E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl201t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	—	—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	-	HLSIDL	_	—	-	_	_	VDIR	BGVST	IRVST	-	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY		_	_		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	-	-	—	—		_		NVM Key Register					0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	_	ULPSIDL		—	_		ULPSINK		_		_	_		_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	T4MD	T3MD	T2MD	T1MD	_	_		SSP1MD	U2MD	U1MD		—	_		ADC1MD	0000
PMD2	0772	_	—	—	_	—	—	_	-	_	_	—	_	—	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_			CMPMD	_	-	—	_	_		—	_	SSP2MD	—	0000
PMD4	0776		_	_	_	_	_	-	—	ULPWUMD		_	EEMD	REFOMD	—	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = &progAddr unsigned int offset;</pre>	// Global variable located in Pgm Memory $% \mathcal{T}_{\mathcal{T}}$
//Set up pointer to the first memory location to be written	
<pre>TBLPAG =builtin_tblpage(&progAddr); offset = &progAddr & 0xFFFF;</pre>	// Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0×4058 ;	// Initialize NVMCON
<pre>asm("DISI #5");</pre>	<pre>// Block all interrupts for next 5 // instructions</pre>
builtin_write_NVM();	<pre>// Instructions // C30 function to perform unlock // sequence and set WR</pre>

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

MOV #0x4004, W0 ;	
MOV W0, NVMCON ; Initialize NVMCON	
; Set up a pointer to the first program memory location to be written	
; program memory selected, and writes enabled	
MOV #0x0000, W0 ;	
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR	
MOV #0x6000, W0 ; An example program memory addre	SS
; Perform the TBLWT instructions to write the latches	
; 0th_program_word	
MOV #LOW_WORD_0, W2 ;	
MOV #HIGH_BYTE_0, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; lst_program_word	
MOV #LOW_WORD_1, W2 ;	
MOV #HIGH_BYTE_1, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2 ;	
MOV #HIGH_BYTE_2, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
•	
•	
; 32nd_program_word	
MOV #LOW_WORD_31, W2 ;	
MOV #HIGH_BYTE_31, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	
TBLWTH W3, [W0] ; Write PM high byte into program	latch

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	—	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	TOST + TLOCK	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Тоѕт	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	—	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.

3: TFRC and TLPRC = RC oscillator start-up times.

4: TLOCK = PLL lock time.

5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.

6: If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

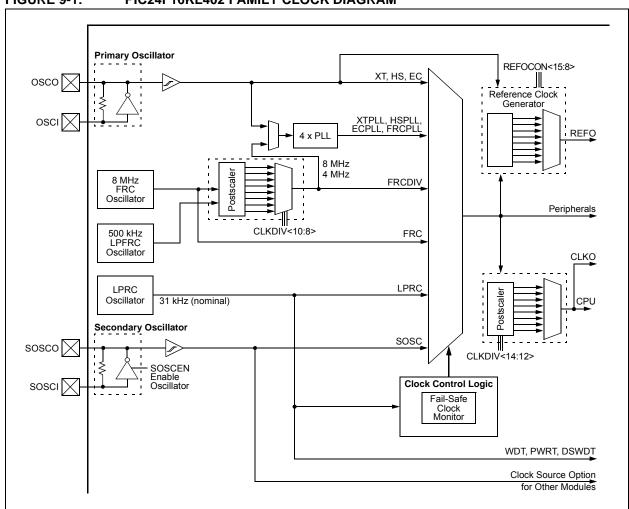
Note: For detailed operating frequency and timing specifications, see Section 26.0 "Electrical Characteristics".

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
_	—	—	—	—	—	—	—						
bit 15							bit 8						
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0						
_	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—						
bit 7					•	•	bit 0						
Legend:		C = Clearable	bit										
R = Readab	le bit	W = Writable	/ = Writable bit U = Unimplemented bit, read as '0'										
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown						
bit 15-4	Unimplemen	ted: Read as 'd)'										
bit 3	IPL3: CPU In	terrupt Priority	Level Status bi	t ⁽²⁾									
	1 = CPU Inte	rrupt Priority Le	vel is greater t	han 7									
		rrupt Priority Le	•										
bit 1-0	Unimplemen	ted: Read as 'o)'										
	- -	fan dha alaa si i		ubiele is used du			-4:						
	See Register 3-2					•							
2: T	he IPL3 bit is co	incatenated with	n the IPL<2:0>	DITS (SR<7:5>)) to form the CF	20 Interrupt Pri	ority Level.						

