

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl302-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	umber							
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description			
PGEC1	5	2	5	2	I/O	ST	ICSP™ Clock 1			
PCED1	4	1	4	1	I/O	ST	ICSP Data 1			
PGEC2	2	19	22	19	I/O	ST	ICSP Clock 2			
PGED2	3	20	21	18	I/O	ST	ICSP Data 2			
PGEC3	10	7	15	12	I/O	ST	ICSP Clock 3			
PGED3	9	6	14	11	I/O	ST	ICSP Data 3			
RA0	2	19	2	27	I/O	ST	PORTA Pins			
RA1	3	20	3	28	I/O	ST				
RA2	7	4	9	6	I/O	ST				
RA3	8	5	10	7	I/O	ST				
RA4	10	7	12	9	I/O	ST				
RA5	1	18	1	26	- I	ST				
RA6	14	11	20	17	I/O	ST				
RA7	—	—	19	16	I/O	ST				
RB0	4	1	4	1	I/O	ST	PORTB Pins			
RB1	5	2	5	2	I/O	ST				
RB2	6	3	6	3	I/O	ST				
RB3	—	_	7	4	I/O	ST				
RB4	9	6	11	8	I/O	ST				
RB5		—	14	11	I/O	ST				
RB6		—	15	12	I/O	ST				
RB7	11	8	16	13	I/O	ST				
RB8	12	9	17	14	I/O	ST				
RB9	13	10	18	15	I/O	ST				
RB10	_	_	21	18	I/O	ST				
RB11		—	22	19	I/O	ST				
RB12	15	12	23	20	I/O	ST				
RB13	16	13	24	21	I/O	ST				
RB14	17	14	25	22	I/O	ST				
RB15	18	15	26	23	I/O	ST				
REFO	18	15	26	23	0	—	Reference Clock Output			
SCK1	15	12	22	19	I/O	ST	MSSP1 SPI Serial Input/Output Clock			
SCK2	18	15	14	11	I/O	ST	MSSP2 SPI Serial Input/Output Clock			
SCL1	12	9	17	14	I/O	l ² C	MSSP1 I ² C Clock Input/Output			
SCL2	18	15	7	4	I/O	l ² C	MSSP2 I ² C Clock Input/Output			
SCLKI	10	7	12	9	I	ST	Digital Secondary Clock Input			
SDA1	13	10	18	15	I/O	l ² C	MSSP1 I ² C Data Input/Output			
SDA2	2	19	2	27	I/O	l ² C	MSSP2 I ² C Data Input/Output			
SDI1	17	14	21	18	I	ST	MSSP1 SPI Serial Data Input			
SDI2	2	19	19	16	I	ST	MSSP2 SPI Serial Data Input			
SDO1	16	13	24	21	0	—	MSSP1 SPI Serial Data Output			
SDO2	3	20	15	12	0	—	MSSP2 SPI Serial Data Output			
Legend: T	I: TTL = TTL input buffer ST = Schmitt Trigger input buffer									

TABLE 1-4: PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

EXAMPLE 6-2: SINGLE-WORD ERASE

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

int __attribute__ ((space(eedata))) eeData = 0x1234; // Global variable located in EEPROM unsigned int offset; // Set up NVMCON to erase one word of data EEPROM NVMCON = 0×4058 ; // Set up a pointer to the EEPROM location to be erased TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer offset = __builtin_tbloffset(&eeData); // Initizlize lower word of address __builtin_tblwtl(offset, 0); // Write EEPROM data to write latch asm volatile ("disi #5"); // Disable Interrupts For 5 Instructions __builtin_write_NVM(); // Issue Unlock Sequence & Start Write Cycle // Optional: Poll WR bit to wait for while(NVMCONbits.WR=1); // write sequence to complete

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-4	Unimplemen	ted: Read as '0)'				
bit 3	IPL3: CPU In	terrupt Priority	Level Status bit	(2)			
	1 = CPU Inter	rupt Priority Le	vel is greater th	nan 7			
	0 = CPU Inter	rupt Priority Le	vel is 7 or less				
bit 1-0	Unimplemen	ted: Read as 'o)'				
Note 1:	See Register 3-2	for the descript	ion of this bit. v	which is not dee	dicated to inter	rupt control fun	ctions.
2:	The IPL3 bit is co	ncatenated with	the IPL<2:0>	bits (SR<7:5>)	to form the CF	PU Interrupt Pri	ority Level.

