

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl301-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL301/401

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24F04KL100
 PIC24F04KL101
- PIC24F08KL200
- PIC24F08KL201PIC24F08KL302
- PIC24F08KL301
 PIC24F08KL401
- PIC24F16KL401
- PIC24F08KL402 PIC24F16KL402

The PIC24F16KL402 family adds an entire range of economical, low pin count and low-power devices to Microchip's portfolio of 16-bit microcontrollers. Aimed at applications that require low-power consumption but more computational ability than an 8-bit platform can provide, these devices offer a range of tailored peripheral sets that allow the designer to optimize both price point and features with no sacrifice of functionality.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24F16KL402 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source, or the internal, Low-Power RC (LPRC) oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24F16KL402 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs): One with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the External Oscillator modes and the 8 MHz FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate Internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow, from the relatively simple, to the powerful and complex.

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
CN0	10	7	12	9	Ι	ST	Interrupt-on-Change Inputs
CN1	9	6	11	8	Ι	ST	
CN2	2	19	2	27	Ι	ST	
CN3	3	20	3	28	I	ST	
CN4	4	1	4	1	I	ST	
CN5	5	2	5	2	I	ST	
CN6	6	3	6	3	I	ST	
CN7	_	—	7	4	I	ST	
CN8	14	11	20	17	I	ST	
CN9	—	_	19	16	Ι	ST	
CN11	18	15	26	23	I	ST	
CN12	17	14	25	22	I	ST	
CN13	16	13	24	21	Ι	ST	
CN14	15	12	23	20	Ι	ST	
CN15	_	_	22	19	Ι	ST	
CN16	_	_	21	18	Ι	ST	
CN21	13	10	18	15	Ι	ST	
CN22	12	9	17	14	Ι	ST	
CN23	11	8	16	13	Ι	ST	
CN24	_	—	15	12	I	ST	
CN27	_	—	14	11	I	ST	
CN29	8	5	10	7	I	ST	
CN30	7	4	9	6	I	ST	
CVREF	17	14	25	22	I	ANA	Comparator Voltage Reference Output
CVREF+	2	19	2	27	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	20	3	28	I	ANA	Comparator Reference Negative Input Voltage
FLT0	17	14	25	22	I	ST	ECCP1 Enhanced PWM Fault Input
HLVDIN	15	12	23	20	I	ST	High/Low-Voltage Detect Input
INT0	11	8	16	13	I	ST	Interrupt 0 Input
INT1	17	14	25	22	I	ST	Interrupt 1 Input
INT2	14	11	20	17	I	ST	Interrupt 2 Input
MCLR	1	18	1	26	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	7	4	9	6	Ι	ANA	Main Oscillator Input
OSCO	8	5	10	7	0	ANA	Main Oscillator Output
P1A	14	11	20	17	0	_	ECCP1 Output A (Enhanced PWM Mode)
P1B	5	2	21	18	0	—	ECCP1 Output B (Enhanced PWM Mode)
P1C	4	1	22	19	0	—	ECCP1 Output C (Enhanced PWM Mode)
P1D	16	13	18	15	0	_	ECCP1 Output D (Enhanced PWM Mode)

TABLE 1-4:	PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS ((CONTINUED)

Legend:

TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

	TABLE 4-4:	ICN REGISTER MAP
--	------------	------------------

		-																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE ⁽¹⁾	CN14PDE(1)	CN13PDE(1)	CN12PDE	CN11PDE	—	CN9PDE ⁽²⁾	CN8PDE	CN7PDE ⁽²⁾	CN6PDE ⁽¹⁾	CN5PDE ⁽¹⁾	CN4PDE ⁽¹⁾	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	—	CN30PDE	CN29PDE	—	CN27PDE ⁽²⁾	—	—	CN24PDE ⁽²⁾	CN23PDE ⁽¹⁾	CN22PDE	CN21PDE	_	_	_		CN16PDE ⁽²⁾	0000
CNEN1	0062	CN15IE ⁽¹⁾	CN14IE ⁽¹⁾	CN13IE ⁽¹⁾	CN12IE	CN11IE	_	CN9IE ⁽¹⁾	CN8IE	CN7IE ⁽¹⁾	CN6IE ⁽²⁾	CN5PIE ⁽²⁾	CN4IE ⁽²⁾	CN3IE	CNIE	CN1IE	CN0IE	0000
CNEN2	0064	—	CN30IE	CN29IE	—	CN27IE ⁽²⁾	—	—	CN24IE ⁽²⁾	CN23IE ⁽¹⁾	CN22IE	CN21IE	_	_	_		CN16IE ⁽²⁾	0000
CNPU1	006E	CN15PUE ⁽¹⁾	CN14PUE ⁽¹⁾	CN13PUE ⁽¹⁾	CN12PUE	CN11PUE	—	CN9PUE ⁽¹⁾	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE ⁽²⁾	CN5PUE ⁽²⁾	CN4PUE ⁽²⁾	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	0070	—	CN30PUE	CN29PUE	—	CN27PUE ⁽²⁾	_	—	CN24PUE ⁽²⁾	CN23PUE ⁽¹⁾	CN22PUE	CN21PUE	_	_	_		CN16PUE ⁽²⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN		—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

