

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8КВ (2.75К х 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl302-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Communications: The PIC24F16KL402 family incorporates multiple serial communication peripherals to handle a range of application requirements. The MSSP module implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24F16KL402 family include a 10-bit A/D Converter module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds.

The comparator modules are configurable for a wide range of operations and can be used as either a single or double comparator module.

1.3 Details on Individual Family Members

Devices in the PIC24F16KL402 family are available in 14-pin, 20-pin and 28-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The PIC24F16KL402 family may be thought of as four different device groups, each offering a slightly different set of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The presence and size of data EEPROM
- The presence of an A/D Converter and the number of external analog channels available
- · The number of analog comparators
- The number of general purpose timers
- The number and type of CCP modules (i.e., CCP vs. ECCP)
- The number of serial communications modules (both MSSPs and UARTs)

The general differences between the different sub-families are shown in Table 1-1. The feature sets for specific devices are summarized in Table 1-2 and Table 1-3.

A list of the individual pin features available on the PIC24F16KL402 family devices, sorted by function, is provided in Table 1-4 (for PIC24FXXKL40X/30X devices) and Table 1-5 (for PIC24FXXKL20X/10X devices). Note that these tables show the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Device Group	Program Memory (bytes)	Data EEPROM (bytes)	Timers (8/16-bit)	CCP and ECCP	Serial (MSSP/ UART)	A/D (channels)	Comparators
PIC24FXXKL10X	4K	_	1/2	2/0	1/1	_	1
PIC24FXXKL20X	8K	—	1/2	2/0	1/1	7 or 12	1
PIC24FXXKL30X	8K	256	2/2	2/1	2/2	—	2
PIC24FXXKL40X	8K or 16K	512	2/2	2/1	2/2	12	2

TABLE 1-1:FEATURE COMPARISON FOR PIC24F16KL402 FAMILY GROUPS

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
CN0	10	7	12	9	I	ST	Interrupt-on-Change Inputs
CN1	9	6	11	8	I	ST	
CN2	2	19	2	27	I	ST	
CN3	3	20	3	28	I	ST	
CN4	4	1	4	1	Ι	ST	
CN5	5	2	5	2	I	ST	
CN6	6	3	6	3	I	ST	
CN7	_	_	7	4	I	ST	
CN8	14	11	20	17	I	ST	
CN9	—	—	19	16	I	ST]
CN11	18	15	26	23	I	ST	
CN12	17	14	25	22	I	ST	
CN13	16	13	24	21	I	ST	
CN14	15	12	23	20	I	ST	
CN15	_	_	22	19	I	ST	
CN16	—	_	21	18	I	ST	
CN21	13	10	18	15	I	ST	
CN22	12	9	17	14	I	ST	
CN23	11	8	16	13	I	ST	
CN24	_	_	15	12	I	ST	
CN27	_	_	14	11	I	ST	
CN29	8	5	10	7	I	ST	
CN30	7	4	9	6	I	ST	
CVREF	17	14	25	22	I	ANA	Comparator Voltage Reference Output
CVREF+	2	19	2	27	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	20	3	28	I	ANA	Comparator Reference Negative Input Voltage
FLT0	17	14	25	22	I	ST	ECCP1 Enhanced PWM Fault Input
HLVDIN	15	12	23	20	I	ST	High/Low-Voltage Detect Input
INT0	11	8	16	13	I	ST	Interrupt 0 Input
INT1	17	14	25	22	I	ST	Interrupt 1 Input
INT2	14	11	20	17	I	ST	Interrupt 2 Input
MCLR	1	18	1	26	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	7	4	9	6	I	ANA	Main Oscillator Input
OSCO	8	5	10	7	0	ANA	Main Oscillator Output
P1A	14	11	20	17	0	—	ECCP1 Output A (Enhanced PWM Mode)
P1B	5	2	21	18	0	_	ECCP1 Output B (Enhanced PWM Mode)
P1C	4	1	22	19	0	_	ECCP1 Output C (Enhanced PWM Mode)
P1D	16	13	18	15	0	_	ECCP1 Output D (Enhanced PWM Mode)

