

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-><F

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                          |
| Core Size                  | 16-Bit                                                                       |
| Speed                      | 32MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                              |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                  |
| Number of I/O              | 24                                                                           |
| Program Memory Size        | 8KB (2.75K x 24)                                                             |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | 256 x 8                                                                      |
| RAM Size                   | 1K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                               |
| Supplier Device Package    | 28-SSOP                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl302-e-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Pin Diagrams: PIC24FXXKL10X/20X





|           |                                                          | Pin Nu        | umber                             |               | _   |                  |                                           |  |  |
|-----------|----------------------------------------------------------|---------------|-----------------------------------|---------------|-----|------------------|-------------------------------------------|--|--|
| Function  | 20-Pin<br>PDIP/<br>SSOP/<br>SOIC                         | 20-Pin<br>QFN | 28-Pin<br>SPDIP/<br>SSOP/<br>SOIC | 28-Pin<br>QFN | I/O | Buffer           | Description                               |  |  |
| PGEC1     | 5                                                        | 2             | 5                                 | 2             | I/O | ST               | ICSP™ Clock 1                             |  |  |
| PCED1     | 4                                                        | 1             | 4                                 | 1             | I/O | ST               | ICSP Data 1                               |  |  |
| PGEC2     | 2                                                        | 19            | 22                                | 19            | I/O | ST               | ICSP Clock 2                              |  |  |
| PGED2     | 3                                                        | 20            | 21                                | 18            | I/O | ST               | ICSP Data 2                               |  |  |
| PGEC3     | 10                                                       | 7             | 15                                | 12            | I/O | ST               | ICSP Clock 3                              |  |  |
| PGED3     | 9                                                        | 6             | 14                                | 11            | I/O | ST               | ICSP Data 3                               |  |  |
| RA0       | 2                                                        | 19            | 2                                 | 27            | I/O | ST               | PORTA Pins                                |  |  |
| RA1       | 3                                                        | 20            | 3                                 | 28            | I/O | ST               |                                           |  |  |
| RA2       | 7                                                        | 4             | 9                                 | 6             | I/O | ST               |                                           |  |  |
| RA3       | 8                                                        | 5             | 10                                | 7             | I/O | ST               |                                           |  |  |
| RA4       | 10                                                       | 7             | 12                                | 9             | I/O | ST               |                                           |  |  |
| RA5       | 1                                                        | 18            | 1                                 | 26            | - I | ST               |                                           |  |  |
| RA6       | 14                                                       | 11            | 20                                | 17            | I/O | ST               |                                           |  |  |
| RA7       | —                                                        | —             | 19                                | 16            | I/O | ST               |                                           |  |  |
| RB0       | 4                                                        | 1             | 4                                 | 1             | I/O | ST               | PORTB Pins                                |  |  |
| RB1       | 5                                                        | 2             | 5                                 | 2             | I/O | ST               |                                           |  |  |
| RB2       | 6                                                        | 3             | 6                                 | 3             | I/O | ST               |                                           |  |  |