Note: Bit 2 is described in Section 3.0 "CPU".

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24F16KL402 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip, 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24F16KL402 FAMILY CLOCK DIAGRAM

The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator se	lection in WO
;OSCCONH (high byte) Unlock	Sequence
MOV #OSCCONH, w1	
MOV #0x78, w2	
MOV #0x9A, w3	
MOV.b w2, [w1]	
MOV.b w3, [w1]	
;Set new oscillator selection	n
MOV.b WREG, OSCCONH	
;OSCCONL (low byte) unlock s	equence
MOV #OSCCONL, w1	
MOV #0x46, w2	
MOV #0x57, w3	
MOV.b w2, [w1]	
MOV.b w3, [w1]	
;Start oscillator switch oper	ration
BSET OSCCON,#0	

9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24F16KL402 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT). Therefore, if the ROSEL bit is also not set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
ULPEN		ULPSIDL	_	—	_		ULPSINK			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		—	—		—					
bit 7							bit 0			
l							1			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15	ULPEN: ULP	WU Module En	able bit							
	1 = Module is									
	0 = Module is	disabled								
bit 14	Unimplemen	ted: Read as '	כ'							
bit 13	ULPSIDL: UL	PWU Stop in I	dle Select bit							
				ne device enters	s Idle mode					
	0 = Continues	s module opera	tion in Idle mo	de						
bit 12-9	Unimplemen	ted: Read as '	כ'							
bit 8	ULPSINK: UL	_PWU Current	Sink Enable bi	t						
	1 = Current si	ink is enabled								
	0 = Current si	ink is disabled								
bit 7-0	Unimplemen	ted: Read as '	כ'							

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	_	TSIDL	_	_	_	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15		I				•	bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplerr	nented bit. read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16-						
	0 = Stops 16-	bit Timer1					
bit 14	Unimplement	ted: Read as ')'				
bit 13		1 Stop in Idle N					
				device enters Idl	e mode		
h:+ 40 40		module opera		de			
bit 12-10 bit 9-8	-	ted: Read as ' : Timer1 Exten		La at hita(1)			
DIL 9-0	11 = Reserve			lect bits ?			
		ises the LPRC	as the clock s	ource			
		ises the extern					
	00 = Timer1 u	ises the Secon	dary Oscillato	r (SOSC) as the	clock source		
bit 7	Unimplement	ted: Read as '	י'				
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit			
	When TCS =	-					
	This bit is igno When TCS =						
		<u>u.</u> ne accumulatio	n is enabled				
		ne accumulatio					
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3		ted: Read as ')'				
bit 2	-			hronization Sele	ect bit		
	When TCS =		, ,				
	1 = Synchron	nizes external (
		t synchronize e	external clock i	input			
	When TCS =						
hit 1	This bit is igno	Clock Source S	Soloct bit				
bit 1		ock source is s		ECS<1.05			
		clock (Fosc/2)					
bit 0	Unimplement	ted: Read as '	כ'				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—		—	_	—
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit
Legend:							
R = Readable	a hit	W = Writable	hit	II = I Inimplen	nented bit, read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
bit 15-8	Unimplemen	ted: Read as	0'				
bit 7	-		nutdown Event	Status bit			
	1 = A shutdow	wn event has c	ccurred; ECCP	outputs are in	a shutdown sta	ate	
	0 = ECCP ou	tputs are opera	ating				
bit 6-4			to-Shutdown So				
			ther C1OUT or 2OUT comparat				
	101 = VIL ON	FLT0 pin or C2	IOUT comparat	tor output is hig	ih		
	100 = VIL on	FLT0 pin		5	,		
		C1OUT or C20					
		T comparator o T comparator o					
		hutdown is dis					
bit 3-2	PSSAC<1:0>	: P1A and P10	C Pins Shutdow	n State Contro	l bits		
		l P1C pins tri-s					
		ns, P1A and P ⁻ ns, P1A and P ⁻					
bit 1-0	•		D Pins Shutdow	in State Control	l bite		
		P1D pins tri-s			i bits		
		ns, P1B and P					
	00 = Drive pir	ns, P1B and P	1D, to '0'				

Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.