TABLE 1-4:	PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS ((CONTINUED)

Legend:

TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Bu	uffer 0								xxxx
ADC1BUF1	0302								A/D Bu	uffer 1								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_		ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	OFFCAL	_	CSCNA		_	r		SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS	0000
AD1CON3	0324	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0			ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—		—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_	_	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12(1)	CSSL11 ⁽¹⁾	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	_	CSSL4 ⁽¹⁾	CSSL3 ⁽¹⁾	CSSL2 ⁽¹⁾	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0', r = reserved bit. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

TABLE 4-14: ANALOG SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANCFG	04DE	_	—	—	—	_	_		_	_	_			_	—		VBGEN	0000
ANSA	04E0	-	_	-	—	_	-	_	_	_	_	_	_	ANSA3	ANSA2	ANSA1	ANSA0	000F
ANSB	04E2	ANSB15	ANSB14	ANSB13	ANSB12 ⁽¹⁾	—	_	_	_	—	—	_	ANSB4	ANSB3(2)	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	F01F ⁽³⁾

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'

3: Reset value for 28-pin devices is shown.

TABLE 4-15: COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	_		_	_	C2EVT ⁽¹⁾	C1EVT	—	—	_		_	_	C2OUT	C1OUT	xxxx
CVRCON	0632	_	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	CLPWR	—	_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	—	_	CCH1	CCH0	xxxx
CM2CON ⁽¹⁾	0636	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented in PIC24FXXKL10X/20X devices; read as '0'.

PIC24F16KL402 FAMILY

REGISTER 8-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	U2ERIP2 ⁽¹⁾	U2ERIP1 ⁽¹⁾	U2ERIP0 ⁽¹⁾
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U1ERIP2 ⁽¹⁾	U1ERIP1 ⁽¹⁾	U1ERIP0 ⁽¹⁾			—	—
bit 7							bit 0

Legend:				
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-11	-	nented: Read as '0'		
bit 10-8	U2ERIP<2	2:0>: UART2 Error Interrupt	t Priority bits ⁽¹⁾	
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)	
	•			
	•			
	•			
		errupt is Priority 1		
		errupt source is disabled		
bit 7	-	nented: Read as '0'		
bit 6-4	U1ERIP<	2:0>: UART1 Error Interrupt	t Priority bits ⁽¹⁾	
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)	
	•			
	•			
	•			
		errupt is Priority 1		
		errupt source is disabled		
bit 3-0	Unimplen	nented: Read as '0'		

