

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl301-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL302/402

Pin Diagrams: PIC24FXXKL10X/20X

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
CN0	10	7	12	9	Ι	ST	Interrupt-on-Change Inputs
CN1	9	6	11	8	Ι	ST	
CN2	2	19	2	27	Ι	ST	
CN3	3	20	3	28	I	ST	
CN4	4	1	4	1	I	ST	
CN5	5	2	5	2	I	ST	
CN6	6	3	6	3	I	ST	
CN7	_	—	7	4	I	ST	
CN8	14	11	20	17	I	ST	
CN9	—	_	19	16	Ι	ST	
CN11	18	15	26	23	I	ST	
CN12	17	14	25	22	I	ST	
CN13	16	13	24	21	Ι	ST	
CN14	15	12	23	20	Ι	ST	
CN15	_	_	22	19	Ι	ST	
CN16	_	_	21	18	I	ST	
CN21	13	10	18	15	Ι	ST	
CN22	12	9	17	14	Ι	ST	
CN23	11	8	16	13	Ι	ST	
CN24	_	—	15	12	I	ST	
CN27	_	—	14	11	I	ST	
CN29	8	5	10	7	I	ST	
CN30	7	4	9	6	I	ST	
CVREF	17	14	25	22	I	ANA	Comparator Voltage Reference Output
CVREF+	2	19	2	27	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	20	3	28	I	ANA	Comparator Reference Negative Input Voltage
FLT0	17	14	25	22	I	ST	ECCP1 Enhanced PWM Fault Input
HLVDIN	15	12	23	20	I	ST	High/Low-Voltage Detect Input
INT0	11	8	16	13	I	ST	Interrupt 0 Input
INT1	17	14	25	22	I	ST	Interrupt 1 Input
INT2	14	11	20	17	I	ST	Interrupt 2 Input
MCLR	1	18	1	26	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	7	4	9	6	Ι	ANA	Main Oscillator Input
OSCO	8	5	10	7	0	ANA	Main Oscillator Output
P1A	14	11	20	17	0	_	ECCP1 Output A (Enhanced PWM Mode)
P1B	5	2	21	18	0	—	ECCP1 Output B (Enhanced PWM Mode)
P1C	4	1	22	19	0	—	ECCP1 Output C (Enhanced PWM Mode)
P1D	16	13	18	15	0	_	ECCP1 Output D (Enhanced PWM Mode)

TABLE 1-4:	PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS ((CONTINUED)

Legend:

TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS

	Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
AN0	2	19	2	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL10X
AN1	3	20	3	Ι	ANA	family devices.
AN2	4	1	_	Ι	ANA	
AN3	5	2	_	Ι	ANA	
AN4	6	3	_	Ι	ANA	
AN9	18	15	12	Ι	ANA	-
AN10	17	14	11	Ι	ANA	-
AN11	16	13	—	Ι	ANA	
AN12	15	12	—	Ι	ANA	
AN13	7	4	4	Ι	ANA	
AN14	8	5	5	I	ANA	
AN15	9	6	6	Ι	ANA	
AVDD	20	17	14	Ι	ANA	Positive Supply for Analog modules
AVss	19	16	13	I	ANA	Ground Reference for Analog modules
CCP1	14	11	10	I/O	ST	CCP1 Capture Input/Compare and PWM Output
CCP2	15	12	9	I/O	ST	CCP2 Capture Input/Compare and PWM Output
C1INA	8	5	5	I	ANA	Comparator 1 Input A (+)
C1INB	7	4	4	Ι	ANA	Comparator 1 Input B (-)
C1INC	5	2	_	Ι	ANA	Comparator 1 Input C (+)
C1IND	4	1	—	I	ANA	Comparator 1 Input D (-)
C1OUT	17	14	11	0	—	Comparator 1 Output
CLK I	7	4	9	I	ANA	Main Clock Input
CLKO	8	5	10	0	—	System Clock Output
CN0	10	7	7	I	ST	Interrupt-on-Change Inputs
CN1	9	6	6	I	ST	
CN2	2	19	2	I	ST	
CN3	3	20	3	I	ST	
CN4	4	1	_	I	ST	
CN5	5	2		I	ST	
CN6	6	3		I	ST	
CN8	14	11	10	I	ST	
CN9	—	—		I	ST	
CN11	18	15	12	I	ST	
CN12	17	14	11	I	ST	
CN13	16	13	—	I	ST	-
CN14	15	12	_	I	ST	
CN21	13	10	9	I	ST	4
CN22	12	9	8	I	ST	4
CN23	11	8	_	I	ST	4
CN29	8	5	5	I	ST	4
CN30	7	4	4	I	ST	