| RB3       | —                                                        | _             | 7                                 | 4             | I/O | ST               |                                           |  |  |
| RB4       | 9                                                        | 6             | 11                                | 8             | I/O | ST               |                                           |  |  |
| RB5       |                                                          | —             | 14                                | 11            | I/O | ST               |                                           |  |  |
| RB6       |                                                          | —             | 15                                | 12            | I/O | ST               |                                           |  |  |
| RB7       | 11                                                       | 8             | 16                                | 13            | I/O | ST               |                                           |  |  |
| RB8       | 12                                                       | 9             | 17                                | 14            | I/O | ST               |                                           |  |  |
| RB9       | 13                                                       | 10            | 18                                | 15            | I/O | ST               |                                           |  |  |
| RB10      | _                                                        | _             | 21                                | 18            | I/O | ST               |                                           |  |  |
| RB11      |                                                          | —             | 22                                | 19            | I/O | ST               |                                           |  |  |
| RB12      | 15                                                       | 12            | 23                                | 20            | I/O | ST               |                                           |  |  |
| RB13      | 16                                                       | 13            | 24                                | 21            | I/O | ST               |                                           |  |  |
| RB14      | 17                                                       | 14            | 25                                | 22            | I/O | ST               |                                           |  |  |
| RB15      | 18                                                       | 15            | 26                                | 23            | I/O | ST               |                                           |  |  |
| REFO      | 18                                                       | 15            | 26                                | 23            | 0   | —                | Reference Clock Output                    |  |  |
| SCK1      | 15                                                       | 12            | 22                                | 19            | I/O | ST               | MSSP1 SPI Serial Input/Output Clock       |  |  |
| SCK2      | 18                                                       | 15            | 14                                | 11            | I/O | ST               | MSSP2 SPI Serial Input/Output Clock       |  |  |
| SCL1      | 12                                                       | 9             | 17                                | 14            | I/O | l <sup>2</sup> C | MSSP1 I <sup>2</sup> C Clock Input/Output |  |  |
| SCL2      | 18                                                       | 15            | 7                                 | 4             | I/O | l <sup>2</sup> C | MSSP2 I <sup>2</sup> C Clock Input/Output |  |  |
| SCLKI     | 10                                                       | 7             | 12                                | 9             | Ι   | ST               | Digital Secondary Clock Input             |  |  |
| SDA1      | 13                                                       | 10            | 18                                | 15            | I/O | l <sup>2</sup> C | MSSP1 I <sup>2</sup> C Data Input/Output  |  |  |
| SDA2      | 2                                                        | 19            | 2                                 | 27            | I/O | l <sup>2</sup> C | MSSP2 I <sup>2</sup> C Data Input/Output  |  |  |
| SDI1      | 17                                                       | 14            | 21                                | 18            | I   | ST               | MSSP1 SPI Serial Data Input               |  |  |
| SDI2      | 2                                                        | 19            | 19                                | 16            | I   | ST               | MSSP2 SPI Serial Data Input               |  |  |
| SDO1      | 16                                                       | 13            | 24                                | 21            | 0   | —                | MSSP1 SPI Serial Data Output              |  |  |
| SDO2      | 3                                                        | 20            | 15                                | 12            | 0   | —                | MSSP2 SPI Serial Data Output              |  |  |
| Legend: T | TTL = TTL input buffer ST = Schmitt Trigger input buffer |               |                                   |               |     |                  |                                           |  |  |

