

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS

		Pin Number	r			Description				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer					
AN0	2	19	2	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL10X				
AN1	3	20	3	Ι	ANA	family devices.				
AN2	4	1	—	Ι	ANA					
AN3	5	2	_	I	ANA					
AN4	6	3	_	I	ANA					
AN9	18	15	12	I	ANA					
AN10	17	14	11	I	ANA					
AN11	16	13	—	I	ANA					
AN12	15	12	_	I	ANA					
AN13	7	4	4	I	ANA	7				
AN14	8	5	5	I	ANA	1				
AN15	9	6	6	I	ANA	1				
AVdd	20	17	14	I	ANA	Positive Supply for Analog modules				
AVss	19	16	13	I	ANA	Ground Reference for Analog modules				
CCP1	14	11	10	I/O	ST	CCP1 Capture Input/Compare and PWM Output				
CCP2	15	12	9	I/O	ST	CCP2 Capture Input/Compare and PWM Output				
C1INA	8	5	5	I	ANA	Comparator 1 Input A (+)				
C1INB	7	4	4	I	ANA	Comparator 1 Input B (-)				
C1INC	5	2	_	I	ANA	Comparator 1 Input C (+)				
C1IND	4	1	_	I	ANA	Comparator 1 Input D (-)				
C1OUT	17	14	11	0	_	Comparator 1 Output				
CLK I	7	4	9	I	ANA	Main Clock Input				
CLKO	8	5	10	0	_	System Clock Output				
CN0	10	7	7	I	ST	Interrupt-on-Change Inputs				
CN1	9	6	6	I	ST					
CN2	2	19	2	I	ST					
CN3	3	20	3	I	ST	7				
CN4	4	1	_	I	ST	7				
CN5	5	2	_	Ι	ST]				
CN6	6	3	_	I	ST	7				
CN8	14	11	10	I	ST	7				
CN9	_	_	—	I	ST	7				
CN11	18	15	12	I	ST	7				
CN12	17	14	11	I	ST	7				
CN13	16	13	—	I	ST	7				
CN14	15	12	_	Ι	ST	7				
CN21	13	10	9	I	ST	1				
CN22	12	9	8	I	ST	1				
CN23	11	8	—	I	ST	1				
CN29	8	5	5	I	ST	1				
CN30	7	4	4	1	ST	1				

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

2.4 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

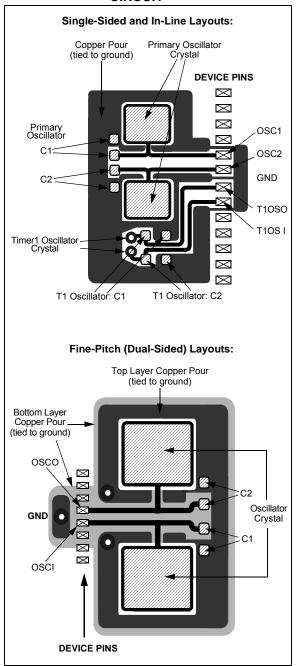
Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Input Voltage High (VIH) and Input Voltage Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx) pins, programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 24.0 "Development Support**".

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).


The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

FIGURE 2-3: S

B: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and bussing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F16KL402 family is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KL402 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24F16KL402 FAMILY DEVICES

	PIC24F04KLXXX	PIC24F08KL2XX	PIC24F08KL3XX		PIC24F08KL4XX	PIC24F16KLXXX	
	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash Program Memory (1408 instructions)	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash		GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table	000000h 00002h 00004h 0000FEh 000100h 000104h 0001FEh 000200h
User Memory Space		Program Memory (2816 instructions)	 Program Memory (2816 instructions)	-	Program Memory (2816 instructions)	 Flash Program Memory (5632 instructions)	- 000AFEh
User Me	Unimplemented Read '0'	Unimplemented Read '0'	Unimplemented Read '0'		Unimplemented Read '0'	Unimplemented	002BFEh
			 Data EEPROM (256 bytes)	- 	Data EEPROM (512 bytes)	 Read '0' Data EEPROM (512 bytes)	 7FFE00h 7FFF00h 7FFFFFh 800000h
Ī	Reserved	Reserved	Reserved		Reserved	Reserved	800800h
ace	Unique ID	Unique ID	Unique ID		Unique ID	Unique ID	800802h 800808h
lory Sp	Reserved	Reserved	Reserved		Reserved	Reserved	80080Ah
Mem	Device Config Registers	Device Config Registers	Device Config Registers		Device Config Registers	Device Config Registers	F80000h F8000Eh
Configuration Memory Space	Reserved	Reserved	Reserved		Reserved	Reserved	F80010h FEFFFEh
	DEVID (2)	DEVID (2)	DEVID (2)		DEVID (2)	DEVID (2)	FF0000h FFFFFFh

