

Welcome to E-XFL.COM

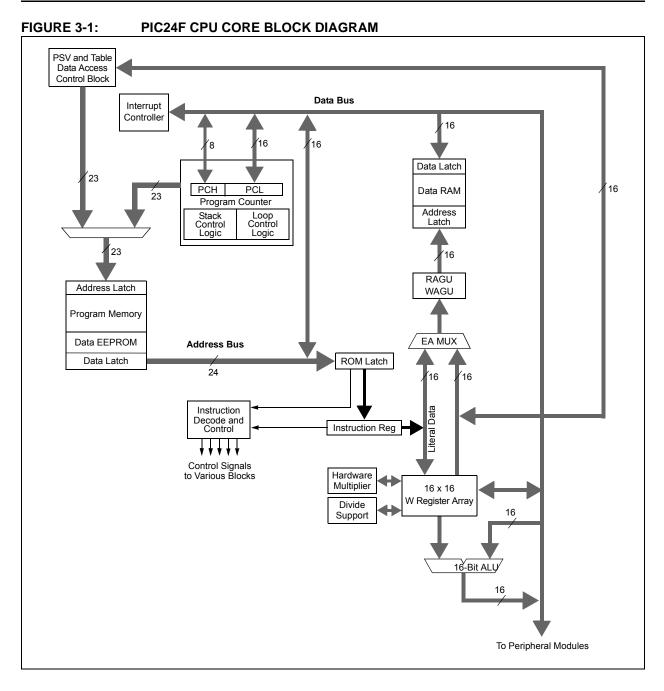
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl301-e-p


Email: info@E-XFL.COM

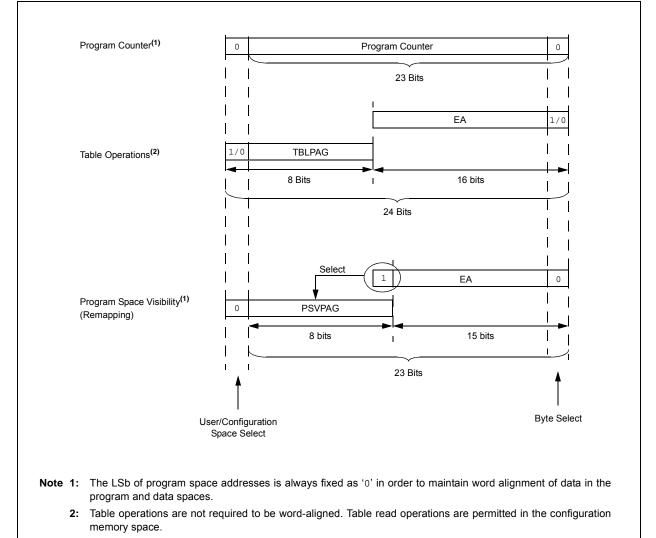
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number	•			
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
CVREF	17	14	11	Ι	ANA	Comparator Voltage Reference Output
CVREF+	2	19	2	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	20	3	I	ANA	Comparator Reference Negative Input Voltage
HLVDIN	15	12	6	I	ST	High/Low-Voltage Detect Input
INT0	11	8	12	I	ST	Interrupt 0 Input
INT1	17	14	11	I	ST	Interrupt 1 Input
INT2	14	11	10	I	ST	Interrupt 2 Input
MCLR	1	18	1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	7	4	4	I	ANA	Main Oscillator Input
OSCO	8	5	5	0	ANA	Main Oscillator Output
PGEC1	5	2	_	I/O	ST	ICSP™ Clock 1
PCED1	4	1	_	I/O	ST	ICSP Data 1
PGEC2	2	19	2	I/O	ST	ICSP Clock 2
PGED2	3	20	3	I/O	ST	ICSP Data 2
PGEC3	10	7	7	I/O	ST	ICSP Clock 3
PGED3	9	6	6	I/O	ST	ICSP Data 3
RA0	2	19	2	I/O	ST	PORTA Pins
RA1	3	20	3	I/O	ST	7
RA2	7	4	4	I/O	ST	7
RA3	8	5	5	I/O	ST	
RA4	10	7	7	I/O	ST	7
RA5	1	18	1	I	ST	7
RA6	14	11	10	I/O	ST	7
RB0	4	1		I/O	ST	PORTB Pins
RB1	5	2		I/O	ST	
RB2	6	3		I/O	ST	
RB4	9	6	6	I/O	ST	
RB7	11	8	—	I/O	ST	
RB8	12	9	8	I/O	ST	1
RB9	13	10	9	I/O	ST	
RB12	15	12	_	I/O	ST	
RB13	16	13	—	I/O	ST	1
RB14	17	14	11	I/O	ST	1
RB15	18	15	12	I/O	ST	1
REFO	18	15	12	0	—	Reference Clock Output

PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-5:**

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 3-1: 0	CPU CORE REGISTERS
--------------	--------------------


Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>	> 0			
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBI	_PAG<7:0>	Data EA<15:0>				
		د0	xxx xxxx	XXXX XXXX XXXX XXXX				
	Configuration	TBLPAG<7:0>		Data EA<15:0>				
		12	xxx xxxx	XXXX XXXX XXXX XXXX				
Program Space Visibility	User	0 PSVPAG<7:		7:0>(2) Data EA<14:0>(1)		:0> (1)		
(Block Remap/Read)		0	xxxx xxxx		xxx xxxx xxxx xxxx			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on PIC24F16KL402 family devices.

5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Flash
	Programming, refer to the "dsPIC33/PIC24
	Family Reference Manual", "Program
	Memory" (DS39715).

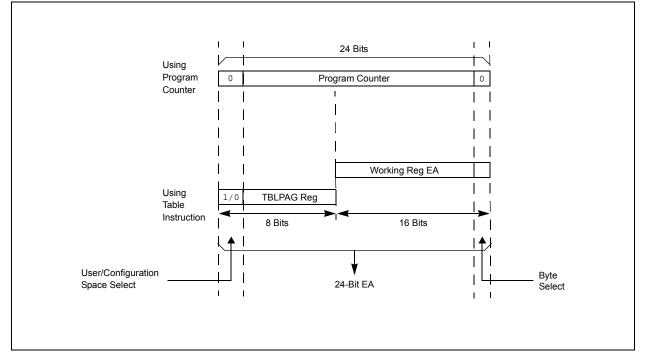
The PIC24F16KL402 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24F device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program mode Entry voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.


5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

	D 4 4 4 6	D 444 A	D 4 4 4 4							
R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	PGMONLY			—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾			
bit 7							bit 0			
Legend:	end: HC = Hardware Clearable bit U = Unimplemented bit, read as '0'									
R = Readable	bit	W = Writable b	it	SO = Settabl	e Only bit					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15	WR: Write Co	ontrol bit (progra	m or erase)							
		a data EEPROM		cvcle (can be s	et but not clea	red in software	e)			
		le is complete (•			- /			
bit 14	WREN: Write	Enable bit (eras	e or program)							
	1 = Enables a	in erase or prog	ram operation							
	0 = No operat	tion allowed (dev	vice clears this t	oit on completion	on of the write/	erase operatio	on)			
bit 13	WRERR: Flas	sh Error Flag bit								
	1 = A write o	operation is pre	maturely termir	nated (any MC	LR or WDT	Reset during	programming			
	operation	/								
		operation comp		ліу						
bit 12		Program Only En			<i>.</i>					
	 1 = Write operation is executed without erasing target address(es) first 0 = Automatic erase-before-write; write operations are preceded automatically by an erase of target 									
	address(e		ville, wille oper	ations are pred		lucally by all e	lase of larger			
bit 11-7	•	ted: Read as '0'								
bit 6	-	e Operation Sel								
Sit o		an erase opera		s set						
		a write operatio								
bit 5-0	NVMOP<5:0>	. Programming	Operation Com	mand Byte bits	₃ (1)					
	Erase Operati	ions (when ERA	<u>SE bit is '1'):</u>	-						
	011010 = Era	ases 8 words								
	011001 = Era									
	011000 = Era		EEDDOM							
		ases entire data		• 'o')•						
	001xxx = Wr	Operations (wh ites 1 word	EILERASE DIL IS	<u> </u>						

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

Note 1: These NVMOP configurations are unimplemented on PIC24F04KL10X and PIC24F08KL20X devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—		—	—	—	—	HLVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
					U2ERIF ⁽¹⁾	U1ERIF	
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrupt	t Flag Status bit	t		
		request has occ					
	0 = Interrupt i	request has not	t occurred				
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit ⁽¹⁾			
		request has occ					
	0 = Interrupt i	request has not	t occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
		request has occ					
		request has not					
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: This bit is unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIF
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
	R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set				nown		