#### **TABLE 1-4:** PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer  $I^2C = I^2C^{TM}/SMBus$  input buffer

## EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

## EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

| DISI | #5          | ; | Block all interrupts                  |
|------|-------------|---|---------------------------------------|
|      |             |   | for next 5 instructions               |
| MOV  | #0x55, W0   |   |                                       |
| MOV  | W0, NVMKEY  | ; | Write the 55 key                      |
| MOV  | #0xAA, W1   | ; |                                       |
| MOV  | W1, NVMKEY  | ; | Write the AA key                      |
| BSET | NVMCON, #WR | ; | Start the erase sequence              |
| NOP  |             | ; | 2 NOPs required after setting WR      |
| NOP  |             | ; |                                       |
| BTSC | NVMCON, #15 | ; | Wait for the sequence to be completed |
| BRA  | \$-2        | ; |                                       |
|      |             |   |                                       |

#### EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

| // C example using MPLAB C30 |                                                 |
|------------------------------|-------------------------------------------------|
| asm("DISI #5");              | // Block all interrupts for next 5 instructions |
| builtin_write_NVM();         | // Perform unlock sequence and set WR           |

| R/W-0         | R-0, HSC                       | U-0               | U-0            | U-0               | U-0              | U-0                | U-0    |  |  |
|---------------|--------------------------------|-------------------|----------------|-------------------|------------------|--------------------|--------|--|--|
| ALTIVT        | DISI                           | —                 | —              | —                 | —                | —                  | —      |  |  |
| bit 15        |                                |                   |                |                   |                  |                    | bit 8  |  |  |
|               |                                |                   |                |                   |                  |                    |        |  |  |
| U-0           | U-0                            | U-0               | U-0            | U-0               | R/W-0            | R/W-0              | R/W-0  |  |  |
| <u> </u>      |                                | <u> </u>          |                | <u> </u>          | INT2EP           | INT1EP             | INT0EP |  |  |
| bit 7         |                                |                   |                |                   |                  |                    | bit 0  |  |  |
|               |                                |                   |                |                   |                  |                    |        |  |  |
| Legend:       |                                | HSC = Hardw       | are Settable/C | learable bit      |                  |                    |        |  |  |
| R = Readable  | e bit                          | W = Writable      | bit            | U = Unimplem      | nented bit, read | d as '0'           |        |  |  |
| -n = Value at | POR                            | '1' = Bit is set  |                | '0' = Bit is clea | ared             | x = Bit is unknown |        |  |  |
|               |                                |                   |                |                   |                  |                    |        |  |  |
| bit 15        | ALTIVT: Enat                   | ole Alternate In  | terrupt Vector | Table bit         |                  |                    |        |  |  |
|               | 1 = Uses Alte                  | rnate Interrupt   | Vector Table   |                   |                  |                    |        |  |  |
|               | 0 = Uses stan                  | idard (default)   | vector table   |                   |                  |                    |        |  |  |
| bit 14        | DISI: DISI IN                  | struction Status  | s bit          |                   |                  |                    |        |  |  |
|               | 1 = DISI Inst0 = DISI inst     | ruction is active | e<br>ctive     |                   |                  |                    |        |  |  |
| bit 13-3      |                                | ted: Read as '    | 0'''           |                   |                  |                    |        |  |  |
| bit 2         | INT2EP: Exte                   | rnal Interrupt 2  | Edge Detect F  | Polarity Select b | oit              |                    |        |  |  |
|               | 1 = Interrupt on negative edge |                   |                |                   |                  |                    |        |  |  |
|               | 0 = Interrupt on positive edge |                   |                |                   |                  |                    |        |  |  |
| bit 1         | INT1EP: Exte                   | rnal Interrupt 1  | Edge Detect F  | Polarity Select b | bit              |                    |        |  |  |
|               | 1 = Interrupt o                | on negative ede   | ge             |                   |                  |                    |        |  |  |
|               | 0 = Interrupt o                | on positive edg   | e              |                   |                  |                    |        |  |  |
| bit 0         | INT0EP: Exte                   | rnal Interrupt 0  | Edge Detect F  | Polarity Select b | bit              |                    |        |  |  |
|               | 1 = Interrupt o                | on negative ede   | ge             |                   |                  |                    |        |  |  |
|               | 0 = interrupt c                | on positive edg   | е              |                   |                  |                    |        |  |  |

### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

## REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

| bit 7   | CLKLOCK: Clock Selection Lock Enable bit                                                 |
|---------|------------------------------------------------------------------------------------------|
|         | If FSCM is Enabled (FCKSM1 = <u>1</u> ):                                                 |
|         | 1 = Clock and PLL selections are locked                                                  |
|         | 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit |
|         | If FSCM is Disabled (FCKSM1 = 0):                                                        |
|         | Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  |
| bit 6   | Unimplemented: Read as '0'                                                               |
| bit 5   | LOCK: PLL Lock Status bit <sup>(2)</sup>                                                 |
|         | 1 = PLL module is in lock or the PLL module start-up timer is satisfied                  |
|         | 0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled      |
| bit 4   | Unimplemented: Read as '0'                                                               |
| bit 3   | CF: Clock Fail Detect bit                                                                |
|         | 1 = FSCM has detected a clock failure                                                    |
|         | 0 = No clock failure has been detected                                                   |
| bit 2   | SOSCDRV: Secondary Oscillator Drive Strength bit <sup>(3)</sup>                          |
|         | 1 = High-power SOSC circuit is selected                                                  |
|         | 0 = Low/high-power select is done via the SOSCSRC Configuration bit                      |
| bit 1   | SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit                                    |
|         | 1 = Enables secondary oscillator                                                         |
|         | 0 = Disables secondary oscillator                                                        |
| bit 0   | OSWEN: Oscillator Switch Enable bit                                                      |
|         | 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits   |
|         | 0 = Oscillator switch is complete                                                        |
| Note 1: | Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.         |

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
  - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

### 10.4 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted, synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

## 10.5 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing, with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMD bits are used.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode. This enhances power savings for extremely critical power applications.