Legend: TTL = TTL input buffer ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIF		AD1IF	U1TXIF	U1RXIF		—	T3IF
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IF	CCP2IF		_	T1IF	CCP1IF	—	INT0IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	NVMIF: NVM	Interrupt Flag S	Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 14		ted: Read as '0)'				
bit 13	AD1IF: A/D C	conversion Corr	plete Interrupt	Flag Status bit	t		
	1 = Interrupt r	equest has occ	urred	•			
	0 = Interrupt r	equest has not	occurred				
bit 12	U1TXIF: UAR	T1 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	urred				
hit 11		2T1 Receiver In	terrunt Elan St	atus hit			
	1 = Interrupt r	request has occ	urred	atus bit			
	0 = Interrupt r	equest has not	occurred				
bit 10-9	Unimplemen	ted: Read as 'o)'				
bit 8	T3IF: Timer3	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	urred				
h:+ 7	0 = Interrupt r	request has not	occurred				
Dit 7	1 = Interrupt r	interrupt Flag S	otatus dit				
	0 = Interrupt r	request has not	occurred				
bit 6	CCP2IF: Cap	ture/Compare/F	WM2 Interrup	t Flag Status b	it		
	1 = Interrupt r	equest has occ	urred	-			
	0 = Interrupt r	equest has not	occurred				
bit 5-4	Unimplemen	ted: Read as 'o)'				
bit 3	T1IF: Timer1	Interrupt Flag S	Status bit				
	\perp = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 2	CCP1IF: Cap	ture/Compare/F	PWM1 Interrup	t Flag Status b	it (ECCP1 on P	IC24FXXKL40	X devices)
	1 = Interrupt r	equest has occ	urred				,
	0 = Interrupt r	equest has not	occurred				
bit 1	Unimplemen	ted: Read as '0)'				
bit 0	INTOIF: Exter	nal Interrupt 0 I	lag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				

REGISTER 8-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

r							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCP3IP2 ⁽¹⁾	CCP3IP1 ⁽¹⁾	CCP3IP0 ⁽¹⁾	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	Unimplement	ted: Read as 'd)'				
bit 14-12	T4IP<2:0>: Ti	mer4 Interrupt	Priority bits ⁽¹⁾				
	111 = Interrup	ot is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interrur	ot is Priority 1					
	000 = Interrup	ot source is disa	abled				
bit 11-7	Unimplement	ted: Read as 'd)'				
bit 6-4	CCP3IP: Cap	ture/Compare/I	PWM3 Interrup	ot Priority bits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	• 001 - Interrur	nt is Priority 1					
	000 = Interru	ot source is disa	abled				
bit 3-0	Unimplement	ted: Read as ')'				

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-25: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	T3GIP2	T3GIP1	T3GIP0	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-7	Unimplemen	ted: Read as '0	כי						
bit 6-4	6-4 T3GIP<2:0>: Timer3 External Gate Interrupt Priority bits								
	111 = Interru	pt is Priority 7 (I	highest priority	interrupt)					
	•								

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC oscillator. OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)