2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.

3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

U-0 U-0 W = Writable '1' = Bit is set nented: Read as ' 0>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	t 'o' ary Mode Output ut assignment ected as the com ected as the com	'0' = Bit is clear Assignment S is disabled; th plementary ou	teering bits he STR <d:a> itput pair</d:a>	x = Bit is unkn	
W = Writable '1' = Bit is se nented: Read as ' 0>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	strasync bit t 'o' ury Mode Output ut assignment ected as the com ected as the com	STRD U = Unimplen '0' = Bit is clea Assignment S is disabled; the plementary out	STRC nented bit, read ared iteering bits ne STR <d:a></d:a>	STRB d as '0' x = Bit is unkn	R/W-1 STRA bit C
W = Writable '1' = Bit is se nented: Read as ' 0>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	strasync bit t 'o' ury Mode Output ut assignment ected as the com ected as the com	STRD U = Unimplen '0' = Bit is clea Assignment S is disabled; the plementary out	STRC nented bit, read ared iteering bits ne STR <d:a></d:a>	STRB d as '0' x = Bit is unkn	STRA bit (own
W = Writable '1' = Bit is se nented: Read as ' 0>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	bit t '0' ary Mode Output ut assignment i ected as the com	U = Unimplen '0' = Bit is clea Assignment S is disabled; the plementary ou	nented bit, read ared teering bits ne STR <d:a></d:a>	d as '0' x = Bit is unkn	bit (own
'1' = Bit is se nented: Read as D>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	t 'o' ary Mode Output ut assignment ected as the com ected as the com	'0' = Bit is clear Assignment S is disabled; th plementary ou	ared iteering bits ne STR <d:a> itput pair</d:a>	x = Bit is unkn	own
'1' = Bit is se nented: Read as D>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	t 'o' ary Mode Output ut assignment ected as the com ected as the com	'0' = Bit is clear Assignment S is disabled; th plementary ou	ared iteering bits ne STR <d:a> itput pair</d:a>	x = Bit is unkn	
'1' = Bit is se nented: Read as D>: Complementa plementary output ring mode and P1B are sele and P1C are sele and P1D are sele	t 'o' ary Mode Output ut assignment ected as the com ected as the com	'0' = Bit is clear Assignment S is disabled; th plementary ou	ared iteering bits ne STR <d:a> itput pair</d:a>	x = Bit is unkn	
nented: Read as 0>: Complementa plementary outpu- ring mode and P1B are sele and P1C are sele and P1D are sele	^{'0'} ary Mode Output ut assignment i ected as the com ected as the com	'0' = Bit is clear Assignment S is disabled; th plementary ou	ared iteering bits ne STR <d:a> itput pair</d:a>	x = Bit is unkn	
0>: Complementa plementary outpuring mode and P1B are sele and P1C are sele and P1D are sele	try Mode Output at assignment i acted as the com acted as the com	: Assignment S is disabled; th nplementary ou	teering bits he STR <d:a> itput pair</d:a>	bits are used	to determine
0>: Complementa plementary outpuring mode and P1B are sele and P1C are sele and P1D are sele	try Mode Output at assignment i acted as the com acted as the com	is disabled; th	ne STR <d:a></d:a>	bits are used	to determine
plementary outputring mode and P1B are sele and P1C are sele and P1D are sele	ut assignment i ected as the com ected as the com	is disabled; th	ne STR <d:a></d:a>	bits are used	to determine
ring mode and P1B are sele and P1C are sele and P1D are sele	ected as the com ected as the com	plementary ou	Itput pair	bits are used	to determine
		plementary ou			
nented: Read as	'0'				
: Steering Sync b					
ut steering update ut steering update				le boundary	
eering Enable D b	it				
		olarity control	from CCP1M<	1:0>	
eering Enable C b	bit				
	•	olarity control	from CCP1M<	1:0>	
eering Enable B b	it				
		olarity control	from CCP1M<	1:0>	
eering Enable A b	it				
		olarity control	from CCP1M<	1:0>	
	pin is assigned to eering Enable C b pin has the PWM pin is assigned to eering Enable B b pin has the PWM pin is assigned to eering Enable A b pin has the PWM	pin is assigned to port pin eering Enable C bit pin has the PWM waveform with p pin is assigned to port pin eering Enable B bit pin has the PWM waveform with p pin is assigned to port pin eering Enable A bit	pin is assigned to port pin eering Enable C bit pin has the PWM waveform with polarity control pin is assigned to port pin eering Enable B bit pin has the PWM waveform with polarity control pin is assigned to port pin eering Enable A bit pin has the PWM waveform with polarity control	pin is assigned to port pin eering Enable C bit pin has the PWM waveform with polarity control from CCP1M< pin is assigned to port pin eering Enable B bit pin has the PWM waveform with polarity control from CCP1M< pin is assigned to port pin eering Enable A bit pin has the PWM waveform with polarity control from CCP1M<	eering Enable C bit pin has the PWM waveform with polarity control from CCP1M<1:0> pin is assigned to port pin eering Enable B bit pin has the PWM waveform with polarity control from CCP1M<1:0> pin is assigned to port pin eering Enable A bit pin has the PWM waveform with polarity control from CCP1M<1:0>