## 11.3 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the PIC24F16KL402 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to VSS by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

**Note:** Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

### EXAMPLE 11-1: PORT WRITE/READ EXAMPLE (ASSEMBLY LANGUAGE)

| MOV  | #0xFF00, W0 | ; | Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs |
|------|-------------|---|-----------------------------------------------------------|
| MOV  | W0, TRISB   |   |                                                           |
| MOV  | #0x00FF, W0 | ; | Enable PORTB<15:8> digital input buffers                  |
| MOV  | W0, ANSB    |   |                                                           |
| NOP  |             | ; | Delay 1 cycle                                             |
| BTSS | PORTB, #13  | ; | Next Instruction                                          |
|      |             |   |                                                           |

#### EXAMPLE 11-2: PORT WRITE/READ EXAMPLE (C LANGUAGE)

| TRISB = 0xFF00;          | // Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs |
|--------------------------|--------------------------------------------------------------|
| ANSB = $0 \times 00 FF;$ | // Enable PORTB<15:8> digital input buffers                  |
| NOP();                   | // Delay 1 cycle                                             |
| if(PORTBbits.RB13 == 1)  | // execute following code if PORTB pin 13 is set.            |
| {                        |                                                              |
| }                        |                                                              |

| ΠU               | 11_0                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11_0                                                                   | 11_0                                                    | 11_0              | 11_0             | 11_0            | LL_Ω   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|-------------------|------------------|-----------------|--------|
| 0-0              | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-0                                                                    | 0-0                                                     | 0-0               | 0-0              | 0-0             | 0-0    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                         |                   |                  |                 | hit    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                         |                   |                  |                 | Dit    |
| R/W-0            | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W-0                                                                  | R/W-0                                                   | R/W-0             | R/W-0            | R/W-0           | R/W-0  |
| ECCPASE          | ECCPAS2                                                                                                                                                                                                                                                                                                                                                                                                                                           | ECCPAS1                                                                | ECCPAS0                                                 | PSSAC1            | PSSAC0           | PSSBD1          | PSSBD0 |
| oit 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                      | •                                                       |                   | •                | •               | bit    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                         |                   |                  |                 |        |
| .egend:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                         |                   |                  |                 |        |
| २ = Readab       | le bit                                                                                                                                                                                                                                                                                                                                                                                                                                            | W = Writable                                                           | bit                                                     | U = Unimplem      | nented bit, read | l as '0'        |        |
| n = Value a      | t POR                                                                                                                                                                                                                                                                                                                                                                                                                                             | '1' = Bit is set                                                       |                                                         | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |
| bit 7<br>bit 6-4 | <b>ECCPASE:</b> ECCP1 Auto-Shutdown Event Status bit<br>1 = A shutdown event has occurred; ECCP outputs are in a shutdown state<br>0 = ECCP outputs are operating<br><b>ECCPAS&lt;2:0&gt;:</b> ECCP1 Auto-Shutdown Source Select bits<br>111 = VIL on FLT0 pin, or either C1OUT or C2OUT is high<br>110 = VIL on FLT0 pin or C2OUT comparator output is high<br>101 = VIL on FLT0 pin or C1OUT comparator output is high<br>100 = VIL on FLT0 pin |                                                                        |                                                         |                   |                  |                 |        |
|                  | 011 = Either (<br>010 = C2OUT<br>001 = C1OUT<br>000 = Auto-sh                                                                                                                                                                                                                                                                                                                                                                                     | C1OUT or C2C<br>Γ comparator o<br>Γ comparator o<br>nutdown is disa    | utput is high<br>utput is high<br>utput is high<br>bled |                   |                  |                 |        |
| oit 3-2          | <b>PSSAC&lt;1:0&gt;:</b> P1A and P1C Pins Shutdown State Control bits<br>1x = P1A and P1C pins tri-state<br>01 = Drive pins, P1A and P1C, to '1'<br>00 = Drive pins, P1A and P1C, to '0'                                                                                                                                                                                                                                                          |                                                                        |                                                         |                   |                  |                 |        |
| oit 1-0          | <b>PSSBD&lt;1:0&gt;</b><br>1x = P1B and<br>01 = Drive pir<br>00 = Drive pir                                                                                                                                                                                                                                                                                                                                                                       | : P1B and P1D<br>I P1D pins tri-st<br>ns, P1B and P1<br>ns, P1B and P1 | Pins Shutdow<br>ate<br>D, to '1'<br>D, to '0'           | n State Control   | bits             |                 |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                         |                   |                  |                 |        |

**Note 1:** The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.

2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.