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-21: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0				
bit 15			1			1	bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	BCL1IP2	BCL1IP1	BCL1IP0	—	SSP1IP2	SSP1IP1	SSP1IP0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at F	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nown				
bit 1E	Unimploment	had. Dood oo '	, '								
		eu: Reau as	, otification Inter	rupt Drigrity bit	2						
DIL 14-12		iput Change N	bigbest priority	interrunt)	5						
	•		nightest phoney	interrupt)							
	•										
	•										
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled										
bit 11	Unimplemented: Read as '0'										
bit 10-8	CMIP<2:0>: (Comparator Inte	- errupt Priority b	oits							
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)							
	•	, , , , , , , , , , , , , , , , , , ,	0 1 9	• •							
	•										
	• 001 = Interrur	ot is Priority 1									
	000 = Interrup	ot source is dis	abled								
bit 7	Unimplement	ted: Read as '	כי								
bit 6-4	BCL1IP<2:0>	: MSSP1 I ² C™	Bus Collision	Interrupt Priori	ty bits						
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interrup	ot is Priority 1									
	000 = Interrup	ot source is dis	abled								
	Unimplemented: Read as '0'										
bit 3	2-0 SSP1IP<2:0>: MSSP1 SPI/I ² C Event Interrupt Priority bits										
bit 3 bit 2-0	SSP1IP<2:0>	: MSSP1 SPI/I	² C Event Inter	upt Priority bits)						
bit 3 bit 2-0	SSP1IP<2:0> 111 = Interrup	: MSSP1 SPI/I ot is Priority 7(² C Event Intern highest priority	interrupt)	,						
bit 3 bit 2-0	SSP1IP<2:0> 111 = Interrup •	: MSSP1 SPI/I ot is Priority 7 (² C Event Interi highest priority	interrupt)	•						
bit 3 bit 2-0	SSP1IP<2:0> 111 = Interrup •	: MSSP1 SPI/I ot is Priority 7(² C Event Intern highest priority	interrupt)	,						
bit 3 bit 2-0	SSP1IP<2:0> 111 = Interrup • • • • • •	: MSSP1 SPI/I ot is Priority 7(ot is Priority 1	² C Event Interr highest priority	interrupt)	,						

REGISTER 8-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

r							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCP3IP2 ⁽¹⁾	CCP3IP1 ⁽¹⁾	CCP3IP0 ⁽¹⁾	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow							own
bit 15	Unimplement	ted: Read as 'd)'				
bit 14-12	T4IP<2:0>: Ti	mer4 Interrupt	Priority bits ⁽¹⁾				
	111 = Interrup	ot is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interrur	ot is Priority 1					
	000 = Interrup	ot source is disa	abled				
bit 11-7	Unimplement	ted: Read as 'd)'				
bit 6-4	CCP3IP: Cap	ture/Compare/I	PWM3 Interrup	ot Priority bits ⁽¹⁾			
	111 = Interrup	ot is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	• 001 - Interrur	nt is Priority 1					
	000 = Interru	ot source is disa	abled				
bit 3-0	Unimplement	ted: Read as ')'				

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.1.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.2 Configuring Analog Port Pins

The use of the ANSx and TRISx registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANS register for each port (ANSA and ANSB, Register 11-1 and Register 11-2). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality. If a particular pin does not have an analog function, that bit is unimplemented.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	_	—	—	—	—				
DIT 15							DIL			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC		TMR3ON			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
hit 15 0	Unimplomen	ted. Dood oo ''	<u>,</u> ,							
bit 7.6		Leu. Reau as	J Nr Source Sele	at hita						
DIT 7-6		>: Timera Cioc	K Source Sele	Ct DIts						
	11 = Low-Power RC Oscillator (LPRC)									
	10 = External	CIOCK SOURCE (selected by 13	CON<3>)						
	01 = Instruction	clock (FOSC)	(2)							
hit 5-4			t Clock Prescal	le Select hits						
511 5 4	11 = 1.8 Pres	cale value								
	10 = 1.0 Pres	cale value								
	01 = 1.2 Pres	cale value								
	00 = 1:1 Pres	scale value								
bit 3	T3OSCEN: T	imer3 Oscillato	r Enable bit							
	1 = SOSC (S)	econdary Oscil	lator) is used a	s a clock source	e					
	0 = T3CK dig	ital input pin is	used as a clock	k source	0					
bit 2	T3SYNC: Tim	ner3 External C	lock Input Syn	chronization Co	ntrol bit					
	When TMR30	CS<1:0> = 1x:								
	1 = Does not	synchronize the	e external cloc	k input						
	0 = Synchron	izes the extern	al clock input ⁽²)						
	When TMR30	<u> CS<1:0> = 0x:</u>								
	This bit is ign	ored; Timer3 us	ses the internal	l clock.						
bit 1	Unimplemen	ted: Read as '	כ'							
bit 0	TMR3ON: Tir	ner3 On bit								
	1 = Enables 7	Fimer3								

features.