Note: Memory areas are not displayed to scale.

TABLE 4-10: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	—	—	_	_	_	_	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	00DF
PORTA	02C2		—						—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4		—						—	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	-	_	_	_	_	_	_	-	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices; read as '0'.

2: PORTA<5> is unavailable when MCLR functionality is enabled (MCLRE Configuration bit = 1).

TABLE 4-11: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices.

2: These ports and their associated bits are unimplemented in 14-pin devices.

TABLE 4-12: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	_	—	SDO2DIS ⁽¹⁾	SCK2DIS(1)	SDO1DIS	SCK1DIS	—	_	_	_	_	—	—	—	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

6.0 DATA EEPROM MEMORY

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Data
	EEPROM, refer to the "dsPIC33/PIC24
	Family Reference Manual", "Data
	EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFFFh. For PIC24FXXKL4XX devices, the size of the data EEPROM is 256 words (7FFE00h to 7FFFFh). For PIC24FXXKL3XX devices, the size of the data EEPROM is 128 words (7FFF0h to 7FFFFh). The data EEPROM is not implemented in PIC24F08KL20X or PIC24F04KL10X devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

//Disable Interrupts For 5 instr	uctions
asm volatile("disi #5");	
//Issue Unlock Sequence	
asm volatile ("mov #0x55, W0	\n"
"mov W0, NVMKEY	\n"
"mov #0xAA, W1	\n"
"mov W1, NVMKEY	\n");
// Perform Write/Erase operation	S
asm volatile ("bset NVMCON, #WR	\n"
"nop	\n"
"nop	\n");

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:					
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15	1 = Interr	Interrupt Nesting Disable bit upt nesting is disabled upt nesting is enabled			
bit 14-5 bit 4	Unimplemented: Read as '0' MATHERR: Arithmetic Error Trap Status bit 1 = Overflow trap has occurred 0 = Overflow trap has not occurred				
bit 3 ADDRERR: Address Error Trap Status b 1 = Address error trap has occurred 0 = Address error trap has not occurred			it		
bit 2	STKERR: Stack Error Trap Status bit				

	 1 = Stack error trap has occurred 0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

—

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIF	_	AD1IF	U1TXIF	U1RXIF			T3IF
bit 15							bit 8
	5444.6			-			5444.6
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IF	CCP2IF	—	—	T1IF	CCP1IF	—	INTOIF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	NVMIF: NVM	I Interrupt Flag	Status bit				
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 14	-	ted: Read as '					
bit 13	AD1IF: A/D (Conversion Cor	nplete Interrup	t Flag Status bit	t		
		request has oc					
h:1 40	-	request has no		Otatus hit			
bit 12		RT1 Transmitter		Status bit			
		request has no					
bit 11	-	RT1 Receiver In		tatus bit			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 10-9	Unimplemer	ted: Read as '	0'				
bit 8	T3IF: Timer3	Interrupt Flag	Status bit				
	•	request has oc					
		request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6		-		ot Flag Status b	it		
	•	request has oc					
	0 = Interrupt	request has no	t occurred				
bit 5-4	Unimplemer	ted: Read as '	0'				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	•	request has oc request has no					
bit 2	-	-		ot Flag Status b	it (ECCP1 on F	PIC24FXXKL40)X devices)
	1 = Interrupt	request has oc	curred	0	Υ.		,
L:1 4	-	request has no					
bit 1	-	ted: Read as '					
bit 0		rnal Interrupt 0 request has oc	-				