**3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

### REGISTER 17-10: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

| 11.0            | 11.0        | 11.0             | 11.0                         |                    |                  |                 |         |
|-----------------|-------------|------------------|------------------------------|--------------------|------------------|-----------------|---------|
| 0-0             | 0-0         | 0-0              | 0-0                          | K/VV-U             | K/VV-U           | K/VV-U          | K/VV-U  |
|                 | —           | —                | —                            | SDO2DIS()          | SCK2DIS()        | SDO1DIS         | SCK1DIS |
| bit 15          |             |                  |                              |                    |                  |                 | bit 8   |
|                 |             |                  |                              |                    |                  |                 |         |
| U-0             | U-0         | U-0              | U-0                          | U-0                | U-0              | U-0             | U-0     |
| —               | —           | —                | _                            | —                  |                  |                 | —       |
| bit 7           |             |                  |                              |                    |                  |                 | bit 0   |
|                 |             |                  |                              |                    |                  |                 |         |
| Legend:         |             |                  |                              |                    |                  |                 |         |
| R = Readable    | bit         | W = Writable I   | oit                          | U = Unimplem       | nented bit, read | as '0'          |         |
| -n = Value at I | POR         | '1' = Bit is set |                              | '0' = Bit is clea  | ared             | x = Bit is unkn | nown    |
|                 |             |                  |                              |                    |                  |                 |         |
| bit 15-12       | Unimplement | ted: Read as 'd  | )'                           |                    |                  |                 |         |
| bit 11          | SDO2DIS: MS | SSP2 SDO2 Pi     | n Disable bit <sup>(1)</sup> |                    |                  |                 |         |
|                 | 1 = The SPI | output data (SD  | O2) of MSSP2                 | 2 to the pin is di | isabled          |                 |         |
|                 | 0 = The SPI | output data (SE  | 002) of MSSP2                | 2 is output to the | e pin            |                 |         |
| bit 10          | SCK2DIS: MS | SSP2 SCK2 Pir    | n Disable bit <sup>(1)</sup> |                    |                  |                 |         |
|                 | 1 = The SPI | clock (SCK2) o   | f MSSP2 to the               | e pin is disabled  | ł                |                 |         |
|                 | 0 = The SPI | clock (SCK2) o   | f MSSP2 is out               | put to the pin     |                  |                 |         |
| bit 9           | SDO1DIS: MS | SSP1 SDO1 Pi     | n Disable bit                |                    |                  |                 |         |
|                 | 1 = The SPI | output data (SD  | O1) of MSSP1                 | I to the pin is di | isabled          |                 |         |
|                 | 0 = The SPI | output data (SD  | OO1) of MSSP1                | I is output to the | e pin            |                 |         |
| bit 8           | SCK1DIS: MS | SSP1 SCK1 Pir    | n Disable bit                |                    |                  |                 |         |
|                 | 1 = The SPI | clock (SCK1) o   | f MSSP1 to the               | e pin is disabled  | ł                |                 |         |
|                 | 0 = The SPI | clock (SCK1) o   | f MSSP1 is out               | put to the pin     |                  |                 |         |
| bit 7-0         | Unimplement | ted: Read as 'o  | )'                           |                    |                  |                 |         |

**Note 1:** These bits are implemented only on PIC24FXXKL40X/30X devices.

NOTES:

## 19.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 10-Bit High-Speed A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- · Up to 12 analog input pins
- External voltage reference input pins
- · Internal band gap reference input
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Two-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes

Depending on the particular device, PIC24F16KL402 family devices implement up to 12 analog input pins, designated AN0 through AN4 and AN9 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins. A block diagram of the A/D Converter is displayed in Figure 19-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
  - a) Configure port pins as analog inputs and/ or select band gap reference inputs (ANSA<3:0>, ANSB<15:12,4:0> and ANCFG<0>).
  - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
  - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select interrupt rate (AD1CON2<5:2>).
  - g) Turn on A/D module (AD1CON1<15>).
  - Configure A/D interrupt (if required):
  - a) Clear the AD1IF bit.