REGISTER 16-5: PSTR1CON: ECCP1 PULSE STEERING CONTROL REGISTER⁽¹⁾

Note 1: This register is only implemented on PIC24FXXKL40X/30X devices. In addition, PWM Steering mode is available only when CCP1M<3:2> = 11 and PM<1:0> = 00.

REGISTER 17-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE) (CONTINUED)

- BF: Buffer Full Status bit
- In Transmit mode:

bit 0

- 1 = Transmit is in progress, SSPxBUF is full
- 0 = Transmit is complete, SSPxBUF is empty
- In Receive mode:
- 1 = SSPxBUF is full (does not include the \overline{ACK} and Stop bits)
- 0 = SSPxBUF is empty (does not include the \overline{ACK} and Stop bits)
- **Note 1:** This bit is cleared on RESET and when SSPEN is cleared.
 - 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.
 - 3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

REGISTER 17-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:					
R = Read	lable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15-8	Unimple	mented: Read as '0'			
bit 7	WCOL: \	Nrite Collision Detect bit			
		C C	while it is still transmitting the	e previous word (must be cleared	
	in so 0 = No c	ftware)			
h:+ C		MSSPx Receive Overflow In	diagtor hit(1)		
bit 6					
	<u>SPI Slav</u> 1 = A ne		SPxRUE register is still holding	the previous data. In case of over-	
				ave mode. The user must read the	
	SSP	xBUF, even if only transmittir		ow (must be cleared in software).	
	0 = No o				
bit 5		MSSPx Enable bit ⁽²⁾			
			s SCKx, SDOx, SDIx and SSx	as serial port pins	
		bles serial port and configure	s these pins as I/O port pins		
bit 4		ock Polarity Select bit			
		state for clock is a high level state for clock is a low level			
bit 3-0		:0>: MSSPx Mode Select bit	a ⁽³⁾		
DIL 3-0		SPI Master mode, Clock = Fo			
				ed, $\overline{\text{SSx}}$ can be used as an I/O pin	
			(x pin; SSx pin control is enab		
		SPI Master mode, Clock = TN			
		SPI Master mode, Clock = Fo			
		SPI Master mode, Clock = Fo			
	0000 = 8	SPI Master mode, Clock = Fo	DSC/2		
Note 1:			t since each new reception (ar	nd transmission) is initiated by	
	•	SSPxBUF register.			
^		and the end of the second large second se	why configured on import on output	4	

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.
- 4: SSPxADD value of 0 is not supported when the Baud Rate Generator is used in SPI mode.

