

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number								
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description				
SCK1	15	12	8	I/O	ST	MSSP1 SPI Serial Input/Output Clock				
SCL1	12	9	8	I/O	I ² C	MSSP1 I ² C Clock Input/Output				
SCLKI	10	7	12	I	ST	Digital Secondary Clock Input				
SDA1	13	10	9	I/O	l ² C	MSSP1 I ² C Data Input/Output				
SDI1	17	14	11	I	ST	MSSP1 SPI Serial Data Input				
SDO1	16	13	9	0	—	MSSP1 SPI Serial Data Output				
SOSCI	9	6	11	I	ANA	Secondary Oscillator Input				
SOSCO	10	7	12	0	ANA	Secondary Oscillator Output				
SS1	12	9	12	0	_	SPI1 Slave Select				
T1CK	13	10	9	I	ST	Timer1 Clock				
ТЗСК	18	15	12	I	ST	Timer3 Clock				
T3G	6	3	11	I	ST	Timer3 External Gate Input				
U1CTS	12	9	8	I	ST	UART1 Clear-to-Send Input				
U1RTS	13	10	9	0	_	UART1 Request-to-Send Output				
U1RX	6	3	12	I	ST	UART1 Receive				
U1TX	11	8	11	0	_	UART1 Transmit				
ULPWU	3	1	3	I	ANA	Ultra Low-Power Wake-up Input				
Vdd	20	17	14	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins				
VREF+	2	19	2	Ι	ANA	A/D Reference Voltage Input (+)				
VREF-	3	20	3	Ι	ANA	A/D Reference Voltage Input (-)				
Vss	19	16	13	Р	—	Ground Reference for Logic and I/O Pins				

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24F16KL402 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVSS pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

TABLE 4-8: MSSP REGISTER MAP

-																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
SSP1BUF	0200	_	_	—	_	_	_	_				MSSP1 F	Receive Buff	er/Transmit	Register			00xx
SSP1CON1	0202	_	_	—	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	0204	_	_	—	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	0206	_	_	—	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	0208	_	_	—	_	_	—	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP1ADD	020A	—	_	-	—	—	—	—	_	MSSP1 Address Register (I ² C ™ Slave Mode) MSSP1 Baud Rate Reload Register (I ² C Master Mode)							0000	
SSP1MSK	020C	_	_	_	_	_	—	_	_		М	SSP1 Addr	ess Mask R	egister (I ² C	Slave Mode	e)		00FF
SSP2BUF ⁽¹⁾	0210	_	_	_	_	_	—	_	_			MSSP2 F	Receive Buff	er/Transmit	Register			00xx
SSP2CON1(1)	0212	_	_	_	_	_	—	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2(1)	0214	_	_	_	_	_	—	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3(1)	0216	_	_	—	—	_	—	—	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	0218	_	_	—	_	_	—	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	021A	—	—	-	—	—	—	-	—	MSSP2 Address Register (I ² C Slave Mode) MSSP2 Baud Rate Reload Register (I ² C Master Mode)							0000	
SSP2MSK ⁽¹⁾	021C	_		—	_	_	—	—	_		М	SSP2 Addr	ess Mask R	egister (I ² C	Slave Mode	e)		00FF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-9: UART REGISTER MAP

	•••	•••••			-													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—	_	—		—			UART1 Transmit Register									xxxx
U1RXREG	0226	—	_	—		—				UART1 Receive Register								0000
U1BRG	0228							Baud Ra	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	_	_	_				UART2	Transmit R	egister				xxxx
U2RXREG	0236	_	_	—	_	_	_	_	UART2 Receive Register								0000	
U2BRG	0238							Baud Ra	ate Genera	tor Prescaler	Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

; Set up NVMCON for :	row erase operation	
MOV #0x40	58, WO ;	
MOV W0, N	VMCON ;	Initialize NVMCON
; Init pointer to ro	w to be ERASED	
MOV #tblp	age(PROG_ADDR), W0 ;	
MOV W0, T	BLPAG ;	Initialize PM Page Boundary SFR
MOV #tblo	<pre>ffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0, [w0] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0x55	, WO	
MOV W0, N	VMKEY ;	Write the 55 key
MOV #0xAA	, W1 ;	
MOV W1, N	VMKEY ;	Write the AA key
BSET NVMCO	N, #WR ;	Start the erase sequence
NOP	i	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	T3GIF	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	T3GIF: Timer3 External Gate Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 4-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	—	—	—	—	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

- bit 2 BCL2IF: MSSP2 I²C[™] Bus Collision Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SSP2IF: MSSP2 SPI/I²C Event Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 Unimplemented: Bood os ⁽⁰⁾
- bit 0 Unimplemented: Read as '0'
- Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15 bit 8										
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0			
bit 7 bit 0										
Logond:										

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •
- •

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption. This feature provides a low-power technique for periodically waking up the device from Sleep mode.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0. When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.

