	5.00	mA	3.3V	+125°C	Fosc = 32 MHz	
DC46	0.45	—	mA	1.8V	+85°C	FRC (4 MIPS),	
	0.76	—	mA	3.3V	+05 C	Fosc = 8 MHz	
DC50	0.87	18.0	μA	1.8V	195°C		
	1.55	40.0	μA	3.3V	+85°C	LPRC (15.5 KIPS),	
	—	27.0	μA	1.8V		Fosc = 31 kHz	
	_	50.0	μA	3.3V	- +125°C		

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IIDLE is measured with all I/Os configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-29: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\operatorname{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	Sx to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx	20	_	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge		40	_	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK SCKx Frequency		—	10	MHz		

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

27.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES			
Din	Dimension Limits		NOM	MAX	
Number of Pins	N	14			
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Pitch E 0.65 BSC			
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13