

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL301/401

		Pin N	umber						
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description		
AN0	2	19	2	27	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL30X		
AN1	3	20	3	28	Ι	ANA	family devices.		
AN2	4	1	4	1	Ι	ANA			
AN3	5	2	5	2	Ι	ANA			
AN4	6	3	6	3	Ι	ANA			
AN5	_	_	7	4	Ι	ANA			
AN9	18	15	26	23	Ι	ANA			
AN10	17	14	25	22	Ι	ANA			
AN11	16	13	24	21	Ι	ANA			
AN12	15	12	23	20	Ι	ANA			
AN13	7	4	9	6	Ι	ANA			
AN14	8	5	10	7	Ι	ANA			
AN15	9	6	11	8	Ι	ANA			
ASCL1	_	_	15	12	I/O	I ² C™	Alternate MSSP1 I ² C Clock Input/Output		
ASDA1	_	_	14	11	I/O	l ² C	Alternate MSSP1 I ² C Data Input/Output		
AVDD	20	17	28	25	Ι	ANA	Positive Supply for Analog modules		
AVss	19	16	27	24	Ι	ANA	Ground Reference for Analog modules		
CCP1	14	11	20	17	I/O	ST	CCP1/ECCP1 Capture Input/Compare and PWM Output		
CCP2	15	12	23	20	I/O	ST	CCP2 Capture Input/Compare and PWM Output		
CCP3	13	10	19	16	I/O	ST	CCP3 Capture Input/Compare and PWM Output		
C1INA	8	5	7	4	Ι	ANA	Comparator 1 Input A (+)		
C1INB	7	4	6	3	Ι	ANA	Comparator 1 Input B (-)		
C1INC	5	2	5	2	I	ANA	Comparator 1 Input C (+)		
C1IND	4	1	4	1	I	ANA	Comparator 1 Input D (-)		
C1OUT	17	14	25	22	0	—	Comparator 1 Output		
C2INA	5	2	5	2	Ι	ANA	Comparator 2 Input A (+)		
C2INB	4	1	4	1	I	ANA	Comparator 2 Input B (-)		
C2INC	8	5	7	4	Ι	ANA	Comparator 2 Input C (+)		
C2IND	7	4	6	3	I	ANA	Comparator 2 Input D (-)		
C2OUT	14	11	20	17	0	—	Comparator 2 Output		
CLK I	7	4	9	6	I	ANA	Main Clock Input		
CLKO	8	5	10	7	0		System Clock Output		

TABLE 1-4: PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	_		_	_	—	DC
bit 15	·						bit 8
R/W-0 ⁽¹	l) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0
. .							
Legend:			••				
R = Read	able bit	W = Writable b	it	U = Unimplem	nented bit, read		
-n = value	e at POR	" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unkn	lown
hit 15_0	Unimplemen	ted: Read as '0'	1				
bit 8	DC: ALU Half	f Carry/Borrow b	it				
	1 = A carry-o	out from the 4 th lo	ow-order bit (f	or byte-sized da	ata) or 8 th low-o	order bit (for wo	ord-sized data)
	of the res	sult occurred		5	,	Υ.	,
	0 = No carry-	out from the 4 th	or 8 th low-ord	ler bit of the res	sult has occurre	ed	
bit 7-5	IPL<2:0>: CF	V Interrupt Prio	rity Level (IPL	.) Status bits ^{(1,2}			
	111 = CPU Ir	terrupt Priority L	_evel is 7 (15) _evel is 6 (14)	; user interrupt	s disabled		
	101 = CPU Ir	nterrupt Priority L	_evel is 5 (14)				
	100 = CPU Ir	nterrupt Priority L	_evel is 4 (12)				
	011 = CPU Ir	nterrupt Priority L	Level is 3 (11)				
	010 = CPU Ir 001 = CPU Ir	nterrupt Priority I	_evel is 2 (10) evel is 1 (9)				
	000 = CPU Ir	nterrupt Priority L	_evel is 0 (8)				
bit 4	RA: REPEAT	Loop Active bit					
	1 = REPEAT	oop in progress					
L :+ 0	0 = REPEAT ION	oop not in progre	ess				
DIL 3	1 = Result wa	live bil s negative					
	0 = Result wa	is non-negative	(zero or positi	ve)			
bit 2	OV: ALU Ove	erflow bit					
	1 = Overflow	occurred for sigi	ned (2's comp	lement) arithm	etic in this arith	metic operatior	า
	0 = No overflo	ow has occurred					
bit 1	Z: ALU Zero I	oit					
	1 = An operat 0 = The most	lion, which effec recent operatio	ts the ∠ bit, ha n, which effec	as set it at some ts the Z bit, has	e time in the pa s cleared it (i.e.	ist , a non-zero re:	sult)
bit 0	C: ALU Carry	/Borrow bit					
	1 = A carry-ou	ut from the Most	Significant bi	t (MSb) of the r	result occurred		
	0 = No carry-	out from the Mos	st Significant I	oit (MSb) of the	e result occurred	d	
Note 1:	The IPL Status bi	ts are read-only	when NSTDI	S (INTCON1<1	5>) = 1.		
2:	The IPL Status bi	ts are concatena	ated with the I	PL3 bit (CORC	ON<3>) to form	n the CPU Inter	rrupt Priority

2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>		—	_		—	—
bit 15		•	•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-6	Unimplemen	ted: Read as '	כ'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	ximum frequer	ncy deviation				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	y calibrated free	quency	
	111111						
	•						
	•						
	100001						
	100000 = Mir	nimum frequen	cy deviation				