Note 1: Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	—	_	_	_	_	— hit 0				
DIL 7							DILU				
Legend:											
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	ROEN: Refe	erence Oscillator	Output Enabl	e bit							
	1 = Referen	ce oscillator is en	abled on REI	⁼ O pin							
	0 = Referen	ce oscillator is dis	sabled								
bit 14	Unimpleme	nted: Read as '0	,								
bit 13	ROSSLP: R	eference Oscillat	or Output Sto	p in Sleep bit							
	1 = Reference	1 = Reference oscillator continues to run in Sleep									
bit 12	ROSEL: Re	ference Oscillato	r Source Sele	ect bit							
511 12	1 = Primarv	oscillator is used	as the base	clock ⁽¹⁾							
	0 = System	clock is used as	the base cloc	k; the base cloc	ck reflects any	clock switching	of the device				
bit 11-8	RODIV<3:0	>: Reference Osc	cillator Divisor	Select bits							
	1111 = Base clock value divided by 32,768										
	1110 = Base	1110 = Base clock value divided by 16,384									
	1101 = Base clock value divided by 8,192										
	1100 = Base clock value divided by 4,096										
	1011 = Base clock value divided by 2,048										
	1010 = Base	1010 = Base clock value divided by 1,024									
	1001 = Base	e clock value divi	ded by 256								
	0111 = Base	e clock value divi	ded by 128								
	0110 = Base clock value divided by 64										
	0101 = Base	e clock value divi	ded by 32								
	0100 = Base	e clock value divi	ded by 16								
	0011 = Base	e clock value divi	ded by 8								
	0010 = Base	e clock value divi	ded by 4								
	0001 = Base	e clock value divi e clock value	ued by 2								
			,								

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-7	Unimplemen	ted: Read as '	כי				
bit 6-3	T2OUTPS<3:	: 0>: Timer2 Ou	tput Postscale	Select bits			
	1111 = 1:16 F	Postscale					
	1110 = 1:15 F	Postscale					
	•						
	•						
	0001 = 1:2 Po	ostscale					
	0000 = 1:1 Po	ostscale					
bit 2	TMR2ON: Tin	ner2 On bit					
	1 = Timer2 is	on					
hit 1 0			k Drocoolo Sol	aat hita			
DIL 1-0	10 - Proscale	>: Timerz Cloc	K Prescale Sel	ectons			
	01 = Prescale	eris 4					
	00 = Prescale	er is 1					

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

FIGURE 16-1: GENERIC CAPTURE MODE BLOCK DIAGRAM

FIGURE 16-2: GENERIC COMPARE MODE BLOCK DIAGRAM

FIGURE 16-3: SIMPLIFIED PWM BLOCK DIAGRAM

	11_0	11_0	II_∩	ΠU	II_∩	11-0	11_0		
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0		
							hit		
							Dit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0		
oit 7	L.					•	bit		
.egend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
oit 6-4	1 = A shutdov 0 = ECCP ou ECCPAS<2:0 111 = VIL on 110 = VIL on 101 = VIL on 011 = Either 010 = C2OU 001 = C1OU 000 = Auto-sl	ECCPASE: ECCP1 Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in a shutdown state 0 = ECCP outputs are operating ECCPAS<2:0>: ECCP1 Auto-Shutdown Source Select bits 111 = VIL on FLT0 pin, or either C1OUT or C2OUT is high 10 = VIL on FLT0 pin or C2OUT comparator output is high 101 = VIL on FLT0 pin or C1OUT comparator output is high 100 = VIL on FLT0 pin 011 = Either C1OUT or C2OUT is high 010 = C2OUT comparator output is high 010 = C2OUT comparator output is high 011 = C1OUT comparator output is high							
oit 3-2	PSSAC<1:0>: P1A and P1C Pins Shutdown State Control bits 1x = P1A and P1C pins tri-state 01 = Drive pins, P1A and P1C, to '1' 00 = Drive pins, P1A and P1C, to '0'								
oit 1-0	PSSBD<1:0> 1x = P1B and	P1B and P1D P1D pins tri-s) Pins Shutdow tate	n State Control	l bits				
	00 = Drive pir	ns, P1B and P1	D, to '0'						

Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.

