

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХЕ

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl302-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	47
6.0	Data EEPROM Memory	53
7.0	Resets	59
8.0	Interrupt Controller	65
9.0	Oscillator Configuration	95
10.0	Power-Saving Features	105
11.0	I/O Ports	111
12.0	Timer1	115
13.0	Timer2 Module	117
14.0	Timer3 Module	119
15.0	Timer4 Module	123
16.0	Capture/Compare/PWM (CCP) and Enhanced CCP Modules	125
17.0	Master Synchronous Serial Port (MSSP)	135
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	10-Bit High-Speed A/D Converter	157
20.0	Comparator Module	
21.0	Comparator Voltage Reference	171
22.0	High/Low-Voltage Detect (HLVD)	173
23.0	Special Features	175
24.0	Development Support	
25.0	Instruction Set Summary	191
26.0	Electrical Characteristics	
27.0	Packaging Information	225
Appe	andix A: Revision History	
Appe	andix B: Migrating from PIC18/PIC24 to PIC24F16KL402	
Index	κ	253
The I	Microchip Web Site	
Custo	omer Change Notification Service	
Custo	omer Support	257
Produ	uct Identification System	259

1.2 Other Special Features

- Communications: The PIC24F16KL402 family incorporates multiple serial communication peripherals to handle a range of application requirements. The MSSP module implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24F16KL402 family include a 10-bit A/D Converter module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds.

The comparator modules are configurable for a wide range of operations and can be used as either a single or double comparator module.

1.3 Details on Individual Family Members

Devices in the PIC24F16KL402 family are available in 14-pin, 20-pin and 28-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The PIC24F16KL402 family may be thought of as four different device groups, each offering a slightly different set of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The presence and size of data EEPROM
- The presence of an A/D Converter and the number of external analog channels available
- · The number of analog comparators
- The number of general purpose timers
- The number and type of CCP modules (i.e., CCP vs. ECCP)
- The number of serial communications modules (both MSSPs and UARTs)

The general differences between the different sub-families are shown in Table 1-1. The feature sets for specific devices are summarized in Table 1-2 and Table 1-3.

A list of the individual pin features available on the PIC24F16KL402 family devices, sorted by function, is provided in Table 1-4 (for PIC24FXXKL40X/30X devices) and Table 1-5 (for PIC24FXXKL20X/10X devices). Note that these tables show the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Device Group	Program Memory (bytes)	Data EEPROM (bytes)	Timers (8/16-bit)	CCP and ECCP	Serial (MSSP/ UART)	A/D (channels)	Comparators
PIC24FXXKL10X	4K	_	1/2	2/0	1/1	_	1
PIC24FXXKL20X	8K	—	1/2	2/0	1/1	7 or 12	1
PIC24FXXKL30X	8K	256	2/2	2/1	2/2	—	2
PIC24FXXKL40X	8K or 16K	512	2/2	2/1	2/2	12	2

TABLE 1-1:FEATURE COMPARISON FOR PIC24F16KL402 FAMILY GROUPS

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"CPU"** (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by a 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete, but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme, with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 8.1** "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24F16KL402 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using Table Read and Table Write operations, similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24F16KL402 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 23.0 "Special Features"**.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24F16KL402 FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant we	ord	east significant word		PC Address (Isw Address)
	23	16	8	0 V	
000001h	0000000				000000h
000003h	0000000				000002h
000005h	0000000				000004h
000007h	0000000				000006h
	Program Memory	Instruc	tion Width		
	(read as '0')				

TABLE 4-6	: 1	IMER	REGIS	STER N	/IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Re	gister							0000
PR1	0102								Ti	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	—	—	—	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106	_	_	—	_	_	—	—	—				Timer2 R	egister				0000
PR2	0108	_	_	—	_	_	—	—	—				Timer2 Perio	d Register				00FF
T2CON	010A	—	—	—	—	—	—	—	—	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Re	gister							0000
T3GCON	010E	—	_	—	—	—	—	—	_	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	—	-	-	_	-	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	—	_	—	—	—	—	—	—				Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	—	_	—	—	—	—	—	—				Timer4 Perio	d Register				00FF
T4CON ⁽¹⁾	0116	_	_	_	_	_	_	_	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0 ⁽¹⁾	013C	_	_	—	—	_	—	—	—	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	—	—	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	—	—	-	—	—	—	—	—	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	—	_	—	_	_	_	—	—			Capture/C	ompare/PWI	/1 Register	Low Byte			0000
CCPR1H	0194	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	_	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS(1)	0198	_	_	—	_	_	_	_	—	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON ⁽¹⁾	019A	—	_	—	_	_	_	—	—	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	—	_	_	_	_	—			Capture/C	ompare/PWI	/12 Register	Low Byte			0000
CCPR2H	01A0	_	_	—	_	_	_	_	—			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	—	_	_	_	_	—	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	—	_	_	_	—	—			Capture/C	ompare/PWI	/13 Register	Low Byte			0000
CCPR3H ⁽¹⁾	01AC	—	—	_		—	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN		—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