See Example 10-2 for initializing the ULPWU module.

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN2/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

//*************************************
// 1. Charge the capacitor on RB0
//*************************************
TRISBbits.TRISB0 = 0;
LATBbits.LATB0 = 1;
for(i = 0; i < 10000; i++) Nop();
//2. Stop Charging the capacitor on RBU //***********************************
TRISBbits.TRISB0 = 1;
//*************************************
//3. Enable ULPWU Interrupt
//*************************************
IFS5bits.ULPWUIF = 0;
IECODIS.OFWUE = 1,
IFC2UDIC5.UDFW0IF - UX//
//4. Enable the IIltra Low Power Wakeup module and allow capacitor discharge
//************************************
ULPWCONbits.ULPEN = 1;
ULPWCONbits.ULPSINK = 1;
/ / * * * * * * * * * * * * * * * * * *
//5. Enter Sleep Mode
//*************************************
Sleep();
//for Sleep, execution will resume here

11.3 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the PIC24F16KL402 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to VSS by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE (ASSEMBLY LANGUAGE)

MOV	#0xFF00, W0	;	Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
MOV	W0, TRISB		
MOV	#0x00FF, W0	;	Enable PORTB<15:8> digital input buffers
MOV	W0, ANSB		
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

EXAMPLE 11-2: PORT WRITE/READ EXAMPLE (C LANGUAGE)

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
ANSB = $0 \times 00 FF;$	// Enable PORTB<15:8> digital input buffers
NOP();	// Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

FIGURE 17-2: SPI MASTER/SLAVE CONNECTION

NOTES:

19.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 10-Bit High-Speed A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- · Up to 12 analog input pins
- External voltage reference input pins
- · Internal band gap reference input
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Two-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes

Depending on the particular device, PIC24F16KL402 family devices implement up to 12 analog input pins, designated AN0 through AN4 and AN9 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins. A block diagram of the A/D Converter is displayed in Figure 19-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure port pins as analog inputs and/ or select band gap reference inputs (ANSA<3:0>, ANSB<15:12,4:0> and ANCFG<0>).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
 - Configure A/D interrupt (if required):
 - a) Clear the AD1IF bit.

2.

b) Select A/D interrupt priority.

DC CHARACTERISTIC	$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions: 1.8V to 3.6V \\ Operating temperature -40°C \leq TA \leq +85°C for Industrial \\ -40°C \leq TA \leq +125°C for Extended \\ \hline \end{tabular}$					
Parameter No.	Typical ⁽¹⁾	Max	Units			Conditions
IDD Current						
DC20	0.154	0.350	m۸	1.8V	+82/\°C	
	0.301	0.630	IIIA	3.3V	+00V C	0.5 MIPS,
	—	.500	m۸	1.8V	1405%0	Fosc = 1 MHz
	—	.800	IIIA	3.3V	+125 C	
DC22	0.300	—	mA	1.8V	+95°C	1 MIPS,
	0.585			3.3V	+00 C	Fosc = 2 MHz
DC24	7.76	12.0	m۸	3.3V	+85°C	16 MIPS,
	—	18.0	IIIA	3.3V	+125°C	Fosc = 32 MHz
DC26	1.44		m۸	1.8V	+85°C	FRC (4 MIPS),
	2.71		IIIA	3.3V	+00 C	Fosc = 8 MHz
DC30	4.00	28.0		1.8V	+95°C	
	9.00	55.0	μΑ	3.3V	-00 C	LPRC (15.5 KIPS),
	_	45.0		1.8V	112500	Fosc = 31 kHz
	—	90.0	μΑ	3.3V	125 0	

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IDD is measured with all peripherals disabled. All I/Os are configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)⁽²⁾