2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.

3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of the received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data; at least one more character can be read 0 = Receive buffer is empty

REGISTER 19-1: AD1CON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R-0, HSC
SSRC2	SSRC1	SSRC0	—	_	ASAM	SAMP	DONE
bit 7							bit 0

Legend: HSC = Hardware Settable/Clearable bit							
R = Readable	e bit W = Writable bit	U = Unimplemented bit, rea	d as '0'				
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15	ADON: A/D Operating Mode bit ⁽¹⁾						
	1 = A/D Converter module is operating0 = A/D Converter is off						
bit 14	Unimplemented: Read as '0'						
bit 13	ADSIDL: A/D Stop in Idle Mode bit						
	1 = Discontinues module operation when0 = Continues module operation in Idle m	device enters Idle mode ode					
bit 12-10	Unimplemented: Read as '0'						
bit 9-8	FORM<1:0>: Data Output Format bits						
	11 = Signed fractional (sddd dddd dd00 0000) 10 = Fractional (dddd dddd dd00 0000) 01 = Signed integer (ssss sssd dddd dddd) 00 = Integer (0000 00dd dddd dddd)						
bit 7-5	SSRC<2:0>: Conversion Trigger Source S	Select bits					
	<pre>111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 010 = Timer1 compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion</pre>						
bit 4-3	Unimplemented: Read as '0'	0					
bit 2	ASAM: A/D Sample Auto-Start bit						
	 1 = Sampling begins immediately after the 0 = Sampling begins when the SAMP bit is 	e last conversion completes; S s set	AMP bit is auto-set				
bit 1	SAMP: A/D Sample Enable bit						
	 1 = A/D Sample-and-Hold amplifier is sam 0 = A/D Sample-and-Hold amplifier is hold 	pling input ing					
bit 0	DONE: A/D Conversion Status bit						
	1 = A/D conversion is done 0 = A/D conversion is not done						

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—	—	—	—	—	
bit 15	•		•	•		•	bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
		—	—	REV3	REV2	REV1	REV0	
bit 7			•	•		•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

REGISTER 23-9: DEVREV: DEVICE REVISION REGISTER

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Revision Identifier bits

					r –		
Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected	
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None	
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None	
BTST	BTST	f,#bit4	Bit Test f	1	1	Z	
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С	
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z	
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С	
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z	
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z	
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С	
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z	
CALL	CALL	lit23	Call Subroutine	2	2	None	
	CALL	Wn	Call Indirect Subroutine	1	2	None	
CLR	CLR	f	f = 0x0000	1	1	None	
	CLR	WREG	WREG = 0x0000	1	1	None	
	CLR	Ws	Ws = 0x0000	1	1	None	
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep	
COM	COM	f	f = f	1	1	N, Z	
	COM	f,WREG	WREG = f	1	1	N. Z	
	COM	Wa Wd	$Wd = \overline{Ws}$	1	1	N Z	
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z	
01	CP	wb #li+5	Compare Wh with lit5	1	1	C, DC, N, OV, Z	
	CP	WD We	Compare Wb with Ws (Wb $-$ Ws)	1	1		
CPO	CPO	f	Compare f with 0x0000	1	1		
010	CPO	- Wa	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z	
CPB	CPB	f	Compare f with WREG with Borrow	1	1	C, DC, N, OV, Z	
01.0	CPB	wb #li+5	Compare Wh with lit5 with Borrow	1	1	C, DC, N, OV, Z	
	CPB	Wb Ws	Compare Wb with Ws with Borrow	1	1	C, DC, N, OV, Z	
	CID	10,10	$(Wb - Ws - \overline{C})$			0, 20, 11, 01, 2	
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None	
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None	
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None	
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if \neq	1	1 (2 or 3)	None	
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С	
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z	
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z	
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z	
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z	
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z	
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z	
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None	
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV	
EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None	
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С	
FF1R	FF1R	Ws.Wnd	Find First One from Right (LSb) Side	1	1	С	

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B