2.

b) Select A/D interrupt priority.

NOTES:

### REGISTER 23-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

| R/P-1 | R/P-1   | R/P-1   | U-0 | U-0 | R/P-0  | R/P-0  | R/P-1  |
|-------|---------|---------|-----|-----|--------|--------|--------|
| IESO  | LPRCSEL | SOSCSRC | —   | —   | FNOSC2 | FNOSC1 | FNOSC0 |
| bit 7 |         |         |     |     |        |        | bit 0  |

| Legend:           |                      |                             |                    |
|-------------------|----------------------|-----------------------------|--------------------|
| R = Readable bit  | P = Programmable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set     | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7   | IESO: Internal External Switchover bit                                                                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)</li> <li>0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)</li> </ul> |
| bit 6   | LPRCSEL: Internal LPRC Oscillator Power Select bit                                                                                                                                               |
|         | <ul><li>1 = High-Power/High-Accuracy mode</li><li>0 = Low-Power/Low-Accuracy mode</li></ul>                                                                                                      |
| bit 5   | SOSCSRC: Secondary Oscillator Clock Source Configuration bit                                                                                                                                     |
|         | <ul> <li>1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins</li> <li>0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin</li> </ul>             |
| bit 4-3 | Unimplemented: Read as '0'                                                                                                                                                                       |
| bit 2-0 | FNOSC<2:0>: Oscillator Selection bits                                                                                                                                                            |
|         | 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)                                                                                                                                             |
|         | 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)                                                                                                                               |
|         | 101 = Low-Power RC Oscillator (LPRC)                                                                                                                                                             |
|         | 100 = Secondary Oscillator (SOSC)                                                                                                                                                                |
|         | 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)                                                                                                                                        |
|         | 010 = Primary Oscillator (XT, HS, EC)                                                                                                                                                            |
|         | 001 = 8 MHz FRC Oscillator with Divide-by-N with PLL module (FRCDIV+PLL)                                                                                                                         |

000 = 8 MHz FRC Oscillator (FRC)

| U-0                | U-0 | U-0                       | U-0 | U-0                  | U-0                           | U-0                | U-0    |
|--------------------|-----|---------------------------|-----|----------------------|-------------------------------|--------------------|--------|
| _                  | —   | —                         | —   | —                    | —                             | —                  | —      |
| bit 23             |     |                           |     |                      |                               |                    | bit 16 |
|                    |     |                           |     |                      |                               |                    |        |
| U-0                | U-0 | U-0                       | U-0 | U-0                  | U-0                           | U-0                | U-0    |
|                    |     | —                         | —   | —                    | —                             | —                  | —      |
| bit 15             | •   |                           |     | •                    |                               | •                  | bit 8  |
|                    |     |                           |     |                      |                               |                    |        |
| U-0                | U-0 | U-0                       | U-0 | R                    | R                             | R                  | R      |
|                    |     | —                         | —   | REV3                 | REV2                          | REV1               | REV0   |
| bit 7              | •   |                           |     | •                    |                               | •                  | bit 0  |
|                    |     |                           |     |                      |                               |                    |        |
| Legend:            |     |                           |     |                      |                               |                    |        |
| R = Readable bit W |     | W = Writable bit U = Unir |     | U = Unimplem         | nimplemented bit, read as '0' |                    |        |
| -n = Value at POR  |     | '1' = Bit is set          |     | '0' = Bit is cleared |                               | x = Bit is unknown |        |
|                    |     |                           |     |                      |                               |                    |        |

