E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl301-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL301/401

1.2 Other Special Features

- Communications: The PIC24F16KL402 family incorporates multiple serial communication peripherals to handle a range of application requirements. The MSSP module implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24F16KL402 family include a 10-bit A/D Converter module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds.

The comparator modules are configurable for a wide range of operations and can be used as either a single or double comparator module.

1.3 Details on Individual Family Members

Devices in the PIC24F16KL402 family are available in 14-pin, 20-pin and 28-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The PIC24F16KL402 family may be thought of as four different device groups, each offering a slightly different set of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The presence and size of data EEPROM
- The presence of an A/D Converter and the number of external analog channels available
- · The number of analog comparators
- The number of general purpose timers
- The number and type of CCP modules (i.e., CCP vs. ECCP)
- The number of serial communications modules (both MSSPs and UARTs)

The general differences between the different sub-families are shown in Table 1-1. The feature sets for specific devices are summarized in Table 1-2 and Table 1-3.

A list of the individual pin features available on the PIC24F16KL402 family devices, sorted by function, is provided in Table 1-4 (for PIC24FXXKL40X/30X devices) and Table 1-5 (for PIC24FXXKL20X/10X devices). Note that these tables show the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Device Group	Program Memory (bytes)	Data EEPROM (bytes)	Timers (8/16-bit)	CCP and ECCP	Serial (MSSP/ UART)	A/D (channels)	Comparators
PIC24FXXKL10X	4K	_	1/2	2/0	1/1	_	1
PIC24FXXKL20X	8K	—	1/2	2/0	1/1	7 or 12	1
PIC24FXXKL30X	8K	256	2/2	2/1	2/2	—	2
PIC24FXXKL40X	8K or 16K	512	2/2	2/1	2/2	12	2

TABLE 1-1:FEATURE COMPARISON FOR PIC24F16KL402 FAMILY GROUPS

	Pin Number							
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description	
AN0	2	19	2	27	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL30X	
AN1	3	20	3	28	I	ANA	family devices.	
AN2	4	1	4	1	I	ANA		
AN3	5	2	5	2	I	ANA		
AN4	6	3	6	3	Ι	ANA		
AN5	_	_	7	4	Ι	ANA		
AN9	18	15	26	23	I	ANA		
AN10	17	14	25	22	Ι	ANA		
AN11	16	13	24	21	Ι	ANA		
AN12	15	12	23	20	Ι	ANA		
AN13	7	4	9	6	Ι	ANA		
AN14	8	5	10	7	I	ANA		
AN15	9	6	11	8	I	ANA		
ASCL1	_	_	15	12	I/O	I ² C™	Alternate MSSP1 I ² C Clock Input/Output	
ASDA1	_	_	14	11	I/O	l ² C	Alternate MSSP1 I ² C Data Input/Output	
AVdd	20	17	28	25	Ι	ANA	Positive Supply for Analog modules	
AVss	19	16	27	24	Ι	ANA	Ground Reference for Analog modules	
CCP1	14	11	20	17	I/O	ST	CCP1/ECCP1 Capture Input/Compare and PWM Output	
CCP2	15	12	23	20	I/O	ST	CCP2 Capture Input/Compare and PWM Output	
CCP3	13	10	19	16	I/O	ST	CCP3 Capture Input/Compare and PWM Output	
C1INA	8	5	7	4	I	ANA	Comparator 1 Input A (+)	
C1INB	7	4	6	3	I	ANA	Comparator 1 Input B (-)	
C1INC	5	2	5	2	I	ANA	Comparator 1 Input C (+)	
C1IND	4	1	4	1	I	ANA	Comparator 1 Input D (-)	
C1OUT	17	14	25	22	0	_	Comparator 1 Output	
C2INA	5	2	5	2	I	ANA	Comparator 2 Input A (+)	
C2INB	4	1	4	1	I	ANA	Comparator 2 Input B (-)	
C2INC	8	5	7	4	I	ANA	Comparator 2 Input C (+)	
C2IND	7	4	6	3	I	ANA	Comparator 2 Input D (-)	
C2OUT	14	11	20	17	0		Comparator 2 Output	
CLK I	7	4	9	6	I	ANA	Main Clock Input	
CLKO	8	5	10	7	0	_	System Clock Output	