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

PIC24F16KL402 FAMILY

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	REGISTER	9-4: REFU	CON: REFER	KENCE USC	ILLATOR CC	INTROL REC	515TER	
bit 15 bit 5 U-0 U-0 U-0 U-0 U-0 U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
	bit 15							bit 8
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 0 = Reference oscillator output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep 0 = Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock(¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 0 = System clock is used as the base clock (¹¹) 111 = Base clock value divid	U-0	0-0	U-0	U-0	0-0	0-0	0-0	U-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep 0 = Reference oscillator is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 0 = System clock is used as the base clock (*1) 111 = Base clock value divided by 32,768 1100 = Base clock value divided by 4,966 1101 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1000 = Base clock value divided by 1,024 1001 = Base clock value divided by 128 0111 = Base clock value di			_		_	_	_	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 0' Bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference Oscillator Source Select bit 1 = Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock (*1) 0 = System clock is used as the base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 10: 100 = Base clock value divided by 10: 100 = Base clock value divided by 2,048 1011 = Base clock value divided by 20: 100 = Base clock value divided by 256 111 = Base clock value divided by 22: 0100 = Base clock value divided by 10: 011 = Base clock value divided by 10: 011 = Base clock value divided by 12: 0100 = Base clock value divided by 10: 011 = Base clock value divided by 22: 0100 = Base clock value divided by 22: 0100 = Base clock value divided by 16:								DILU
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' 1 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference Oscillator Source Select bit 1 = Reference oscillator is used as the base clock '1) 0 = System clock is used as the base clock '10 0 = System clock value divided by 32,768 1111 = Base clock value divided by 4,096 1111 = Base clock value divided by 10,384 100 = Base clock value divided by 1,024 100 = Base clock value divided by 1,024 100 = Base clock value divided by 128 010 = Base clock value divided by 128 010 = Base clock value divided by 128 010 = Base clock value divided by 16 011 = Base clock value divided by 128 010 = Base clock value divided by 128 010 = Base clock value divided by 16 011 = Base clock value divided by 16 011 = Base clock value divided by 128 010 = Base clock value divided by 16 011 = Base clock value divided by 18 010 = Base clock value divided by 18 010 = Base clock value divided by 16 011 = Base clock value divided by 18 010 = Base clock value divided by 18 010	Legend:							
bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 22,768 1110 = Base clock value divided by 4,192 1100 = Base clock value divided by 4,192 1100 = Base clock value divided by 1,192 1100 = Base clock value divided by 1,024 1011 = Base clock value divided by 1,28 0110 = Base clock value divided by 2,208 0110 = Base clock value divided by 1,28 0110 = Base clock value divided by 2,208 0110 = Base clock	R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator is disabled in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock⁽¹⁾ 0 = System clock is used as the base clock (1) 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 111 = Base clock value divided by 32,768 1110 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 28 010 = Base clock value divided by 28 010 = Base clock value divided by 28 010 = Base clock value divided by 40 011 = Base clock value divided by 40 011 = Base clock value divided by 28 010 = Base clock value divided by 40 011 = Base clock value divided by 40 011 = Base clock value divided by 20 010 = Base clock value divided by 28 010 = Base clock value divided by 26 011 = Base clock value divided by 40 011 = Base clock value divided by 28 010 = Base clock value divided by 28 010 = Base clock value divided by 2 011 = Base clock value divided by 2 011 = Base clock	-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 111 = Base clock value divided by 32,768 110 = Base clock value divided by 16,384 100 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 128 110 = Base clock value divided by 128 111 = Base clock value divided by 32 100 = Base clock value divided by 32 100 = Base clock value divided by 32 100 = Base clock value divided by 32 110 = Base clock value divided by 4 101 = Base clock value divided by 128 111 = Base clock value divided by 32 110 = Base clock value divided by 4 111 = Base clock value divided by 4		1 = Reference 0 = Reference	e oscillator is er e oscillator is di	nabled on REF sabled				
1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1100 = Base clock value divided by 16,384 1101 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 128 0110 = Base clock value divided by 128 0110 = Base clock value divided by 32 0101 = Base clock value divided by 32 0100 = Base clock value divided by 32 0101 = Base clock value divided by 40 0111 = Base clock value divided by 16 0111 = Base clock v	bit 13	-			o in Sleep bit			
bit 12 ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 1000 = Base clock value divided by 44 011 = Base clock value divided by 32 0100 = Base clock value divided by 4 011 = Base clock value divided by 4 010 = Base clock value divided by 266 0111 = Base clock value divided by 4 0101 = Base clock value divided by 4 0101 = Base clock value divided by 4 0101 = Base clock value divided by 32 0100 = Base clock value divided by 4 001 = Base clock value divided by 2 000 = Base clock value divided by 2				-	-			
1 = Primary oscillator is used as the base clock ⁽¹⁾ 0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV-3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 4,096 1011 = Base clock value divided by 1,024 1000 = Base clock value divided by 512 1000 = Base clock value divided by 128 0110 = Base clock value divided by 256 0111 = Base clock value divided by 4 000 = Base clock value divided by 4 010 = Base cloc		0 = Reference	e oscillator is di	sabled in Slee	p			
0 = System clock is used as the base clock; the base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1100 = Base clock value divided by 16,384 1101 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 44 0101 = Base clock value divided by 42 0101 = Base clock value divided by 42 0101 = Base clock value divided by 42 0101 = Base clock value divided by 4 0	bit 12							
bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 32 0101 = Base clock value divided by 32 0101 = Base clock value divided by 4 001 = Base clock value divided by 2 0000 = Base clock value divided by 2						ck reflects anv	clock switching	of the device
<pre>1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1001 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 64 0101 = Base clock value divided by 32 0100 = Base clock value divided by 16 0011 = Base clock value divided by 4 0001 = Base clock value divided by 2 0000 = Base clock value divided by 4</pre>	bit 11-8	-						
		1110 = Base 1101 = Base 1001 = Base 1010 = Base 1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base 0011 = Base 0010 = Base 0010 = Base 0010 = Base	clock value divi clock value divi	ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4				
	bit 7-0)'				