F	ile Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
N١	/MCON	0760	WR	WREN	WRERR	PGMONLY		—	—		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
N١	/MKEY	0766	-	-	_	—		-	_					NVM Key	/ Register				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN		ULPSIDL					ULPSINK		—	_	—					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	T4MD	T3MD	T2MD	T1MD	—	—	—	SSP1MD	U2MD	U1MD	—	_	_	—	ADC1MD	0000
PMD2	0772	—	_	—	—	—	_	_	—	—	—	—	—	_	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	-	_	_	_	SSP2MD	_	0000
PMD4	0776	_	_	_	_	—	_	_	—	ULPWUMD	_	_	EEMD	REFOMD	_	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = &progAddr unsigned int offset;</pre>	// Global variable located in Pgm Memory
//Set up pointer to the first memory location to be written	
TBLPAG =builtin_tblpage(&progAddr); offset = &progAddr & 0xFFFF;	// Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0x4058;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts for next 5 // instructions</pre>
builtin_write_NVM();	// Instructions // C30 function to perform unlock // sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operati	ons	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poi	nter to the first program mem	ory	location to be written
;	program memo	ry selected, and writes enabl	ed	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write t	he i	latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•	1		
,	3∠na_program	_WOLA		
	MOV	$\# UW WUKD_{31}, WZ$		
		HUTRU RITE ST' MS	;	White DM los word into measure lately
	TRTMLT	₩2, [WU] W2 [W0]	;	Write PM IOW Word Into program latch
	IBTMIH	W3, [WU]	'	write PM high byte into program latch

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in Section 6.4.1 "Erase Data EEPROM") if PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
 - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> = 0001xx).
 - Clear the NVMIF status bit and enable the NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin the erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM
NVMCON = 0x4050;

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

<pre>intattribute ((space(eedata))) eeData = 0x1234. int newData; unsigned int offset;</pre>	; // Global variable located in EEPROM // New data to write to EEPROM
<pre>// Set up NVMCON to erase one word of data EEPRON NVMCON = 0x4004;</pre>	M
<pre>// Set up a pointer to the EEPROM location to be TBLPAG =builtin_tblpage(&eeData); offset =builtin_tbloffset(&eeData);builtin_tblwtl(offset, newData);</pre>	erased // Initialize EE Data page pointer // Initizlize lower word of address // Write EEPROM data to write latch
<pre>asm volatile ("disi #5"); builtin_write_NVM(); while(NVMCONbits.WR=1);</pre>	<pre>// Disable Interrupts For 5 Instructions // Issue Unlock Sequence & Start Write Cycle // Optional: Poll WR bit to wait for // write sequence to complete</pre>

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device has been in Sleep mode

 0 = Device has not been in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device has been in Idle mode

 0 = Device has not been in Idle mode

 0 = Device has not been in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred (the BOR is also set after a POR)

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator **Configuration**".

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	T2IP2	T2IP1	T2IP0	_	CCP2IP2	CCP2IP1	CCP2IP0				
bit 15				·			bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	<u> </u>	—	_	<u> </u>	<u> </u>	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	ad as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15	Unimplemen	ted: Read as ')'								
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits								
	111 = Interru	pt is Priority 7(highest priority	vinterrupt)							
	•										
	•										
	001 = Interrupt is Priority 1										
	000 = Interrupt source is disabled										
bit 11	Unimplemen	ted: Read as ')'								
bit 10-8	CCP2IP<2:0>	Capture/Com	pare/PWM2 Ir	nterrupt Priority	bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is Priority 1										
	000 = Interru	pt source is dis	abled								
bit 7-0	Unimplemen	ted: Read as 'o)'								

REGISTER 8-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15 bit 8									
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0		
bit 7 bit 0									
Logond:									

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •
- •

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		U2TXIP1 ⁽¹⁾		_		U2RXIP1 ⁽¹⁾	U2RXIP0 ⁽¹⁾					
bit 15	•======		•====				bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_	INT2IP2	INT2IP1	INT2IP0	_	_	—	—					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, reac	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown					
bit 15	Unimplemen	ted: Read as ')'	(4)								
bit 14-12	U2TXIP<2:0>	: UART2 Trans	mitter Interrup	t Priority bits ⁽¹⁾								
	111 = Interrup	pt is Priority 7(highest priority	interrupt)								
	•											
	•											
	001 = Interrup	pt is Priority 1										
	000 = Interrup	pt source is dis	abled									
bit 11	Unimplemen	ted: Read as ')'									
bit 10-8	U2RXIP<2:0>	: UART2 Rece	iver Interrupt F	Priority bits ⁽¹⁾								
	111 = Interrup	pt is Priority 7(highest priority	interrupt)								
	•											
	•											
	001 = Interrup	pt is Priority 1										
	000 = Interrup	pt source is dis	abled									
bit 7	Unimplemen	ted: Read as ')'									
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits								
	111 = Interrup	pt is Priority 7(highest priority	interrupt)								
	•											
	001 = Interrup	pt is Priority 1										
	000 = Interrup	pt source is dis	abled									
bit 3-0	Unimplemen	ted: Read as ')'									