TABLE 1-4: PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS

		r				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
AN0	2	19	2	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL10X
AN1	3	20	3	Ι	ANA	family devices.
AN2	4	1	—	Ι	ANA	
AN3	5	2	_	I	ANA	
AN4	6	3	_	I	ANA	
AN9	18	15	12	I	ANA	
AN10	17	14	11	I	ANA	
AN11	16	13	_	I	ANA	
AN12	15	12	_	I	ANA	
AN13	7	4	4	I	ANA	7
AN14	8	5	5	I	ANA	1
AN15	9	6	6	I	ANA	1
AVdd	20	17	14	I	ANA	Positive Supply for Analog modules
AVss	19	16	13	I	ANA	Ground Reference for Analog modules
CCP1	14	11	10	I/O	ST	CCP1 Capture Input/Compare and PWM Output
CCP2	15	12	9	I/O	ST	CCP2 Capture Input/Compare and PWM Output
C1INA	8	5	5	I	ANA	Comparator 1 Input A (+)
C1INB	7	4	4	I	ANA	Comparator 1 Input B (-)
C1INC	5	2	_	I	ANA	Comparator 1 Input C (+)
C1IND	4	1	_	I	ANA	Comparator 1 Input D (-)
C1OUT	17	14	11	0	_	Comparator 1 Output
CLK I	7	4	9	I	ANA	Main Clock Input
CLKO	8	5	10	0	_	System Clock Output
CN0	10	7	7	I	ST	Interrupt-on-Change Inputs
CN1	9	6	6	I	ST	
CN2	2	19	2	I	ST	
CN3	3	20	3	I	ST	7
CN4	4	1	_	I	ST	7
CN5	5	2	_	Ι	ST]
CN6	6	3	_	I	ST	7
CN8	14	11	10	I	ST	7
CN9	_		—	I	ST	7
CN11	18	15	12	I	ST	7
CN12	17	14	11	I	ST	7
CN13	16	13	—	I	ST	7
CN14	15	12	_	Ι	ST	7
CN21	13	10	9	I	ST	1
CN22	12	9	8	I	ST	1
CN23	11	8	—	I	ST	1
CN29	8	5	5	I	ST	1
CN30	7	4	4	1	ST	1

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

		Pin Number						
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description		
CVREF	17	14	11	Ι	ANA	Comparator Voltage Reference Output		
CVREF+	2	19	2	I	ANA	Comparator Reference Positive Input Voltage		
CVREF-	3	20	3	I	ANA	Comparator Reference Negative Input Voltage		
HLVDIN	15	12	6	I	ST	High/Low-Voltage Detect Input		
INT0	11	8	12	I	ST	Interrupt 0 Input		
INT1	17	14	11	I	ST	Interrupt 1 Input		
INT2	14	11	10	I	ST	Interrupt 2 Input		
MCLR	1	18	1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.		
OSCI	7	4	4	I	ANA	Main Oscillator Input		
OSCO	8	5	5	0	ANA	Main Oscillator Output		
PGEC1	5	2	_	I/O	ST	ICSP™ Clock 1		
PCED1	4	1	_	I/O	ST	ICSP Data 1		
PGEC2	2	19	2	I/O	ST	ICSP Clock 2		
PGED2	3	20	3	I/O	ST	ICSP Data 2		
PGEC3	10	7	7	I/O	ST	ICSP Clock 3		
PGED3	9	6	6	I/O	ST	ICSP Data 3		
RA0	2	19	2	I/O	ST	PORTA Pins		
RA1	3	20	3	I/O	ST	7		
RA2	7	4	4	I/O	ST	7		
RA3	8	5	5	I/O	ST			
RA4	10	7	7	I/O	ST	7		
RA5	1	18	1	I	ST	7		
RA6	14	11	10	I/O	ST	7		
RB0	4	1		I/O	ST	PORTB Pins		
RB1	5	2		I/O	ST			
RB2	6	3		I/O	ST			
RB4	9	6	6	I/O	ST			
RB7	11	8	—	I/O	ST			
RB8	12	9	8	I/O	ST	1		
RB9	13	10	9	I/O	ST			
RB12	15	12	_	I/O	ST			
RB13	16	13	—	I/O	ST	1		
RB14	17	14	11	I/O	ST	1		
RB15	18	15	12	I/O	ST	1		
REFO	18	15	12	0	—	Reference Clock Output		

PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-5:**

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = &progAddr unsigned int offset;</pre>	// Global variable located in Pgm Memory $% \mathcal{T}_{\mathcal{T}}$
//Set up pointer to the first memory location to be written	
<pre>TBLPAG =builtin_tblpage(&progAddr); offset = &progAddr & 0xFFFF;</pre>	// Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0×4058 ;	// Initialize NVMCON
<pre>asm("DISI #5");</pre>	<pre>// Block all interrupts for next 5 // instructions</pre>
builtin_write_NVM();	<pre>// Instructions // C30 function to perform unlock // sequence and set WR</pre>

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

MOV #0x4004, W0 ;	
MOV W0, NVMCON ; Initialize NVMCON	
; Set up a pointer to the first program memory location to be written	
; program memory selected, and writes enabled	
MOV #0x0000, W0 ;	
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR	
MOV #0x6000, W0 ; An example program memory addre	SS
; Perform the TBLWT instructions to write the latches	
; 0th_program_word	
MOV #LOW_WORD_0, W2 ;	
MOV #HIGH_BYTE_0, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; lst_program_word	
MOV #LOW_WORD_1, W2 ;	
MOV #HIGH_BYTE_1, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2 ;	
MOV #HIGH_BYTE_2, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
•	
•	
· ·	
; 32nd_program_word	
MOV #LOW_WORD_31, W2 ;	
MOV #HIGH_BYTE_31, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	
TBLWTH W3, [W0] ; Write PM high byte into program	latch

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.

EXAMPLE 6-2:

- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

interrupt (NVIVIII' is set).

SINGLE-WORD ERASE

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

int __attribute__ ((space(eedata))) eeData = 0x1234; // Global variable located in EEPROM unsigned int offset; // Set up NVMCON to erase one word of data EEPROM NVMCON = 0×4058 ; // Set up a pointer to the EEPROM location to be erased TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer offset = __builtin_tbloffset(&eeData); // Initizlize lower word of address __builtin_tblwtl(offset, 0); // Write EEPROM data to write latch asm volatile ("disi #5"); // Disable Interrupts For 5 Instructions __builtin_write_NVM(); // Issue Unlock Sequence & Start Write Cycle // Optional: Poll WR bit to wait for while(NVMCONbits.WR=1); // write sequence to complete

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	NVMIP2	NVMIP1	NVMIP0		_	_	
bit 15			÷		÷		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7		1					bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 11-7 bit 6-4	• • 001 = Interru 000 = Interru Unimplemen AD1IP<2:0>:	pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' A/D Conversic pt is Priority 7 (abled 0' n Complete Int	terrupt Priority	bits		
	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled	interrupt)			
bit 3	-	ted: Read as '					
bit 2-0	111 = Interru • •	>: UART1 Trans pt is Priority 7 (-	-			
		pt is Priority 1 pt source is dis	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
oit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
pit 7							bit 0
_egend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-6	Unimplemen	ted: Read as '	0'				
oit 5-0	TUN<5:0>: F	RC Oscillator 1	「uning bits ⁽¹⁾				
		aximum frequer	ncy deviation				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency	, oscillator is ru	unning at factory	/ calibrated free	quency	
	111111						
	•						
	•						
	100001						
		nimum frequen	cy deviation				

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can operate as a free-running, interval timer/counter, or serve as the time counter for a software-based Real-Time Clock (RTC). Timer1 is only reset on initial VDD power-on events. This allows the timer to continue operating as an RTC clock source through other types of device Reset.

Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

16.0 CAPTURE/COMPARE/PWM (CCP) AND ENHANCED CCP MODULES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Capture/Compare/PWM module, refer to the "dsPIC33/PIC24 Family Reference Manual".