DC CHARACTERISTI	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions					
Idle Current (IIDLE)								
DC40	0.035	0.080	m (1.8V	+95°C			
	0.077	0.150	IIIA	3.3V	+05 C	0.5 MIPS,		
	—	0.160		1.8V	+125°C	Fosc = 1 MHz		
		0.300	MA	3.3V				
DC42	0.076	—	mA	1.8V	+85°C	1 MIPS,		
	0.146	_		3.3V		Fosc = 2 MHz		
DC44	2.52	3.20	mA	3.3V	+85°C	16 MIPS,		
	—	5.00	mA	3.3V	+125°C	Fosc = 32 MHz		
DC46	0.45	—	mA	1.8V	195°C	FRC (4 MIPS),		
	0.76	—	mA	3.3V	+05 C	Fosc = 8 MHz		
DC50	0.87	18.0	μA	1.8V	105°C			
	1.55	40.0	μA	3.3V	+85 C	LPRC (15.5 KIPS),		
	—	27.0	μA	1.8V	110500	Fosc = 31 kHz		
		50.0	μA	3.3V	+125 C			

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IIDLE is measured with all I/Os configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-13: DC CHARACTERISTICS: DATA EEPROM MEMORY

DC CHARACTERISTICS			$ \begin{array}{ c c c c c } \hline Standard Operating Conditions: 1.8V to 3.6V \\ Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \\ \hline \end{array} $					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max Units		Conditions	
		Data EEPROM Memory						
D140	Epd	Cell Endurance	100,000	—	_	E/W		
D141	Vprd	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	_	ms		
D143B	Tref	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W		
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D145	Iddpd	Supply Current during Programming	_	7	_	mA		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-14: DC CHARACTERISTICS: COMPARATOR

Standard Operating Conditions: $2.0V < VDD < 3.6V$ Operating temperature $-40^{\circ}C < TA \le +85^{\circ}C$ (unless otherwise stated) $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments			
D300	VIOFF	Input Offset Voltage		20	40	mV				
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V				
D302	CMRR	Common-Mode Rejection Ratio	55		_	dB				

TABLE 26-15: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

Standard Operating Conditions: $2.0V < VDD < 3.6V$ Operating temperature $-40^{\circ}C < TA \le +85^{\circ}C$ (unless otherwise stated) $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments		
VRD310	CVRES	Resolution			Vdd/32	LSb			
VRD311	CVRAA	Absolute Accuracy		—	AVDD – 1.5	LSb			
VRD312	CVRur	Unit Resistor Value (R)	_	2k		Ω			

TABLE 26-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V					
			Operating temperature			$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	_		μS		
SY11	TPWRT	Power-up Timer Period	50	64	90	ms		
SY12	TPOR	Power-on Reset Delay	1	5	10	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns		
SY20 Two	Twdt	Watchdog Timer Time-out Period	0.85	1.0	1.15	ms	1.32 prescaler	
			3.4	4.0	4.6	ms	1:128 prescaler	
SY25	TBOR	Brown-out Reset Pulse Width	1	-	_	μS		
SY45	TRST	Internal State Reset Time	—	5	_	μS		
SY55	TLOCK	PLL Start-up Time	—	100	_	μS		
SY65	Tost	Oscillator Start-up Time	_	1024	_	Tosc		
SY71	Трм	Program Memory Wake-up Time	—	1	—	μS	Sleep wake-up with PMSLP = 0	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-24: COMPARATOR TIMINGS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time ^(1,2)		150	400	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid ⁽²⁾	—	—	10	μS	

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-25: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾	—		10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

^{2:} Parameters are characterized but not tested.

27.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensio	Dimension Limits		NOM	MAX			
Number of Pins	Ν		•				
Pitch	е	.100 BSC					
Top to Seating Plane	Α	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.735	.750	.775			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint		1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS					
Dimension	Dimension Limits		NOM	MAX			
Number of Pins	Ν		20				
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E		5.00 BSC				
Exposed Pad Width	E2	3.15	3.25	3.35			
Overall Length	D		5.00 BSC				
Exposed Pad Length	D2	3.15	3.25	3.35			
Contact Width	b	0.25	0.30	0.35			
Contact Length	L	0.35	0.40	0.45			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-140B Sheet 1 of 2