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE	—	_	T3IE
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IE	CCP2IE	_		T1IE	CCP1IE	—	INTOIE
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable t	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
L:4 / C			- 1-14				
bit 15		/I Interrupt Enabl request is enabl					
		request is not er					
bit 14	Unimpleme	nted: Read as '0	,				
bit 13	AD1IE: A/D	Conversion Com	plete Interrup	t Enable bit			
		request is enabl					
L:1 40	-	request is not er		bla b :4			
bit 12		RT1 Transmitter request is enabl	•	DIE DIT			
		request is not er					
bit 11	U1RXIE: UA	RT1 Receiver In	terrupt Enable	e bit			
		request is enabl					
	-	request is not er					
bit 10-9	-	nted: Read as '0					
bit 8		3 Interrupt Enable					
		request is enabl request is not er					
bit 7		2 Interrupt Enable					
		request is enabl					
	0 = Interrupt	request is not er	nabled				
bit 6		pture/Compare/F	-	ot Enable bit			
		request is enabl request is not er					
bit 5-4		nted: Read as '0					
bit 3	-	Interrupt Enable					
bit 5		request is enabl					
		request is not er					
bit 2	CCP1IE: Ca	pture/Compare/F	WM1 Interru	ot Enable bit			
		request is enabl					
L:1 4		request is not er					
bit 1	-	nted: Read as '0					
bit 0		rnal Interrupt 0 E request is enabl					
		TEQUEST IS ETIDDI	6U				

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	<u>If FSCM is Enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

ROI DOZE2 DOZE1 DOZE0 DOZEN ⁽¹⁾ RCDIV2 RCDIV1 RCD bit 15	′W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 Recadable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts clear the DOZEN bit bit 14-12 DOZE DOZE 110 = 1:64 101 = 1:32 100 = 1:16 111 = 1:32 100 = 1:1 DOZE Colspan="2">DOZE Enable bit ⁽¹⁾ 1 = DOZE DOZE Enable bit ⁽¹⁾ 1 = DOZE COCON:11:12) = 111 or 001: 101 = 1:2 DOZE 000 = 1:1 When COSC bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC Colspan="2">COSC 111 = 312 Colspan="2">Colspan= Set to 1:1 bit 10-8 RCDIV-2:0: FRC Postscaler Select b	DIV0
- -	bit 8
- -	1.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 101 = 1:32 100 = 1:16 011 = 1:3 010 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-4) 011 = 4 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (00Fault) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 112 = 1.05 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-32) 114 = 1.95 kHz (divide-by-32) 115 = 1.95 kHz (divide-by-32) 116 = 7.81 kHz (divide-by-32) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-32) 119 = 31.25 kHz (divide-by-32) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-32) 112 = 1.95 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 112 = 1.95 kHz (divide-by-4) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.55 kHz (divide-by-4) 118 = 1.55 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 111 = 1.95 kHz (divi	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' .n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15ROI: Recover on Interrupt bit .1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 .1 = Interrupts have no effect on the DOZEN bitbit 14-12DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits111 = 1:128 .100 = 1:6 .011 = 1:8 .000 = 1:16 .001 = 1:2 .000 = 1:1bit 11DOZEN: DOZE Enable bit(1) .000 = 1:1bit 11DOZEN: DOZE Enable bit(1) .000 = 1:1bit 10-RCDIV<2:0>: FRC Postscaler Select bitsWhen COSC-2:0> (DSCCON<14:12) = 111 or .001; .111 = 31.25 kHz (divide-by-26) .100 = 125 kHz (divide-by-4) .001 = 25 kHz (divide-by-4) .001 = 20 HHz (divide-by-4) .001 = 20 HHz (divide-by-4) .001 = 4 MHz (divide-by-4) .001 = 4 MHz (divide-by-256) .100 = 2.0> (OSCCON<14:12> = 110; .111 = 1.95 kHz (divide-by-32) .000 = 31.25 kHz (divide-by-4) .011 = 62.5 kHz (divide-by-64) .011 = 1.56 kHz (divide-by-64) .011 = 1.56 kHz (divide-by-32) .000 = 31.25 kHz (divide-by-4) .011 = 25 kHz (divide-by-4) .011 = 1.56 kHz (divide-by-4) .011 = 1.56 kHz (divide-by-4) .011 = 1.56 kHz (divide-by-4) .011 = 1.56 kHz (divide-by-4) .011 = 7.81 kHz (divide-by-64) .011 = 1.25 kHz (divide-by-64) .011 = 1.56 kHz (divide-by-64) .011 = 1.56 kHz (divide-by-4) .011 = 1.25 kHz (divide-by-4) .011 = 1.56 kHz (divide-by-4) .011 = 1.25 kHz (divide-by-4) <td>bit (</td>	bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 100 = 1:16 111 = 1:2 010 = 1:12 000 = 1:16 011 = 1:2 000 = 1:1 bit 10 DOZEE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001:	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DDZE<2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 4 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 4 MHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 101 = 7.81 kHz (divide-by-2) 102 = 7.81 kHz (divide-by-2) 104 = 4 MHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 106 = 7.81 kHz (divide-by-2) 107 = 7.81 kHz (divide-by-2) 108 = 7.81 kHz (divide-by-2) 109 = 3.125 kHz (divide-by-32) 100 = 3.125 kHz (divide-by-4) 101 = 1.5.62 kHz (divide-by-4) 102 = 3.125 kHz (divide-by-4) 103 = 3.125 kHz (divide-by-4) 104 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 106 = 3.125 kHz (divide-by-4) 107 = 3.125 kHz (divide-by-4) 108 = 3.125 kHz (divide-by-4) 109 = 3.125 kHz (divide-by-4) 100 = 3.125 kHz (divide-by-4) 101 = 1.5.5 kHz (divide-by-4) 102 = 3.125 kHz (divide-by-4) 103 = 3.5 kHz (divide-by-4) 104 = 3.5 kHz (divide-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-3) 010 = 2 MHz (divide-by-3) 010 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-4) 010 = 125 kHz (divide-by-4)	
0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 4 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-256) 100 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
When $COSC < 2:0 > (OSCCON < 14:12) = 111 \text{ or } 001:$ 111 = 31.25 kHz (divide-by-256) 100 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When $COSC < 2:0 > (OSCCON < 14:12 >) = 110:$ 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-16) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
000 = 500 kHz (divide-by-1)	