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-21: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0						
bit 15						•	bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	BCL1IP2	BCL1IP1	BCL1IP0	—	SSP1IP2	SSP1IP1	SSP1IP0						
bit 7							bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	Unimplemer	nted: Read as '	0'										
bit 14-12	CNIP<2:0>:	Input Change N	Iotification Inte	rrupt Priority bit	ts								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)									
	•												
	•	•											
	• 001 = Interrupt is Priority 1												
	000 = Interru	ipt source is dis	abled										
bit 11	Unimplemer	nted: Read as '	0'										
bit 10-8	CMIP<2:0>: Comparator Interrupt Priority bits												
	111 = Interrupt is Priority 7 (highest priority interrupt)												
	•												
	•												
		pt is Priority 1											
		pt source is dis											
bit 7	-	nted: Read as '											
bit 6-4		>: MSSP1 I ² C™		•	ity bits								
	111 = Interrupt is Priority 7 (highest priority interrupt)												
	•												
	•												
		pt is Priority 1											
		pt source is dis											
bit 3	-	Unimplemented: Read as '0'											
bit 2-0		>: MSSP1 SPI/		1 2	S								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)									
	•												
	•												
		pt is Priority 1 pt source is dis											

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

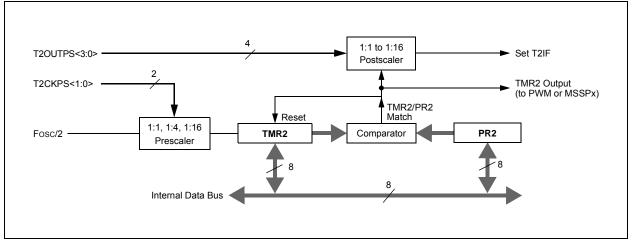
The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

13.0 TIMER2 MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional Timer3 gate on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules


This module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (POR, BOR, MCLR or WDT Reset)

TMR2 is not cleared when T2CON is written.

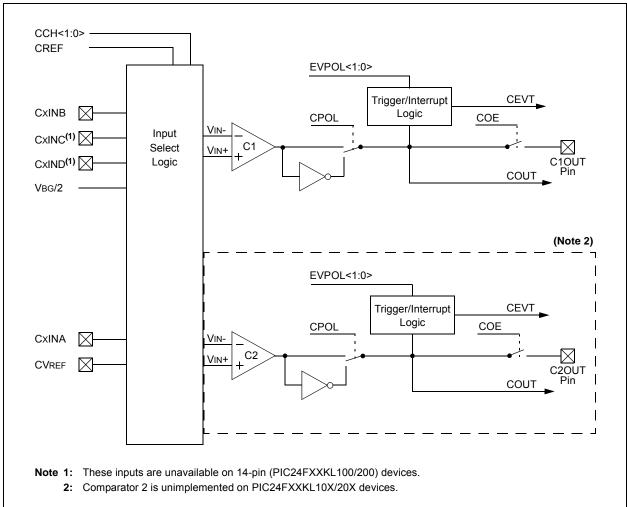
A simplified block diagram of the module is shown in Figure 13-1.

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_		—		—		—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 CCPxM0 ⁽¹⁾				
	— DCxB1 DCxB0 CCPxM3 ⁽¹⁾ CCPxM2 ⁽¹⁾ CCPxM ²										
bit 7							bit (
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown				
bit 15-6	Unimplement	ted: Read as '	0'								
bit 5-4	-			it 0 for CCPx Mo	odule bits						
		Compare mode									
		Unused.									
	Unused.										
	Unused. <u>PWM mode:</u>										
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh				
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh				
bit 3-0	<u>PWM mode:</u> These bits are Most Significa		<9:2>) of the d	uty cycle are fou			cle. The eigh				
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2>) of the di e Mode Select	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe	<9:2>) of the di e Mode Select ecial Event Trig	uty cycle are fou	and in CCPRxL	 tch (CCPxIF bi	t is set)				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the di e Mode Select ecial Event Trio nerates software	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the di e Mode Select ecial Event Trio nerates software	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx p	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on co bin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx p	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the di e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp 1000 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c pin high; on con n low; on compar dge ge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp 1000 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	er on CCPx ma compare match npare match, fo re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI				

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

NOTES:


20.0 COMPARATOR MODULE

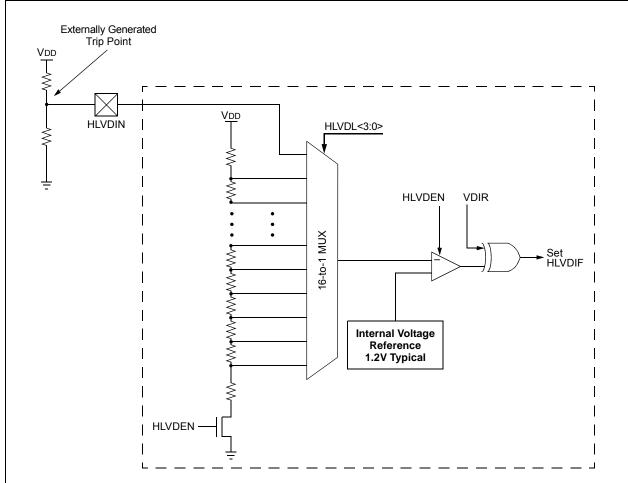
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator module, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710).