Depending on the particular device, PIC24F16KL402 family devices include up to three CCP and/or ECCP modules. Key features of all CCP modules include:

- 16-bit input capture for a range of edge events
- 16-bit output compare with multiple output options
- Single-output Pulse-Width Modulation (PWM) with up to 10 bits of resolution
- User-selectable time base from any available timer
- Special Event Trigger on capture and compare events to automatically trigger a range of peripherals

ECCP modules also include these features:

- Operation in Half-Bridge and Full-Bridge (Forward and Reverse) modes
- Pulse steering control across any or all Enhanced PWM pins with user-configurable steering synchronization
- User-configurable external Fault detect with auto-shutdown and auto-restart

PIC24FXXKL40X/30X devices instantiate three CCP modules, one Enhanced (ECCP1) and two standard (CCP2 and CCP3). All other devices instantiate two standard CCP modules (CCP1 and CCP2).

16.1 Timer Selection

On all PIC24F16KL402 family devices, the CCP and ECCP modules use Timer3 as the time base for capture and compare operations. PWM and Enhanced PWM operations may use either Timer2 or Timer4. PWM time base selection is done through the CCPTMRS0 register (Register 16-6).

16.2 CCP I/O Pins

To configure I/O pins with a CCP function, the proper mode must be selected by setting the CCPxM<3:0> bits.

Where the Enhanced CCP module is available, it may have up to four PWM outputs depending on the selected operating mode. These outputs are designated, P1A through P1D. The outputs that are active depend on the ECCP operating mode selected. To configure I/O pins for Enhanced PWM operation, the proper PWM mode must be selected by setting the PM<1:0> and CCPxM<3:0> bits.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_						_	
oit 15							bit	
R/W-0	R/W-0					R/W-0	R/W-0	
-		R/W-0	R/W-0	R/W-0	R/W-0			
PM1	PM0	DC1B1	DC1B0	CCP1M3 ⁽²⁾	CCP1M2 ⁽²⁾	CCP1M1 ⁽²⁾	CCP1M0 ⁽²⁾	
oit 7							bit	
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
oit 15-8	Unimplemen	ted: Read as '	י'					
bit 7-6	-	hanced PWM (ration bits				
		2> = 00, 01, 10						
		ssigned as a ca		ompare output;	P1B, P1C and	P1D are assign	ed as port pir	
	<u>If CCP1M<3:2</u>	•				0		
		ge output reve	rse: P1B is mo	dulated; P1C is	active; P1A ar	nd P1D are ina	ctive	
		dge output: P	1A, P1B are	modulated wit	h dead-band	control; P1C	and P1D a	
		d as port pins						
		ge output forwa				are inactive	9	
L:L T 4	 00 = Single output: P1A, P1B, P1C and P1D are controlled by steering DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCP1 Module bits 							
bit 5-4					Daule bits			
	Unused.	Compare mode	<u>s</u> :					
	PWM mode:							
		e the two Leas	t Significant bi	ts (bit 1 and bit	0) of the 10-b	it PWM duty cy	cle. The eid	
		ant bits (DC1B<					, e. e. e. e. g	
bit 3-0	-	ECCP1 Modu	-					
		mode: P1A an			nd P1D are acti	ve-low		
		mode: P1A an						
		l mode: P1A an						
		I mode: P1A an		0		0		
		pare mode: Spe						
		oare mode: Ge ts I/O state)	nerates softwar	re interrupt on c	compare match	(CCPTIF DIUS	set, CCPT p	
		pare mode: Initia	alizes CCP1 pi	n hiah: on comp	pare match. for	ces CCP1 pin lo	w (CCP1IF b	
	is set			J , F F	,	P	\	
	1000 = Com bit is	pare mode: Init	ializes CCP1 p	oin low; on com	pare match, fo	rces CCP1 pin	high (CCP1	
		ure mode: Ever	y 16th rising e	dge				
	0110 = Captu	ure mode: Ever	y 4th rising ed					
	•	ure mode: Ever						
		ure mode: Ever	y falling edge					
	0011 = Rese	rved bare mode: Tog	ales output on	match (CCD1)	E bit is cot)			
	0010 = Comp 0001 = Rese		gies output on					
		ure/Compare/P	WM is disabled	d (resets CCP1	module)			
Note 1:	This register is im	plemented only	y on PIC24FX)	(KL40X/30X de	evices. For all o	other devices, C	CCP1CON is	
	configured as Reg					,		
-	000414 -0-0- 1							

2: CCP1M<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCP1 match.