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER 17-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

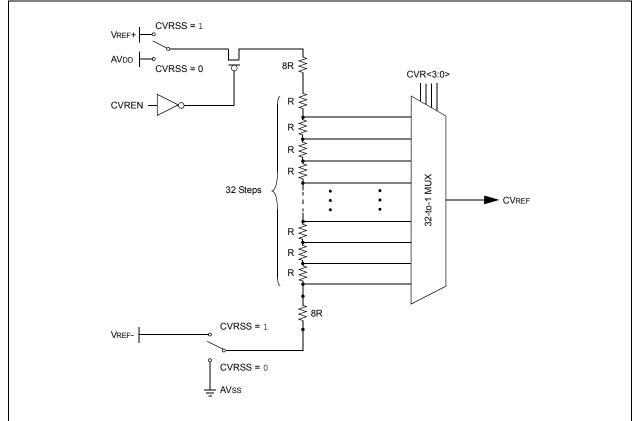
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:				
R = Read	lable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	WCOL: \	Nrite Collision Detect bit		
		0	while it is still transmitting the	e previous word (must be cleared
	in sc 0 = No c	ftware)		
bit 6		MSSPx Receive Overflow In	diaatar hit(1)	
DILO	SPI Slav			
			SPxBUF register is still holding	the previous data. In case of over-
				ave mode. The user must read the
			ng data, to avoid setting overflo	ow (must be cleared in software).
	0 = No o			
bit 5		MSSPx Enable bit ⁽²⁾		
		bles serial port and configures bles serial port and configure	s SCKx, SDOx, SDIx and \overline{SSx}	as serial port pins
bit 4		ock Polarity Select bit		
DIL 4		state for clock is a high level		
		state for clock is a low level		
bit 3-0	SSPM<3	:0>: MSSPx Mode Select bit	_S (3)	
	1010 = \$	SPI Master mode, Clock = Fo	osc/(2 * ([SSPxADD] + 1)) ⁽⁴⁾	
	0101 = 5	SPI Slave mode, Clock = SCk	(x pin; SSx pin control is disabl	ed, $\overline{\text{SSx}}$ can be used as an I/O pin
			<pre>Kx pin; SSx pin control is enab ABA subset/0</pre>	led
		SPI Master mode, Clock = TN SPI Master mode, Clock = Fc	•	
		SPI Master mode, Clock = Fo		
		SPI Master mode, Clock = Fo		
Note 1:	In Master mo	de the overflow bit is not se	t since each new reception (ar	nd transmission) is initiated by
		SSPxBUF register.		
•	- \\\/h======h=h=	-	why according used as instant on a star	