Depending on the particular device, the comparator module provides one or two analog comparators. The inputs to the comparator can be configured to use any one of up to four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator. The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is displayed in Figure 20-1. Diagrams of the possible individual comparator configurations are displayed in Figure 20-2.

Each comparator has its own control register, CMxCON (Register 20-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 20-2).

FIGURE 20-1: COMPARATOR MODULE BLOCK DIAGRAM


22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect module (HLVD) is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 22-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-0	R/P-1	R/P-1		
MCLRE ⁽¹	BORV1 ⁽²⁾	BORV0 ⁽²⁾	I2C1SEL ⁽³⁾	PWRTEN	_	BOREN1	BOREN0		
bit 7							bit C		
Logondi									
Legend:	bla bit		achla hit		antad hit was				
R = Reada		P = Program		•	nented bit, read				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 7	MCI RE: MCI	_R Pin Enable	hit(1)						
			A5 input pin is a	disabled					
			; MCLR is disa						
bit 6-5	BORV<1:0>:	Brown-out Res	set Enable bits ⁽	2)					
	11 = Brown-o	ut Reset is set	to the low trip	point					
			to the middle t						
			to the high trip POR is enable ו			od)			
bit 4		-		-	DOIN 13 SEIECI	.eu)			
		ternate MSSP1 I ² C™ Pin Mapping bit ⁽³⁾ ocation for SCL1/SDA1 pins (RB8 and RB9)							
			L1/SDA1 pins	,	nd ASDA1/RB	5)			
bit 3	PWRTEN: Pa	wer-up Timer	Enable bit						
	1 = PWRT is	WRT is enabled							
	0 = PWRT is 0	disabled							
bit 2	Unimplemen	ted: Read as '	0'						
bit 1-0	BOREN<1:0>	: Brown-out R	eset Enable bit	S					
	11 = BOR is enabled in hardware; SBOREN bit is disabled								
	 10 = BOR is enabled only while device is active and disabled in Sleep; SBOREN bit is disabled 01 = BOR is controlled with the SBOREN bit setting 								
			dware; SBORE	•	d				
			·						
	The MCLRE fuse					node entry. This	s prevents a		
	user from accider Refer to Table 26-				age test entry.				
	Implemented in 28				rogrammed (=	1) in all other o	levices for 1^{2}		
	functionality to be	•	niy. This bit pos	nuon musi ve p					

REGISTER 23-6: FPOR: RESET CONFIGURATION REGISTER

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

24.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- · Local file history feature
- Built-in support for Bugzilla issue tracker

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

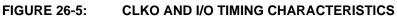
24.12 Third-Party Development Tools

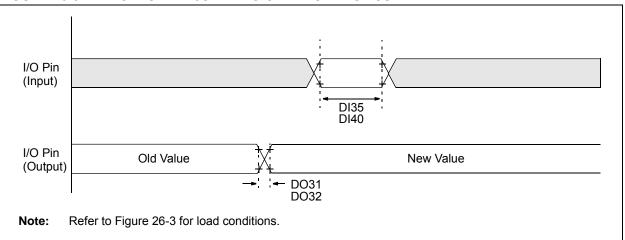
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CH	ARACT	ERISTICS	Standard Operating Conditions: 1.8V to 3.6VOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Sym Characteristic		Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins	Vss	—	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled
	Vih	Input High Voltage ^(4,5)					
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
DI31	IPU	Maximum Load Current		—	30	μA	VDD = 2.0V
		for Digital High Detection w/Internal Pull-up	—	—	1000	μA	VDD = 3.3V
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.050	±0.100	μA	Vss ≤ VPiN ≤ VDD, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μA	$VSS \le VPIN \le VDD,$ Pin at high-impedance


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

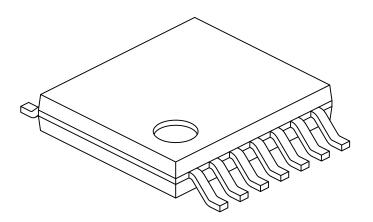
5: VIH requirements are met when the internal pull-ups are enabled.

TABLE 26-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard O Operating te	• •	onditions:	1.8V to 3.6V -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max			Units	Conditions	
DO31	TIOR	Port Output Rise Time	_	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100 Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	_	Тсү	
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	—	Тсү	
102	102 Tr	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103 TF	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	—	μs	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μS	After this period, the first clock
			400 kHz mode	0.6	—	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	J:DAT Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		_	400	pF	


TABLE 26-32: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	14				
Pitch	е		0.65 BSC			
Overall Height	A	-	-	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E	6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	(L1)	1.00 REF				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.19	-	0.30		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2