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.1.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.2 Configuring Analog Port Pins

The use of the ANSx and TRISx registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANS register for each port (ANSA and ANSB, Register 11-1 and Register 11-2). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality. If a particular pin does not have an analog function, that bit is unimplemented.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
	_						_							
oit 15							bit							
R/W-0	R/W-0					R/W-0	R/W-0							
-		R/W-0	R/W-0	R/W-0	R/W-0									
PM1	PM0	DC1B1	DC1B0	CCP1M3 ⁽²⁾	CCP1M2 ⁽²⁾	CCP1M1 ⁽²⁾	CCP1M0 ⁽²⁾							
oit 7							bit							
Legend:														
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown							
oit 15-8	Unimplemen	ted: Read as '	י'											
bit 7-6	-	hanced PWM (ration bits										
		2> = 00, 01, 10												
		ssigned as a ca		ompare output;	P1B, P1C and	P1D are assign	ed as port pir							
	<u>If CCP1M<3:2</u>	•				0								
		ge output reve	rse: P1B is mo	dulated; P1C is	active; P1A ar	nd P1D are ina	ctive							
		dge output: P	1A, P1B are	modulated wit	h dead-band	control; P1C	and P1D a							
		d as port pins												
		ge output forwa utput: P1A, P1E				Pic are inactive	9							
L:L T 4	-	-												
bit 5-4	DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCP1 Module bits Capture and Compare modes:													
	Unused.	compare mode	<u>s</u> :											
	PWM mode:													
		e the two Leas	t Significant bi	ts (bit 1 and bit	0) of the 10-b	it PWM duty cy	cle. The eid							
		ant bits (DC1B<					, e. e. e. e. g							
bit 3-0	-	ECCP1 Modu	-											
		mode: P1A an			nd P1D are acti	ve-low								
		mode: P1A an												
		l mode: P1A an												
		I mode: P1A an		0		0								
		pare mode: Spe												
		oare mode: Ge ts I/O state)	nerates softwar	re interrupt on c	compare match	(CCPTIF DIUS	set, CCPT p							
		pare mode: Initia	alizes CCP1 pi	n hiah: on comp	pare match. for	ces CCP1 pin lo	w (CCP1IF b							
	is set			J , F F	,	P	\							
	1000 = Com bit is	pare mode: Init	ializes CCP1 p	oin low; on com	pare match, fo	rces CCP1 pin	high (CCP1							
		ure mode: Ever	y 16th rising e	dge										
	0110 = Captu	ure mode: Ever	y 4th rising ed											
	•	ure mode: Ever												
		ure mode: Ever	y falling edge											
	0011 = Rese	rved bare mode: Tog	ales output on	match (CCD1)	E bit is cot)									
	0010 = Comp 0001 = Rese		gies output on											
		ure/Compare/P	WM is disabled	d (resets CCP1	module)									
Note 1:	This register is im	plemented only	y on PIC24FX)	(KL40X/30X de	evices. For all o	other devices, C	CCP1CON is							
	configured as Reg					,								
-	000414 -0-0- 1													

2: CCP1M<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCP1 match.