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.
- 4: SSPxADD value of 0 is not supported when the Baud Rate Generator is used in SPI mode.

21.0 COMPARATOR VOLTAGE REFERENCE

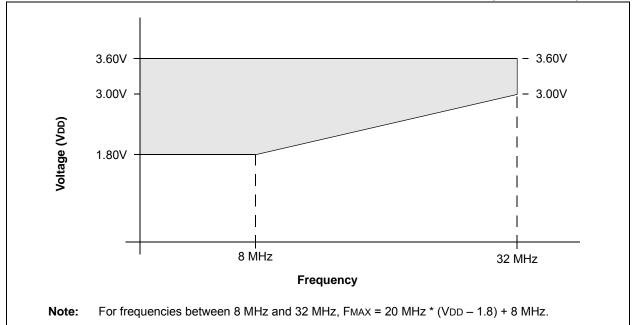

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

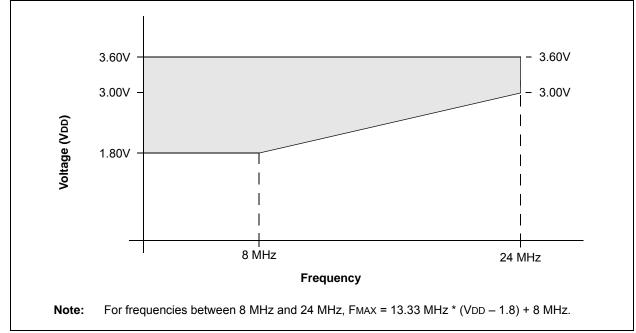
The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.


FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
HLVDEN		HLSIDL	—	_			—
bit 15	•			·			bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	HLVDEN: Hig	gh/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD is						
	0 = HLVD is						
bit 14	-	ted: Read as '0					
bit 13		/D Stop in Idle N		u			
		iues module op es module opera		the device enter	's lale mode		
bit 12-8		ited: Read as '(
bit 7	•	e Change Direc		t			
	-	-		or exceeds the	trip point (HLVI	DL<3:0>)	
	0 = Event occ	curs when the v	oltage equals	or falls below th	e trip point (HL	VDL<3:0>)	
bit 6		d Gap Voltage S	-				
		that the band g					
L:1 F		that the band g					
bit 5		al Reference V	-	oltage is stable a	and the High V	ltago Dotoct lo	aio aonorator
		upt flag at the s				bilage Delect ic	gic generates
	0 = Indicates	that the internation	al reference v	oltage is unstabl			
	generate enabled	the interrupt fl	ag at the spe	cified voltage ra	nge, and the H	ILVD interrupt	should not be
hit 4		ted. Dood oo '	,				
bit 4 bit 3-0	-	ited: Read as 'd : High/Low-Volt		a Limit bito			
DIL 3-0		-	-	ut comes from th	e HI VDIN nin)		
	1110 = Trip F	Point 14 ⁽¹⁾					
	1101 = Trip F						
	1100 = Trip F	Point 12(1)					
	•						
	0000 = Trip F	(4)					

REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER



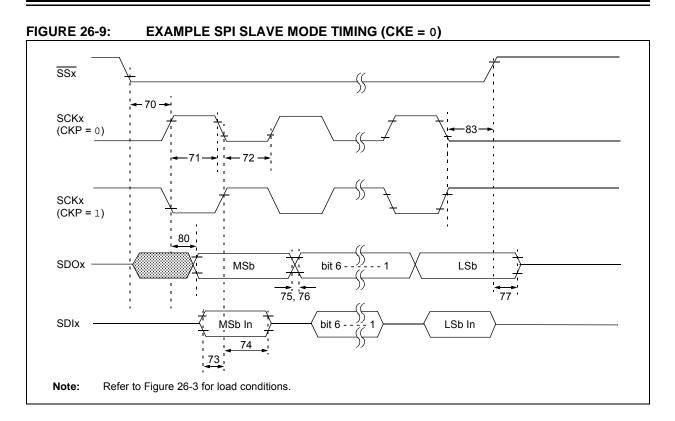
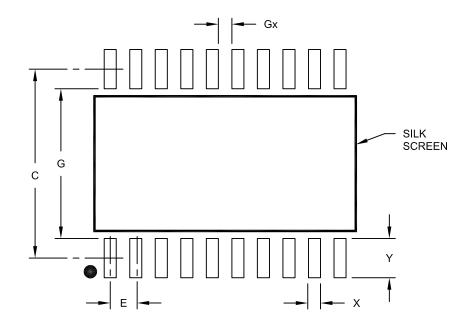

26.1 DC Characteristics

FIGURE 26-2: PIC24F16KL402 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED)

TABLE 26-29: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)


Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Cloc	ck Edge of Byte 2	1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx I	Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	SSx ↑ to SDOx Output High-Impedance		50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		—	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

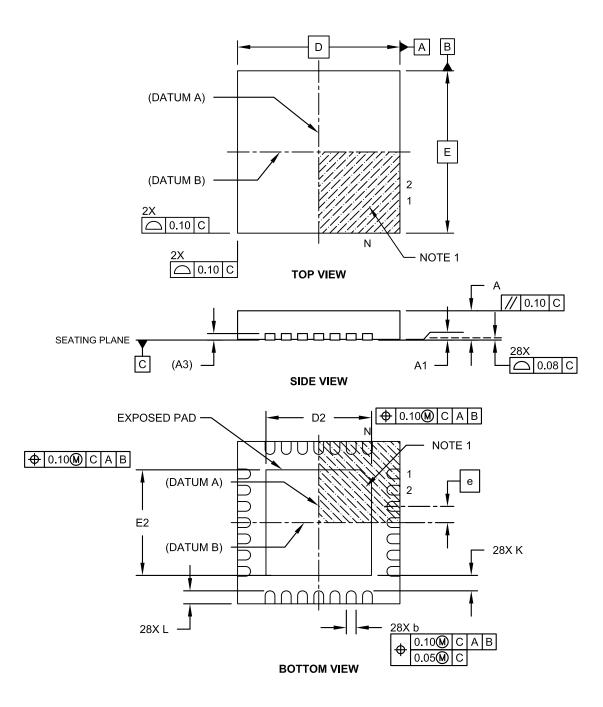
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

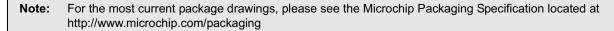
	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

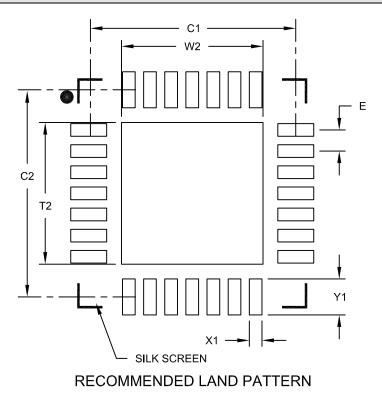
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

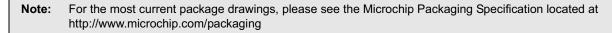

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

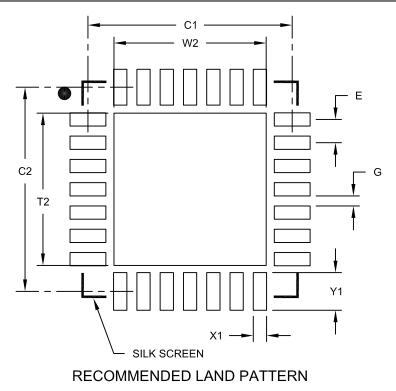

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-140B Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5 mm Body [QFN] Land Pattern With 0.55 mm Contact Length

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			0.85


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2140A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-620-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.