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$

 $TAD = TCY \bullet (ADCS + 1)$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

FIGURE 19-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

23.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the "dsPIC33/PIC24 Family Reference Manual" provided below:
 "Watchdog Timer (WDT)" (DS39697)
 - "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
 - "Programming and Diagnostics" (DS39716)

PIC24F16KL402 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Factory Programmed Unique ID

23.1 Code Protect Security Options

The Boot Segment (BS) and General Segment (GS) are two segments on this device with separate programmable security levels. The Boot Segment, configured via the FBS Configuration register, can have three possible levels of security:

- No Security (BSS = 111): The Boot Segment is not utilized and all addresses in program memory are part of the General Segment (GS).
- Standard Security (BSS = 110 or 101): The Boot Segment is enabled and code-protected, preventing ICSP reads of the Flash memory. Standard security also prevents Flash reads and writes of the BS from the GS. The BS can still read and write to itself.
- High Security (BSS = 010 or 001): The Boot Segment is enabled with all of the security provided by Standard Security mode. In addition, in High-Security mode, there are program flow change restrictions in place. While executing from the GS, program flow changes that attempt to enter the BS (e.g., branch (BRA) or CALL instructions) can only enter the BS at one of the first 32 instruction locations (0x200 to 0x23F). Attempting to jump into the BS at an instruction higher than this will result in an Illegal Opcode Reset.

The General Segment, configured via the FGS Configuration register, can have two levels of security:

- No Security (GSS0 = 1): The GS is not code-protected and can be read in all modes.
- Standard Security (GSS0 = 0): The GS is code-protected, preventing ICSP reads of the Flash memory.

For more detailed information on these Security modes, refer to the *"dsPlC33/PlC24 Family Reference Manual"*, **"CodeGuard™ Security"** (DS70199).

23.2 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location, F80000h. A complete list is provided in Table 23-1. A detailed explanation of the various bit functions is provided in Register 23-1 through Register 23-7.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 23-1:	CONFIGURATION REGISTERS
	LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	ТJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation PDMAX (TJ – TA).				IA	W

TABLE 26-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	-	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 14-Pin PDIP	θJA	62.4	-	°C/W	1
Package Thermal Resistance, 14-Pin TSSOP	θJA	108	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	ARACTER	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$					
Para m No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
	Vbg	Band Gap Voltage Reference	1.14	1.2	1.26	V	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	Vol	Output Low Voltage							
DO10		All I/O Pins	—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V	
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V	
	Vон	Output High Voltage							
DO20		All I/O Pins	3	—	—	V	Юн = -3.0 mA	VDD = 3.6V	
			1.6	—	—	V	Юн = -1.0 mA	VDD = 2.0V	
DO26		OSC2/CLKO	3	—		V	Iон = -1.0 mA	VDD = 3.6V	
			1.6	—	—	V	Юн = -0.5 mA	VDD = 2.0V	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at +25°C unless otherwise stated.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS							
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
		Program Flash Memory					
D130	Ер	Cell Endurance	10,000 ⁽²⁾	—	—	E/W	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VміN = Minimum operating voltage
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current During Programming	—	10	—	mA	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

TABLE 26-27: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
	FSCK	SCKx Frequency	—	10	MHz	

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	_	Тсү	
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	—	Тсү	
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	—	μs	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μS	After this period, the first clock
			400 kHz mode	0.6	—	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		_	400	pF	

TABLE 26-32: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimension	Dimension Limits		NOM	MAX
Number of Pins	Ν		20	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