F	ile Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
N١	/MCON	0760	WR	WREN	WRERR	PGMONLY		—	—		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
N١	/MKEY	0766	-	-	_	—		-	_					NVM Key	/ Register				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN		ULPSIDL					ULPSINK		—	_	—					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	T4MD	T3MD	T2MD	T1MD	—	—	—	SSP1MD	U2MD	U1MD	—	_	_	—	ADC1MD	0000
PMD2	0772	—	_	—	—	—	_	_	—	—	—	—	—	_	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	-	_	_	_	SSP2MD	_	0000
PMD4	0776	_	_	_	_	—	_	_	—	ULPWUMD	_	_	EEMD	REFOMD	_	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note:	The TBLRDH and TBLWTH instructions are
	not used while accessing data EEPROM
	memory.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'.

 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location, used as data, should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside of a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle, in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles, in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

REGISTER 8-30: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	r.0	R/M/-0	11_0	R_0	R_0	R-0	R.0				
	r										
bit 15	I	VHOLD		ILKJ	ILINZ		hit 8				
511 15							bit o				
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0				
bit 7							bit 0				
Legend:		r = Reserved	bit								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	CPUIRQ: Inte 1 = An intern happen w 0 = No intern	rrupt Request upt request ha vhen the CPU p upt request is le	from Interrupt is occurred bu priority is high eft unacknowle	Controller CP ut has not yet er than the inte edged	U bit been Acknowl errupt priority)	edged by the	CPU (this will				
bit 14	Reserved: Ma	aintain as '0'									
bit 13	VHOLD: Vector Allows Vector 1 = VECNUM current in 0 = VECNUM occurred	or Hold bit <u>Number Captu</u> I<6:0> will cor Iterrupt I<6:0> will con with higher prio	ure and Chang tain the value tain the value prity than the (g <u>es What Inter</u> e of the highe of the last Ac CPU, even if o	rupt is Stored in est priority pend knowledged int ther interrupts a	<u>the VECNUM</u> ling interrupt, i errupt (last inte are pending)	<u>bit:</u> instead of the errupt that has				
bit 12	Unimplement	ted: Read as '	כ'								
bit 11-8	<pre>ILR<3:0>: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15</pre>										
bit 7	Unimplement	ted: Read as ')')'								
bit 6-0	VECNUM<6:0	D>: Vector Num	ber of Pendin	g Interrupt bits	3						
	0111111 = In • •	iterrupt vector	pending is Nur	mber 135							
	0000000 = In	iterrupt vector p	pending is Nur	mber 8							

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15						·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ROI: Recover	on Interrupt bit	i i				
	1 = Interrupts	clear the DOZ	EN bit, and re	set the CPU an	d peripheral clo	ock ratio to 1:1	
	0 = Interrupts	s have no effect	on the DOZE	N bit			
bit 14-12	DOZE<2:0>:	CPU-to-Periphe	eral Clock Rat	io Select bits			
	111 = 1:128						
	110 = 1:64						
	101 = 1.32 100 = 1.16						
	011 = 1:8						
	010 = 1 :4						
	001 = 1:2						
	000 = 1:1						
bit 11	DOZEN: DOZ	E Enable bit					
	1 = DOZE < 22 0 = CPU and	:U> DITS SPECITY	the CPU-to-pe	eripheral clock r	atio		
bit 10.8		EPC Postscal	ciock ratio are	361 10 1.1			
DIL 10-8	When COSC		N < 14.12 = 11	1 or 0.01:			
	111 = 31.25 k	 <u>Hz</u> (divide-bv-2 	256)	<u> </u>			
	110 = 125 kH	lz (divide-by-64)				
	101 = 250 kH	lz (divide-by-32)				
	100 = 500 kH	lz (divide-by-16)				
	011 = 1 MHz 010 = 2 MHz	(divide-by-6) (divide-by-4)					
	001 = 4 MHz	(divide-by-2) (d	lefault)				
	000 = 8 MHz	(divide-by-1)	-				
	When COSC<	<2:0> (OSCCO	N<14:12>) = 1	.10:			
	111 = 1.95 kH	Hz (divide-by-25	56)				
	110 = 7.81 Km 101 = 15.62 km	12 (divide-by-64 Hz (divide-by-3	+) 32)				
	100 = 31.25 k	Hz (divide-by-1	l6)				
	011 = 62.5 kH	Hz (divide-by-8)					
	010 = 125 kH	lz (divide-by-4)	(- - f ()				
	001 = 250 kH	IZ (alvide-by-2)	(default)				
hit 7-0		ted: Read as 'r)'				
		Logi i logi da l	,				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14	UTXINV:	IrDA [®] Encoder	Transmit	Polarity	Inversion	bit
--------	---------	---------------------------	----------	----------	-----------	-----