REGISTER 17-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—		—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Read		W = Writable bi	t	-	ented bit, read		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	-	ted: Read as '0'					
bit 7		e Collision Detect	bit				
	$\frac{\text{In Master Tra}}{1 = A \text{ write}}$	i <u>nsmit mode:</u> to the SSPxBUF	register wa	s attempted wh	ile the l^2 C co	nditions were r	not valid for a
		sion to be started					
	0 = No collis	ion					
	In Slave Tran					.,	
	1 = The SSP 0 = No collisi	xBUF register is w ion	ritten while it is	s still transmitting	the previous wo	rd (must be clea	red in software)
		ode (Master or SI	ave modes):				
	This is a "don						
bit 6	SSPOV: MSS	SPx Receive Over	flow Indicator	bit			
	In Receive m						
	1 = A byte is 0 = No overf	received while the low	SSPxBUF reg	ister is still holding	g the previous by	/te (must be clea	ired in software)
	In Transmit m						
		n't care" bit in Trar	smit mode.				
bit 5	SSPEN: MSS	SPx Enable bit ⁽¹⁾					
		the serial port and the serial port and				serial port pins	
bit 4		Release Control bi	-	lese pills as i/O	port pins		
DIL 4	In Slave mod		ι				
	1 = Releases						
	0 = Holds clo	ck low (clock strei	ch); used to e	ensure data setu	ıp time		
	In Master mo						
	Unused in thi		(2)				
bit 3-0		MSSPx Mode Se					
		lave mode, 10-bit lave mode, 7-bit a					
		irmware Controlle				labica	
	1000 = I ² C N	laster mode, Cloc	k = Fosc/(2 *		1)) ⁽³⁾		
		lave mode, 10-bit lave mode, 7-bit a					
	$\mathbf{U} \mathbf{T} \mathbf{U} = \mathbf{L} \mathbf{C} \mathbf{S}$	nave moue, 7-bit a	auuress				
Note 1:		d, the SDAx and S	-	-	-		
2:	Bit combination	ons not specifically	y listed here a	are either reserv	ed or implemen	ted in SPI mode	e only.

SSPxADD values of 0, 1 or 2 are not supported when the Baud Rate Generator is used with I²C mode.

REGISTER 17-7: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C[™] MODE)

bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	cknowledge sec ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	set on the 8 th ing edge of the	x = Bit is unkr falling edge of f							
R-0ACKTIM(2)bit 7Legend:R = Readable bit-n = Value at PObit 15-8Uibit 7Aubit 6PCbit 5SCbit 5SCbit 4Bi $\frac{12}{1}$ bit 3SIbit 3SIbit 2SI	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	R/W-0 DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
bit 7 Legend: R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 A(bit 6 P(1 0 bit 5 S(1 0 bit 5 S(1 0 bit 4 B(1 0 bit 3 S(0 bit 3 S(0 bit 2 S(1 0 0 bit 2 S(1 0 0 0 0 0 0 0 0 0 0 0 0 0	R CKTIM: Ack Indicates Not an Act Indicates Not an Act CIE : Stop C Enables in Stop dete CIE : Start C Enables in Start dete DEN: Buffer <u>C Master m</u> is bit is igno	W = Writable '1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge set ondition Interru- nterrupt on det- ction interrupts condition Interru- nterrupt on det- ction interrupts r Overwrite Ena- tode:	bit e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	nented bit, read ared set on the 8 th ing edge of the	d as '0' x = Bit is unkr falling edge of f	nown						
Legend: R = Readable bit rn = Value at PO bit 15-8 Ui bit 7 AC bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare opt Enable bit ection of a Sto are disabled ⁽¹⁾ opt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f	nown						
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare opt Enable bit ection of a Sto are disabled ⁽¹⁾ opt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f							
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare opt Enable bit ection of a Sto are disabled ⁽¹⁾ opt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f							
bit 15-8 Ui bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 5 S bit 5 S bit 4 B $\frac{ 2 }{1}$ bit 3 SI bit 2 SI bit 2 SI	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare opt Enable bit ection of a Sto are disabled ⁽¹⁾ opt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr falling edge of f							
bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 6 P bit 5 S bit 4 B bit 4 B $ ^2($ 1 bit 3 SI 0 bit 2 SI 1	nimplemen CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete OEN: Buffer <u>C Master m</u> nis bit is igno	Ated: Read as the knowledge Time the I ² C bus is in the chowledge set to the chowledge set	0' e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	edge sequence, d on the 9 th risi p condition l) tart or Restart o	set on the 8 th ing edge of the	falling edge of f							
bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> nis bit is igno	knowledge Tim the I ² C bus is i cknowledge sec ondition Interru nterrupt on det condition Interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	d on the 9 th risi p condition) tart or Restart o	ing edge of the		the SCLx cloc						
bit 6 PC bit 5 SC bit 5 SC bit 4 BC $\frac{1}{0}$ bit 4 BC $\frac{1}{2}$ Th $\frac{1}{2}$ 1 0 bit 3 SC 0 bit 3 SC 1 1 1 1 1 1 1 1 1 1 1 1 1	CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ction interrupts r Overwrite Ena	ipt Enable bit ection of a Sto are disabled ⁽¹ ipt Enable bit ection of the S are disabled ⁽¹	p condition) tart or Restart c									
bit 5 SC 1 0 bit 4 BC $\frac{1^2}{1^2}$ $\frac{1^2}{1^2}$ bit 3 SC 1 0 bit 3 SC 1 0 1 0 1 1 1 1 1 1 1 1	CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> his bit is igno	condition Interrunt nterrupt on det ection interrupts r Overwrite Ena	ipt Enable bit ection of the S are disabled ⁽¹	tart or Restart o	conditions								
bit 4 $\begin{bmatrix} 1^2 \\ 1^2 \\ 1 \end{bmatrix}$ bit 3 SI bit 2 SI	= Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ection interrupts r Overwrite Ena lode:	are disabled ⁽¹		conditions								
bit 3 SI bit 2 SI 1	<u>C Master m</u> nis bit is igno	ode:	able bit										
Th I2 1 0 bit 3 SI 0 1 0 0 bit 2 SI 1 1	nis bit is igno			BOEN: Buffer Overwrite Enable bit									
bit 3 SI 0 1 0 1 0 1 0 1		ored.											
bit 3 SI 1 0 bit 2 SI 1	of the SS		the BF bit = 0		eceived addres	s/data byte, igr	noring the stat						
0 bit 2 SI	DAHT: SDA	x Hold Time Se	election bit										
1				after the falling									
	BCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (Sla	ve mode only)								
0		slave bus collis s collision interr		led									
bit 1 AI	HEN: Addre	ess Hold Enable	e bit (Slave mo	ode only)									
	SSPxCO		l be cleared an	x for a matchin nd SCLx will be		ress byte; the	CKP bit of th						
		Hold Enable bit		only)									
1	 Following of the SS 	g the 8th falling	-	for a received	data byte; slave	e hardware clea	ars the CKP b						
Note 1: This b enable	= Data hold	SPxCON1 regis ding is disabled											