Program Memory	
Address Space	
Data EEPROM	
Device Configuration Words	
Hard Memory Vectors	
Organization	
Program Space	
Memory Map	
Program Verification	
PWM (CCP Module)	
TMR4 to PR4 Match	

R

Register Maps	
A/D Converter	41
Analog Select	41
CCP/ECCP	38
Comparator	41
CPU Core	35
ICN	
Interrupt Controller	37
MSSP	39
NVM	42
Pad Configuration	40
PMD	42
PORTA	40
PORTB	40
System, Clock Control	
Timer	
UART	
Ultra Low-Power Wake-up	
Registers	
AD1CHS (A/D Input Select)	162
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select)	
ANCFG (Analog Input Configuration)	
ANSA (PORTA Analog Selection)	
ANSB (PORTB Analog Selection)	
CCP1CON (ECCP1 Control, Enhanced CCP)	
CCPTMRS0 (CCP Timer Select Control 0)	
CCPxCON (CCPx Control, Standard CCP)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CVRCON (Comparator Voltage	20, 70
Reference Control)	172
DEVID (Device ID)	
DEVREV (Device Revision)	
ECCP1AS (ECCP1 Auto-Shutdown Control)	
ECCP1DEL (ECCP1 Enhanced PWM Control)	
FBS (Boot Segment Configuration)	
FGS (General Segment Configuration)	
FICD (In-Circuit Debugger Configuration)	
FOSC (Oscillator Configuration)	
FOSCSEL (Oscillator Selection Configuration)	
FPOR (Reset Configuration)	180
FWDT (Watchdog Timer Configuration)	
HLVDCON (High/Low-Voltage Detect Control)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 0)	
IEC2 (Interrupt Enable Control 2)	
IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3)	

IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
INTCON 2 (Interrupt Control 2)	
INTCON1 (Interrupt Control 1)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC12 (Interrupt Priority Control 12)	
IPC16 (Interrupt Priority Control 16)	
IPC18 (Interrupt Priority Control 18)	
IPC2 (Interrupt Priority Control 2)	
IPC20 (Interrupt Priority Control 20)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC9 (Interrupt Priority Control 9)	
NVMCON (Flash Memory Control)	
NVMCON (Nonvolatile Memory Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tune)	
PADCFG1 (Pad Configuration Control)	
PSTR1CON (ECCP1 Pulse Steering Control)	
RCON (Reset Control)	
DEEOCONI (Defenses Ossillatan Control)	
REFOCON (Reference Oscillator Control)	103
SR (ALU STATUS)	103
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud	103 28, 69
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator)	103 28, 69 146
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode)	103 28, 69 146 142
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode)	103 28, 69 146 142 141
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode)	103 28, 69 146 142 141 143
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode)	103 28, 69 146 142 141 143 145
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode)	103 28, 69 146 142 141 143 145 144
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode)	103 28, 69 146 142 141 143 145 144 146
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxMSK (1 ² C Slave Address Mask) SSPxSTAT (MSSPx Status, 1 ² C Mode)	103 28, 69 146 142 141 143 145 144 146 139
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxMSK (I ² C Slave Address Mask) SSPxSTAT (MSSPx Status, I ² C Mode)	103 28, 69 146 142 141 143 145 144 146 139 138
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode)	103 28, 69 146 142 141 143 145 144 146 139 138 116
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control)	
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (ULPWU Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 108
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 124 152
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UXSTA (UARTx Status and Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 124 152
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 152 154
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 154 154
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection	103 28, 69 146 142 141 143 145 144 146 139 138 116 120 121 124 152 154 63 61
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR)	$\begin{array}{c} 103\\28, 69\\146\\142\\141\\143\\145\\144\\145\\146\\139\\16\\18\\16\\120\\121\\124\\16\\16\\16\\16\\16\\16\\16\\$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T3CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 62\\ 62\\ 62\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times RCON Flag Operation	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 62\\ 61\\ 61\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T3CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3CON (Timer3 Gate Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times RCON Flag Operation SFR States Revision History	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T3GCON (Timer3 Gate Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times RCON Flag Operation SFR States	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$

Serial Peripheral Interface. See SPI Mode.	
SFR Space	34
Software Stack	43