Sit 11	
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits; followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx
	0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on the RSR transfer, making the receive buffer full (i.e., has 2 data characters) 10 = Reserved 01 = Reserved

00 = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters

REGISTER 19-5: AD1CSSL: A/D INPUT SCAN SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CSSL<15:8> ⁽¹⁾										
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CS	SSL<7:6>	—			CSSL<4:0>(1)					
bit 7							bit 0			
Legend:										
R = Readable bit W		W = Writable b	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-6	CSSL<15:6>	: A/D Input Pin	Scan Selection	n bits ⁽¹⁾						
	1 = Correspo	nding analog ch	annel selecte	d for input scan						
	0 = Analog c	hannel omitted f	rom input scai	n						
bit 5	Unimplemer	nted: Read as '0	,							
bit 4-0	CSSL<4:0>:	A/D Input Pin Se	can Selection	bits ⁽¹⁾						
	1 = Correspo	nding analog ch	annel selecte	d for input scan						
	0 = Analog c	hannel omitted f	rom input scai	n						
Note 1:	CSSL<12:11,4:2	> bits are unimpl	lemented on 1	4-pin devices.						
	,	F								

REGISTER 19-6: ANCFG: ANALOG INPUT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—		—			—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	_		VBGEN	
bit 7							bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

bit 0

-n = Value at POR

VBGEN: Internal Band Gap Reference Enable bit

'1' = Bit is set

1 = Internal band gap voltage is available as a channel input to the A/D Converter

0 = Band gap is not available to the A/D Converter

x = Bit is unknown

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

bit 8 W-0 /R0 bit 0
bit 8 W-0 VR0 bit 0
W-0 √R0 bit 0
W-0 √R0 bit 0
VR0 bit 0
bit 0

NOTES:

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	£	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	£	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#litl6,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 26-6: CAPTURE/COMPARE/PWM TIMINGS (ECCP1, ECCP2 MODULES)

TABLE 26-26: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP1, ECCP2 MODULES)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No Prescaler	0.5 Tcy + 20		ns	
	-	Time	With Prescaler	20	_	ns	
51	TccH	CCPx Input	No Prescaler	0.5 Tcy + 20	-	ns	
		High Time	With Prescaler	20	_	ns	
52	TCCP	CCPx Input Perio	CCPx Input Period		—	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fa	ll Time	—	25	ns	
54	TccF	CCPx Output Fa	ll Time	—	25	ns	

20-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5 mm Body [QFN] With 0.40mm Contact Length

RECOMMENDED LAND PATTERN

	Ν	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.50	
Contact Pad Spacing	C2		4.50	
Contact Pad Width (X20)	X1			0.40
Contact Pad Length (X20)	Y1			0.55
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2139A

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Pins	N		28	
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	5.00 BSC		
Exposed Pad Width	E2	3.15	3.25	3.35
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.15	3.25	3.35
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.35	0.40	0.45
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-140B Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

APPENDIX A: REVISION HISTORY

Revision A (September 2011)

Original data sheet for the PIC24F16KL402 family of devices.

Revision B (November 2011)

Updates DC Specifications in Tables 26-6 through 26-9 (all Typical and Maximum values).

Updates AC Specifications in Tables 26-7 through 26-30 (SPI Timing Requirements) with the addition of the FSCK specification.

Other minor typographic corrections throughout.

Revision C (October 2013)

Adds +125°C Extended Temperature information.

Updates several packaging drawings in **Section 27.0 "Packaging Information"**. Other minor typographic corrections throughout.