## REGISTER 23-9: DEVREV: DEVICE REVISION REGISTER

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Revision Identifier bits

## TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

| Field           | Description                                                                          |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|
| #text           | Means literal defined by "text"                                                      |  |  |
| (text)          | Means "content of text"                                                              |  |  |
| [text]          | Means "the location addressed by text"                                               |  |  |
| { }             | Optional field or operation                                                          |  |  |
| <n:m></n:m>     | Register bit field                                                                   |  |  |
| .b              | Byte mode selection                                                                  |  |  |
| .d              | Double-Word mode selection                                                           |  |  |
| .S              | Shadow register select                                                               |  |  |
| .w              | Word mode selection (default)                                                        |  |  |
| bit4            | 4-bit bit selection field (used in word addressed instructions) $\in \{015\}$        |  |  |
| C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero                 |  |  |
| Expr            | Absolute address, label or expression (resolved by the linker)                       |  |  |
| f               | File register address ∈ {0000h1FFFh}                                                 |  |  |
| lit1            | 1-bit unsigned literal $\in \{0,1\}$                                                 |  |  |
| lit4            | 4-bit unsigned literal $\in \{015\}$                                                 |  |  |
| lit5            | 5-bit unsigned literal ∈ {031}                                                       |  |  |
| lit8            | 8-bit unsigned literal ∈ {0255}                                                      |  |  |
| lit10           | 10-bit unsigned literal $\in$ {0255} for Byte mode, {0:1023} for Word mode           |  |  |
| lit14           | 14-bit unsigned literal $\in \{016384\}$                                             |  |  |
| lit16           | 16-bit unsigned literal $\in \{065535\}$                                             |  |  |
| lit23           | 23-bit unsigned literal $\in$ {08388608}; LSB must be '0'                            |  |  |
| None            | Field does not require an entry, may be blank                                        |  |  |
| PC              | Program Counter                                                                      |  |  |
| Slit10          | 10-bit signed literal ∈ {-512511}                                                    |  |  |
| Slit16          | 16-bit signed literal ∈ {-3276832767}                                                |  |  |
| Slit6           | 6-bit signed literal ∈ {-1616}                                                       |  |  |
| Wb              | Base W register ∈ {W0W15}                                                            |  |  |
| Wd              | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }                    |  |  |
| Wdo             | Destination W register ∈<br>{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } |  |  |
| Wm,Wn           | Dividend, Divisor Working register pair (direct addressing)                          |  |  |
| Wn              | One of 16 Working registers ∈ {W0W15}                                                |  |  |
| Wnd             | One of 16 destination Working registers ∈ {W0W15}                                    |  |  |
| Wns             | One of 16 source Working registers ∈ {W0W15}                                         |  |  |
| WREG            | W0 (Working register used in File register instructions)                             |  |  |
| Ws              | Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }                         |  |  |
| Wso             | Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }         |  |  |





## TABLE 26-33: I<sup>2</sup>C<sup>™</sup> BUS START/STOP BITS REQUIREMENTS (MASTER MODE)

| Param.<br>No. | Symbol  | Characteristic  |              | Min              | Max | Units | Conditions                        |  |
|---------------|---------|-----------------|--------------|------------------|-----|-------|-----------------------------------|--|
| 90            | TSU:STA | Start Condition | 100 kHz mode | 2(Tosc)(BRG + 1) |     | ns    | Only relevant for                 |  |
|               |         | Setup Time      | 400 kHz mode | 2(Tosc)(BRG + 1) |     |       | Repeated Start condition          |  |
| 91            | THD:STA | Start Condition | 100 kHz mode | 2(Tosc)(BRG + 1) | _   | ns    | After this period, the            |  |
|               |         | Hold Time       | 400 kHz mode | 2(Tosc)(BRG + 1) | _   |       | first clock pulse is<br>generated |  |
| 92            | Tsu:sto | Stop Condition  | 100 kHz mode | 2(Tosc)(BRG + 1) | _   | ns    |                                   |  |
|               |         | Setup Time      | 400 kHz mode | 2(Tosc)(BRG + 1) | —   |       |                                   |  |
| 93            | THD:STO | Stop Condition  | 100 kHz mode | 2(Tosc)(BRG + 1) |     | ns    |                                   |  |
|               |         | Hold Time       | 400 kHz mode | 2(Tosc)(BRG + 1) | _   |       |                                   |  |

## 27.0 PACKAGING INFORMATION

## 27.1 Package Marking Information



| Legend: | XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Product-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (e3)<br>can be found on the outer packaging for this package. |
|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:   | In the e<br>will be<br>charac          | event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.                                                                                                                                                                                          |

## APPENDIX A: REVISION HISTORY

## **Revision A (September 2011)**

Original data sheet for the PIC24F16KL402 family of devices.