REGISTER 19-5: AD1CSSL: A/D INPUT SCAN SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			-	<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL<	7:6>	_			CSSL<4:0>(1)		
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	oit	U = Unimplemented bit, read as '0'		d as '0'	
-n = Value at PO	DR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
				(1)			
		A/D Input Pin					
		onding analog ch hannel omitted f		ed for input scan In			
bit 5 L	Unimplemented: Read as '0'						
bit 4-0 C	CSSL<4:0>: A/D Input Pin Scan Selection bits ⁽¹⁾						
	1 = Corresponding analog channel selected for input scan						
(= Analog c	hannel omitted f	rom input sca	in			

REGISTER 19-6: ANCFG: ANALOG INPUT CONFIGURATION REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — — VBGEI								
U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — VBGEI bit 7 Image: State	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — — VBGEI bit 7 Legend:	—	—	—	—	—	—	_	—
— — — — VBGEI bit 7 I I I I Legend: I I I I	bit 15							bit 8
— — — — VBGEI bit 7 I I I I Legend: I I I I								
bit 7	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
Legend:	_	—	—	—	—	—	—	VBGEN
	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	Legend:							
	R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	

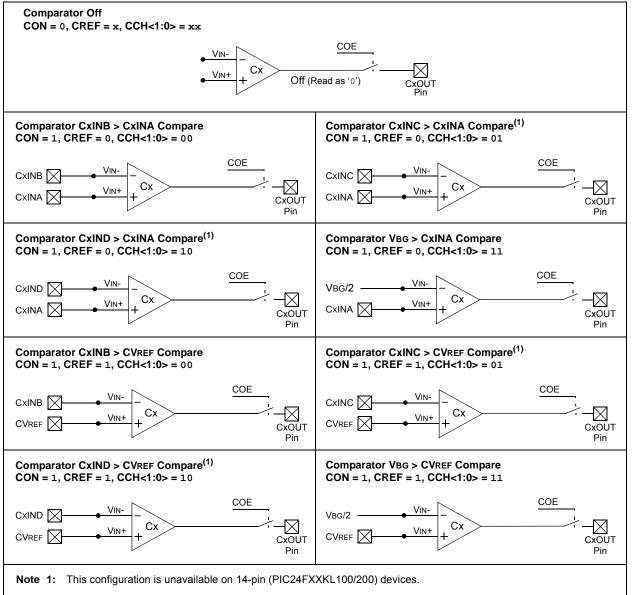
'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

bit 0

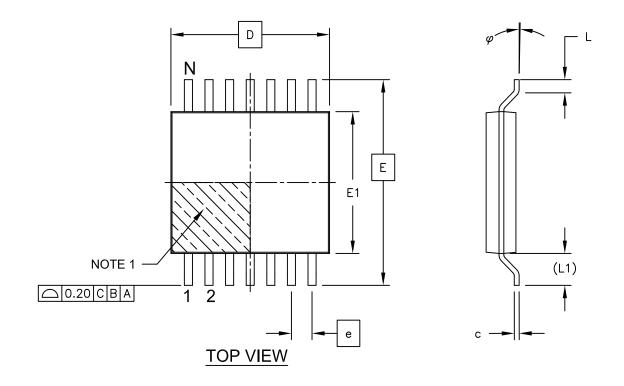
-n = Value at POR

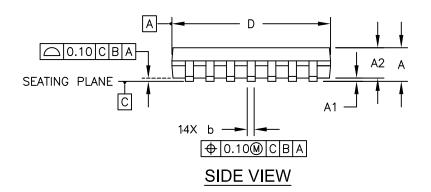
VBGEN: Internal Band Gap Reference Enable bit


'1' = Bit is set

1 = Internal band gap voltage is available as a channel input to the A/D Converter