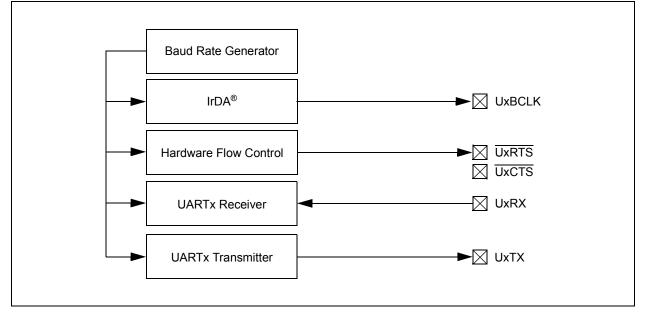
2: The ACKTIM status bit is active only when the AHEN bit or DHEN bit is set.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission Through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- Two-Level Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · Two-Level Deep, FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM

PIC24F16KL402 FAMILY

NOTES:

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 26-1: THERMAL OPERATING CONDITIONS

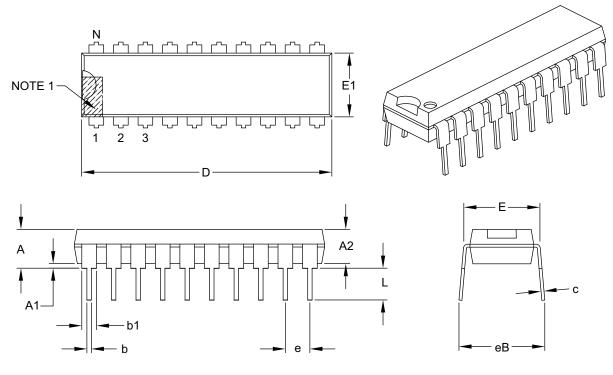
Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θ.	IA	W