REGISTER 8-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24F16KL402 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT). Therefore, if the ROSEL bit is also not set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	—	_	_	—	—					
bit 15							bit 8					
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1					
CMPL1	CMPL0	—	STRSYNC	STRD	STRC	STRB	STRA					
bit 7							bit 0					
Legend:	bl. b:4		L :1	II Inimulan		L (0)						
R = Reada			DIT		nented bit, read							
-n = Value	at POR	'1' = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkn	iown					
hit 15 0	Unimplomor	tod. Dood oo '	`									
bit 7.6		Complementar	J Nodo Output	t Accignment S	tooring hito							
DIL 7-0	OO = Complete	CIMPL<1:U>: Complementary Mode Output Assignment Steering bits										
	Steering	Steering mode										
	01 = P1A an	01 = P1A and P1B are selected as the complementary output pair										
	10 = P1A an	10 = P1A and P1C are selected as the complementary output pair										
hit 5		urid Pood as '		inplementary ou	ilput pail							
bit 4	STRSVNC	Steering Sync bi	J it									
	1 = Output s	1 = Output steering update occurs on the next PWM period										
	0 = Output s	0 = Output steering update occurs at the beginning of the instruction cycle boundary										
bit 3	STRD: Steer	ing Enable D bi	t									
	1 = P1D pin	1 = P1D pin has the PWM waveform with polarity control from CCP1M<1:0>										
	0 = P1D pin is assigned to port pin											
bit 2	STRC: Steer	STRC: Steering Enable C bit										
	1 = P1C pin	1 = P1C pin has the PWM waveform with polarity control from CCP1M<1:0>										
hit 1	STPR. Stoor	U = Pric pin is assigned to port pin										
DILI	1 = P1B nin	has the PWM w	l vaveform with r	olarity control	from CCP1M<	1.0>						
	0 = P1B pin	1 - PTB pin has the PVM waveform with polarity control from CCPTM<1.0>0 = P1B pin is assigned to port pin										
bit 0	STRA: Steer	ing Enable A bit	t									
	1 = P1A pin	has the PWM w	vaveform with p	olarity control	from CCP1M<	1:0>						
	0 = P1A pin	is assigned to p	oort pin									
Note 1	lote 1: This register is only implemented on PIC24EXXKI 40X/30X devices. In addition, PWM Steering mode is											

REGISTER 16-5: PSTR1CON: ECCP1 PULSE STEERING CONTROL REGISTER⁽¹⁾

Note 1: This register is only implemented on PIC24FXXKL40X/30X devices. In addition, PWM Steering mode is available only when CCP1M<3:2> = 11 and PM<1:0> = 00.

18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 18.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

18.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

18.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UART module is enabled; it can be used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

NOTES:

20.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator module, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710).

Depending on the particular device, the comparator module provides one or two analog comparators. The inputs to the comparator can be configured to use any one of up to four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator. The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is displayed in Figure 20-1. Diagrams of the possible individual comparator configurations are displayed in Figure 20-2.

Each comparator has its own control register, CMxCON (Register 20-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 20-2).

FIGURE 20-1: COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 20-1: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to VBG/2
 - 10 = Inverting input of the comparator connects to the CxIND $pin^{(2)}$
 - 01 = Inverting input of the comparator connects to the CxINC $pin^{(2)}$
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** If EVPOL<1:0> is set to a value other than '00', the first interrupt generated will occur on any transition of COUT, regardless of if it is a rising or falling edge. Subsequent interrupts will occur based on the EVPOLx bits setting.
 - 2: Unimplemented on 14-pin (PIC24FXXKL100/200) devices.

REGISTER 20-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	—	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC			
—	—	—	—	—	_	C2OUT ⁽¹⁾	C10UT			
bit 7	bit 7 bit 0									

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinues operation of all comparators when device enters Idle mode 0 = Continues operation of all enabled comparators in Idle mode
bit 14-10	Unimplemented: Read as '0'
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-2	Unimplemented: Read as '0'
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

Note 1: These bits are unimplemented on PIC24FXXKL10X/20X devices.

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

bit 8 R/W-0 CVR0 bit 0					
R/W-0 CVR0 bit 0					
R/W-0 CVR0 bit 0					
CVR0 bit 0					
bit 0					
U = Unimplemented bit, read as '0'					
Unimplemented: Read as '0'					
CVRSS: Comparator VREF Source Selection bit					
1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS					
Unimplemented: Read as '0' CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit is powered on 0 = CVREF circuit is powered down CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on the CVREF pin 0 = CVREF voltage level is disconnected from the CVREF pin CVRSS: Comparator VREF Source Selection bit 1 = Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = VREF+ - VREF- $0 = Comparator reference source, CVRSRC = AVDD - AVSSCVR<4:0>: Comparator VREF Value Selection 0 \le CVR<4:0> \le 31 bitsWhen CVRSS = 1:CVREF = (VREF-) + (CVR<4:0>/32) • (VREF+ - VREF-)When CVRSS = 0:$					