APPENDIX B: MIGRATING FROM PIC18/PIC24 TO PIC24F16KL402

The PIC24F16KL402 family combines traditional PIC18 peripherals with a faster PIC24 core to provide a low-cost, high-performance microcontroller with low-power consumption.

Code written for PIC18 devices can be migrated to the PIC24F16KL402 by using a C compiler that generates PIC24 machine level instructions. Assembly language code will need to be rewritten using PIC24 instructions. The PIC24 instruction set shares similarities to the PIC18 instruction set, which should ease porting of assembly code. Application code will require changes to support certain PIC24 peripherals.

Code written for PIC24 devices can be migrated to the PIC24F16KL402 without many code changes. Certain peripherals, however, will require application changes to support modules that were traditionally available only on PIC18 devices.

Refer to Table B-1 for a list of peripheral modules on the PIC24F16KL402 and where they originated from.

TABLE B-1: TABLE B-1: PIC24F16KL402 PERIPHERAL MODULE ORIGINATING ARCHITECTURE

Peripheral Module	PIC18	PIC24
ECCP/CCP	Х	
MSSP (I ² C™/SPI)	Х	—
Timer2/4 (8-bit)	Х	—
Timer3 (16-bit)	Х	—
Timer1 (16-bit)	—	Х
10-Bit A/D Converter	—	Х
Comparator	—	Х
Comparator Voltage Reference	—	х
UART	—	Х
HLVD	—	Х

INDEX

1	۱.
•	١

A/D	
10-Bit High-Speed A/D Converter	157
Conversion Timing Requirements	224
Module Specifications	223
A/D Converter	
Analog Input Model	164
Transfer Function	165
AC Characteristics	
A/D Module	223
Capacitive Loading Requirements on	
Output Pins	209
Internal RC Oscillator Accuracy	211
Internal RC Oscillator Specifications	211
Load Conditions and Requirements	209
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	158
16-Bit Timer1	115
Accessing Program Memory with	
Table Instructions	45
CALL Stack Frame	43
Capture Mode Operation	126
Comparator Module	167
Comparator Voltage Reference Module	171
Compare Mode Operation	126
CPU Programmer's Model	27
Data Access From Program Space	
Address Generation	44
Data EEPROM Addressing with TBLPAG and	
NVM Registers	55
Enhanced PWM Mode	127
High/Low-Voltage Detect (HLVD) Module	173
Individual Comparator Configurations	168
MCLR Pin Connections Example	22
MSSPx Module (I ² C Master Mode)	137
MSSPx Module (I ² C Mode)	137
MSSPx Module (SPI Mode)	136
PIC24F CPU Core	26
PIC24F16KL402 Family (General)	13
PSV Operation	46
PWM Operation (Simplified)	126
Recommended Minimum Connections	21
Reset System	59
Serial Resistor	107
Shared I/O Port Structure	111
Simplified UARTx	149
SPI Master/Slave Connection	136
Suggested Placement of Oscillator Circuit	23
System Clock	95
Table Register Addressing	47
Timer2	117
Timer3	119
Timer4	123
Watchdog Timer (WDT)	184

С

C Compilers	
MPLAB XC Compilers 188	3
Capture/Compare/PWM (CCP) 125	5
CCP/ECCP	
CCP I/O Pins 125	5
Timer Selection 125	5
Code Examples	
Data EEPROM Bulk Erase 57	7
Data EEPROM Unlock Sequence 53	3
Erasing a Program Memory Row,	
Assembly Language 50)
Erasing a Program Memory Row, C Language 51	1
I/O Port Write/Read (Assembly Language) 114	1
I/O Port Write/Read (C Language) 114	1
Initiating a Programming Sequence,	
Assembly Language 52	2
Initiating a Programming Sequence, C Language 52	2
Loading the Write Buffers, Assembly Language 51	I
Loading the Write Buffers, C Language 52	2
PWRSAV Instruction Syntax 105	5
Reading Data EEPROM Using the	
TBLRD Command 58	3
Sequence for Clock Switching 102	2
Single-Word Erase 56	3
Single-Word Write to Data EEPROM 57	7
Ultra Low-Power Wake-up Initialization 107	7
Code Protection	5
Comparator 167	7
Comparator Voltage Reference 171	1
Configuring 171	
Configuration Bits 175	5
Core Features	9
CPU	_
ALU	9
Control Registers	3
Core Registers	5 -
Programmer's Model	5
Customer Change Notification Service	1
Customer Notification Service	1
Customer Support 257	1
D	
Data EEPROM Memory 53	z
	•

53
56
53
53
55
55
57
58
57
33
33
34
34
34
43
33