TABLE 26-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	-	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 14-Pin PDIP	θJA	62.4	-	°C/W	1
Package Thermal Resistance, 14-Pin TSSOP	θJA	108	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS


DC CH	ARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Para m No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
	Vbg	Band Gap Voltage Reference	1.14	1.2	1.26	V	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

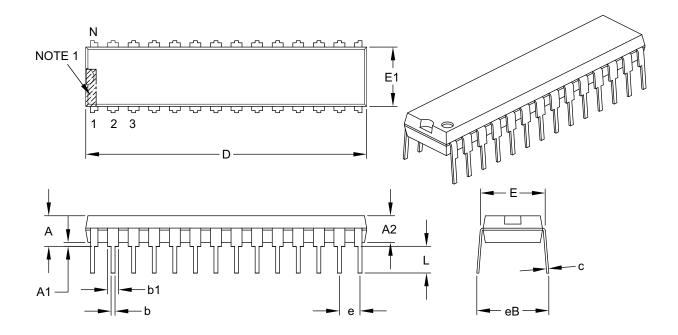
	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

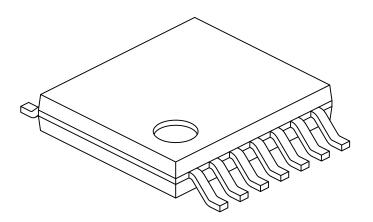
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

 Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Number of Pins	N		14	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

PIC24F16KL402 FAMILY

NOTES:

DC Characteristics	
BOR Trip Points	
Comparator	
Comparator Voltage Reference	
Data EEPROM Memory	
High/Low-Voltage Detect	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Device Features for PIC24F16KL20X/10X	
Devices (Summary)	
Device Features for PIC24F16KL40X/30X	
Devices (Summary)	11

Е

Electrical Characteristics	
Absolute Maximum Ratings	199
Thermal Operating Conditions	201
Thermal Packaging Characteristics	201
V/F Graph, Extended2	200
V/F Graph, Industrial	200
Enhanced CCP	125
Equations	
A/D Conversion Clock Period	164
UARTx Baud Rate with BRGH = 0	150
UARTx Baud Rate with BRGH = 1	150
Errata	7
Examples	
Baud Rate Error Calculation (BRGH = 0)	150

F

Flash Program Memory	
Control Registers	
Enhanced ICSP Operation	
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	

G

Inter-Integrated Circuit. See I ² C.	
Internet Address	257
Interrupt Sources	
TMR3 Overflow	119
TMR4 to PR4 Match (PWM)	123
Interrupts	
Alternate Interrupt Vector Table (AIVT)	65
Control and Status Registers	68
Implemented Vectors	67
Interrupt Vector Table (IVT)	65
Reset Sequence	65
Setup Procedures	
Trap Vectors	67
Vector Table	66

Μ

Master Synchronous Serial Port (MSSP) 13	
I/O Pin Configuration for SPI1	35
Microchip Internet Web Site	57
MPLAB Assembler, Linker, Librarian	88
MPLAB ICD 3 In-Circuit Debugger 18	89
MPLAB PM3 Device Programmer18	89
MPLAB REAL ICE In-Circuit Emulator System 18	89
MPLAB X Integrated Development	
Environment Software1	87
MPLAB X SIM Software Simulator 18	89
MPLIB Object Librarian 18	88
MPLINK Object Linker 18	88

Ν

Near Data	Space	34

0

101
101
102
119

Ρ

Packaging	
Details	228
Marking	225
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Descriptions	
PIC24F16KL20X/10X Devices	18
PIC24F16KL40X/30X Devices	14
Power-Saving	109
Power-Saving Features	105
Clock Frequency, Clock Switching	105
Coincident Interrupts	106
Instruction-Based Modes	105
Idle	106
Sleep	106
Selective Peripheral Control	109
Ultra Low-Power Wake-up (ULPWU)	107
Product Identification System	259
Program and Data Memory	
Access Using Table Instructions	45
Program Space Visibility	46
Program and Data Memory Spaces	
Addressing	43
Interfacing	43

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support