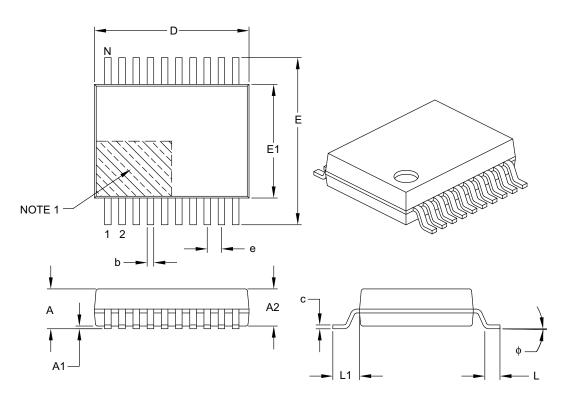
0 = Band gap is not available to the A/D Converter


x = Bit is unknown



14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

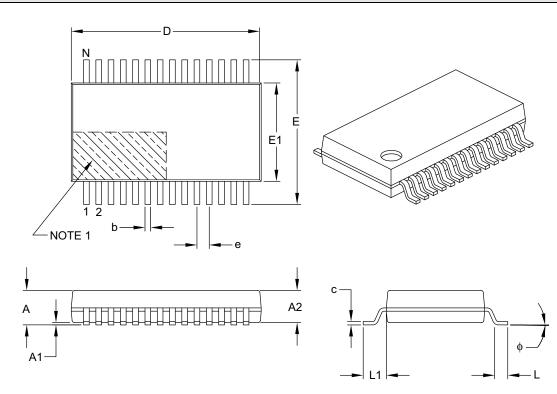
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			6
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

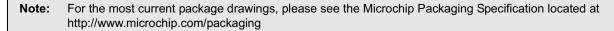
Microchip Technology Drawing C04-072B

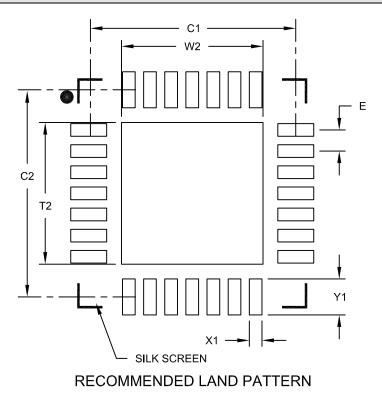
28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimen	ision Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5 mm Body [QFN] Land Pattern With 0.55 mm Contact Length

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			0.85

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2140A

APPENDIX A: REVISION HISTORY

Revision A (September 2011)

Original data sheet for the PIC24F16KL402 family of devices.

Revision B (November 2011)

Updates DC Specifications in Tables 26-6 through 26-9 (all Typical and Maximum values).

Updates AC Specifications in Tables 26-7 through 26-30 (SPI Timing Requirements) with the addition of the FSCK specification.

Other minor typographic corrections throughout.

Revision C (October 2013)

Adds +125°C Extended Temperature information.

Updates several packaging drawings in **Section 27.0 "Packaging Information"**. Other minor typographic corrections throughout.

APPENDIX B: MIGRATING FROM PIC18/PIC24 TO PIC24F16KL402

The PIC24F16KL402 family combines traditional PIC18 peripherals with a faster PIC24 core to provide a low-cost, high-performance microcontroller with low-power consumption.

Code written for PIC18 devices can be migrated to the PIC24F16KL402 by using a C compiler that generates PIC24 machine level instructions. Assembly language code will need to be rewritten using PIC24 instructions. The PIC24 instruction set shares similarities to the PIC18 instruction set, which should ease porting of assembly code. Application code will require changes to support certain PIC24 peripherals.

Code written for PIC24 devices can be migrated to the PIC24F16KL402 without many code changes. Certain peripherals, however, will require application changes to support modules that were traditionally available only on PIC18 devices.

Refer to Table B-1 for a list of peripheral modules on the PIC24F16KL402 and where they originated from.

TABLE B-1: TABLE B-1: PIC24F16KL402 PERIPHERAL MODULE ORIGINATING ARCHITECTURE

Peripheral Module	PIC18	PIC24
ECCP/CCP	Х	—
MSSP (I ² C™/SPI)	X	—
Timer2/4 (8-bit)	X	—
Timer3 (16-bit)	X	—
Timer1 (16-bit)	—	Х
10-Bit A/D Converter	—	Х
Comparator	—	Х
Comparator Voltage Reference	—	х
UART	—	Х
HLVD	—	Х