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 23.0** "**Special Features**" for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and FSCM function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically, as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM, with LPRC as a clock source, are enabled) or SOSC (if SOSCEN remains enabled).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). Note that the PIC24F16KL402 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the Data Latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers, that are not valid for a particular device, will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless, regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED I/O PORT STRUCTURE

REGISTER 11-1: ANSA: PORTA ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:

bit 3-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

ANSA<3:0>: Analog Select Control bits

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSB15	ANSB14	ANSB13 ⁽¹⁾	ANSB12 ⁽¹⁾	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	ANSB4	ANSB3 ⁽²⁾	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	ANSB<15:12>: Analog Select Control bits ⁽¹⁾ 1 = Digital input buffer is not active (use for analog input) 0 = Digital input buffer is active
bit 11-5	Unimplemented: Read as '0'
bit 4-0	<pre>ANSB<4:0>: Analog Select Control bits⁽²⁾ 1 = Digital input buffer is not active (use for analog input) 0 = Digital input buffer is active</pre>

Note 1: ANSB<13:12,2:0> are unimplemented on 14-pin devices.

2: ANSB<3> is unimplemented on 14-pin and 20-pin devices.

13.0 TIMER2 MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional Timer3 gate on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

This module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (POR, BOR, MCLR or WDT Reset)

TMR2 is not cleared when T2CON is written.

A simplified block diagram of the module is shown in Figure 13-1.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—	—	—	—	—	
bit 15	•		•	•		•	bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
		—	—	REV3	REV2	REV1	REV0	
bit 7	•		•	•		•	bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr				nown				

REGISTER 23-9: DEVREV: DEVICE REVISION REGISTER

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Revision Identifier bits

					ſ	1	
Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected	
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None	
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None	
BTST	BTST	f,#bit4	Bit Test f	1	1	Z	
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С	
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z	
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С	
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z	
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z	
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С	
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z	
CALL	CALL	lit23	Call Subroutine	2	2	None	
	CALL	Wn	Call Indirect Subroutine	1	2	None	
CLR	CLR	f	f = 0x0000	1	1	None	
	CLR	WREG	WREG = 0x0000	1	1	None	
	CLR	Ws	Ws = 0x0000	1	1	None	
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep	
COM	COM	f	f = f	1	1	N, Z	
	COM	f,WREG	WREG = f	1	1	N.Z	
	COM	We Wd	$Wd = \overline{Ws}$	1	1	N Z	
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z	
01	CP	* Wb #li+5	Compare Wh with lit5	1	1	C, DC, N, OV, Z	
	CP	Wb, #1105	Compare Wb with Ws (Wb $-$ Ws)	1	1	C, DC, N, OV, Z	
CPO	CPO	f	Compare f with 0x0000	1	1	C DC N OV Z	
010	CPO	± We	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z	
CDB	CPB	f	Compare f with WREG with Borrow	1	1	C DC N OV Z	
01.0	CPB	* Wb #li+5	Compare Wh with lit5, with Borrow	1	1	C, DC, N, OV, Z	
	CPB	Wb We	Compare Wb with Ws with Borrow	1	1	C DC N OV Z	
	CID	10,10	$(Wb - Ws - \overline{C})$			0, 20, 11, 01, 2	
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None	
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None	
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None	
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None	
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С	
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z	
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, Z	
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z	
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z	
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z	
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z	
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None	
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV	
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None	
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С	
FF1R	FF1R	Ws, Wnd	Find First One from Right (LSb) Side	1	1	С	

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected			
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None			
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None			
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None			
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None			
ULNK	ULNK		Unlink Frame Pointer	1	1	None			
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z			
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z			
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z			
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z			
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z			
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N			

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24F16KL402 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24F16KL402 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.5V
Voltage on any combined analog and digital pin, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 26-1).

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	°C			
Operating Ambient Temperature Range	TA	°C			
$\begin{array}{l} \mbox{Power Dissipation:} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = V \mbox{DD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH}\} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	Ромах (Тј – Та)/θја				W

TABLE 26-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4		°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60	—	°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	—	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	—	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	—	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	—	°C/W	1
Package Thermal Resistance, 14-Pin PDIP	θJA	62.4	—	°C/W	1
Package Thermal Resistance, 14-Pin TSSOP	θJA	108	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Para m No.	Symbol	Characteristic	Min	Conditions					
DC10	Vdd	Supply Voltage	1.8		3.6	V			
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	-	_	V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	0.7	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms		
	Vbg	Band Gap Voltage Reference	1.14	1.2	1.26	V			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss		0.2 Vdd	V		
DI16		OSCI (XT mode)	Vss		0.2 Vdd	V		
DI17		OSCI (HS mode)	Vss		0.2 Vdd	V		
DI18		I/O Pins with I ² C [™] Buffer	Vss		0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled	
	Vih	Input High Voltage ^(4,5)						
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd Vdd	V V		
DI25		MCLR	0.8 VDD	_	Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V		
DI29		I/O Pins with SMBus	2.1		Vdd	V	$2.5V \leq V \text{PIN} \leq V \text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS	
DI31	IPU	Maximum Load Current			30	μA	VDD = 2.0V	
		for Digital High Detection w/Internal Pull-up	—	—	1000	μA	VDD = 3.3V	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Ports	—	0.050	±0.100	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		VREF+, VREF-, AN0, AN1	—	0.300	±0.500	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

5: VIH requirements are met when the internal pull-ups are enabled.