## Revision B (November 2011)

Updates DC Specifications in Tables 26-6 through 26-9 (all Typical and Maximum values).

Updates AC Specifications in Tables 26-7 through 26-30 (SPI Timing Requirements) with the addition of the FSCK specification.

Other minor typographic corrections throughout.

## **Revision C (October 2013)**

Adds +125°C Extended Temperature information.

Updates several packaging drawings in **Section 27.0 "Packaging Information"**. Other minor typographic corrections throughout.

## APPENDIX B: MIGRATING FROM PIC18/PIC24 TO PIC24F16KL402

The PIC24F16KL402 family combines traditional PIC18 peripherals with a faster PIC24 core to provide a low-cost, high-performance microcontroller with low-power consumption.

Code written for PIC18 devices can be migrated to the PIC24F16KL402 by using a C compiler that generates PIC24 machine level instructions. Assembly language code will need to be rewritten using PIC24 instructions. The PIC24 instruction set shares similarities to the PIC18 instruction set, which should ease porting of assembly code. Application code will require changes to support certain PIC24 peripherals.

Code written for PIC24 devices can be migrated to the PIC24F16KL402 without many code changes. Certain peripherals, however, will require application changes to support modules that were traditionally available only on PIC18 devices.

Refer to Table B-1 for a list of peripheral modules on the PIC24F16KL402 and where they originated from.

#### TABLE B-1: TABLE B-1: PIC24F16KL402 PERIPHERAL MODULE ORIGINATING ARCHITECTURE

| Peripheral Module               | PIC18 | PIC24 |
|---------------------------------|-------|-------|
| ECCP/CCP                        | Х     |       |
| MSSP (I <sup>2</sup> C™/SPI)    | Х     | —     |
| Timer2/4 (8-bit)                | Х     | —     |
| Timer3 (16-bit)                 | Х     | —     |
| Timer1 (16-bit)                 | —     | Х     |
| 10-Bit A/D Converter            | —     | Х     |
| Comparator                      | —     | Х     |
| Comparator Voltage<br>Reference | —     | х     |
| UART                            | —     | Х     |
| HLVD                            | —     | Х     |

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Microchip Traden<br>Architecture —<br>Flash Memory Fa<br>Program Memory<br>Product Group –<br>Pin Count —<br>Tape and Reel Fl<br>Temperature Ran<br>Package —<br>Pattern — | PIC 24 F 16 KL4 02 T - 1 / PT - XXX<br>markamily                                                                                          | <ul> <li>Examples:</li> <li>a) PIC24F16KL402-I/ML: General Purpose,<br/>16-Kbyte Program Memory, 28-Pin, Industrial<br/>Temperature, QFN Package</li> <li>b) PIC24F04KL101T-I/SS: General Purpose,<br/>4-Kbyte Program Memory, 20-Pin, Industrial<br/>Temperature, SSOP Package, Tape-and-Reel</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Architecture                                                                                                                                                               | 24 = 16-bit modified Harvard without DSP                                                                                                  |                                                                                                                                                                                                                                                                                                           |
| Flash Memory Family                                                                                                                                                        | F = Standard voltage range Flash program memory                                                                                           |                                                                                                                                                                                                                                                                                                           |
| Product Group                                                                                                                                                              | KL4 = General purpose microcontrollers<br>KL3<br>KL2<br>KL1                                                                               |                                                                                                                                                                                                                                                                                                           |
| Pin Count                                                                                                                                                                  | 00 = 14-pin<br>01 = 20-pin<br>02 = 28-pin                                                                                                 |                                                                                                                                                                                                                                                                                                           |
| Temperature Range                                                                                                                                                          | I = -40°C to +85°C (Industrial)<br>E = -40°C to +125°C (Extended)                                                                         |                                                                                                                                                                                                                                                                                                           |
| Package                                                                                                                                                                    | $\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$ |                                                                                                                                                                                                                                                                                                           |
| Pattern                                                                                                                                                                    | Three-digit QTP, SQTP, Code or Special Requirements<br>(blank otherwise)<br>ES = Engineering Sample                                       |                                                                                                                                                                                                                                                                                                           |