2: This option must be selected when the timer will be used with ECCP/CCP.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-					•	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
bit 7	-					•	bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			iown	
bit 15-7	Unimplemen	ted: Read as '	כ'				
bit 6-3	T4OUTPS<3:	0>: Timer4 Ou	tput Postscale	Select bits			
	1111 = 1:16 F	Postscale					
	1110 = 1:15 F	Postscale					
	•						
	•						
	0001 = 1:2 P	ostscale					
	0000 = 1:1 Po	ostscale					
bit 2	TMR4ON: Tin	ner4 On bit					
	1 = Timer4 is	on					
	0 = 1 Imer4 is			4 1- : 4 -			
DIT 1-0		>: Timer4 Cloc	k Prescale Sel	ect bits			
	10 = Prescale	eris 4					
	00 = Prescale	eris 1					

REGISTER 15-1: T4CON: TIMER4 CONTROL REGISTER

'1' = Bit is set

REGISTER 17-8: SSPxADD: MSSPx SLAVE ADDRESS/BAUD RATE GENERATOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bi	t	U = Unimplen	nented bit, read	d as '0'	

'0' = Bit is cleared

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 ADD<7:0>: Slave Address/Baud Rate Generator Value bits SPI Master and I²C[™] Master modes: Reloads value for Baud Rate Generator. Clock period is (([SPxADD] + 1) *2)/Fosc. I²C Slave modes: Represents 7 or 8 bits of the slave address, depending on the addressing mode used: 7-Bit mode: Address is ADD<7:1>; ADD<0> is ignored. 10-Bit LSb mode: ADD<7:0> are the Least Significant bits of the address. 10-Bit MSb mode: ADD<2:1> are the two Most Significant bits of the address; ADD<7:3> are always '11110' as a specification requirement, ADD<0> is ignored.

REGISTER 17-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	_	—	—	—	_	—		
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			MSK<	:7:0>(1)					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown				
L									
bit 15-8	Unimpleme	nted: Read as 'o)'						

bit 7-0 MSK<7:0>: Slave Address Mask Select bits⁽¹⁾

1 = Masking of corresponding bit of SSPxADD is enabled

0 = Masking of corresponding bit of SSPxADD is disabled

Note 1: MSK0 is not used as a mask bit in 7-bit addressing.

x = Bit is unknown

19.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 10-Bit High-Speed A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- · Up to 12 analog input pins
- External voltage reference input pins
- · Internal band gap reference input
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Two-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes

Depending on the particular device, PIC24F16KL402 family devices implement up to 12 analog input pins, designated AN0 through AN4 and AN9 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins. A block diagram of the A/D Converter is displayed in Figure 19-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure port pins as analog inputs and/ or select band gap reference inputs (ANSA<3:0>, ANSB<15:12,4:0> and ANCFG<0>).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
 - Configure A/D interrupt (if required):
 - a) Clear the AD1IF bit.

2.

b) Select A/D interrupt priority.

21.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect module (HLVD) is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 22-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

23.3 Unique ID

A read-only Unique ID value is stored at addresses, 800802h through 800808h. This factory programmed value is unique to each microcontroller produced in the PIC24F16KL402 family. To access this region, use Table Read instructions or Program Space Visibility. To ensure a globally Unique ID across other Microchip microcontroller families, the "Unique ID" value should be further concatenated with the family and Device ID values stored at address, FF0000h.

REGISTER 23-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 01001011 = PIC24F16KL402 family

bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 00000001 = PIC24F04KL100

00000010 = PIC24F04KL101

00000101 = PIC24F08KL200 00000110 = PIC24F08KL201

00001010 = PIC24F08KL301 00000000 = PIC24F08KL302

00001110 = PIC24F08KL401 00000100 = PIC24F08KL402 00011110 = PIC24F16KL401 00010100 = PIC24F16KL402

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description		# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL Wn		Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	£	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	f = f - WREG - (C)	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N. OV. Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

26.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24F16KL402 Family AC characteristics and timing parameters.

TABLE 26-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
	Operating voltage VDD range as des	scribed in Section 26.1 "DC Characteristics".

FIGURE 26-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

27.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	14			
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A