

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

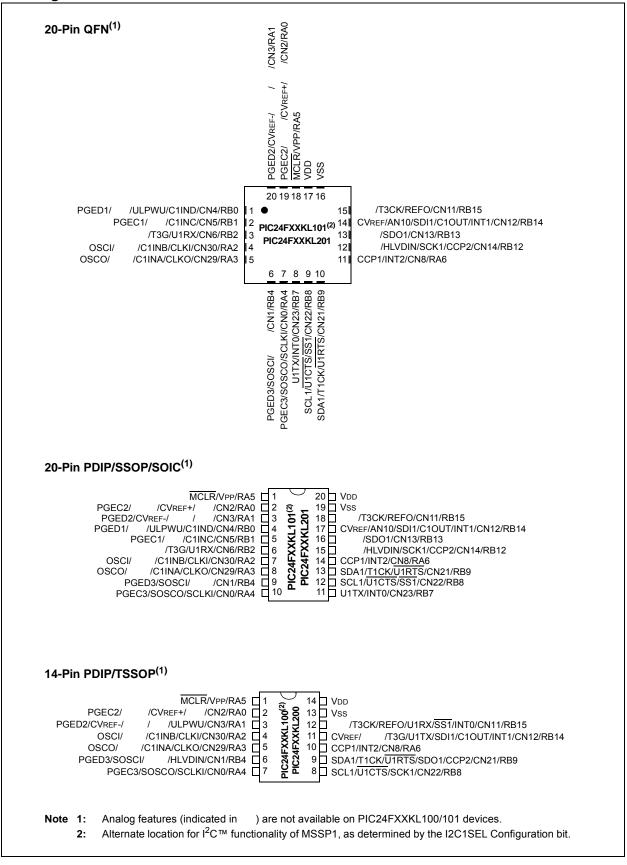
EXF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl302t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:


- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Dual Rail-to-Rail Analog Comparators with Programmable Input/Output Configuration
- On-Chip Voltage Reference

Special Microcontroller Features:

- Operating Voltage Range of 1.8V to 3.6V
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 40 Years Minimum
- Self-Programmable under Software Control
- Programmable Reference Clock Output

- Fail-Safe Clock Monitor (FSCM) Operation:
 - Detects clock failure and switches to on-chip, Low-Power RC (LPRC) oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT):
 - Uses its own Low-Power RC oscillator
 - Windowed operating modes
 - Programmable period of 2 ms to 131s
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via 2 Pins
- Programmable High/Low-Voltage Detect (HLVD)
- Programmable Brown-out Reset (BOR):
 - Configurable for software controlled operation and shutdown in Sleep mode
 - Selectable trip points (1.8V, 2.7V and 3.0V)
 - Low-power 2.0V POR re-arm

Pin Diagrams: PIC24FXXKL10X/20X

2.4 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

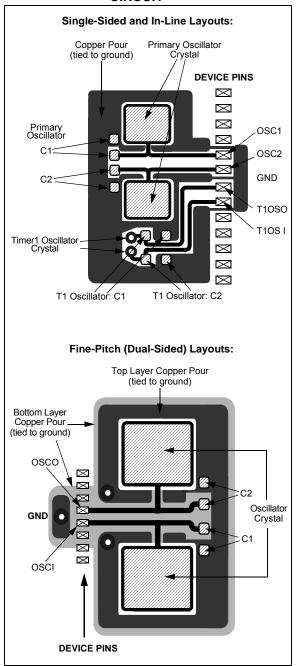
Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Input Voltage High (VIH) and Input Voltage Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx) pins, programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 24.0 "Development Support**".

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).


The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

FIGURE 2-3: S

B: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

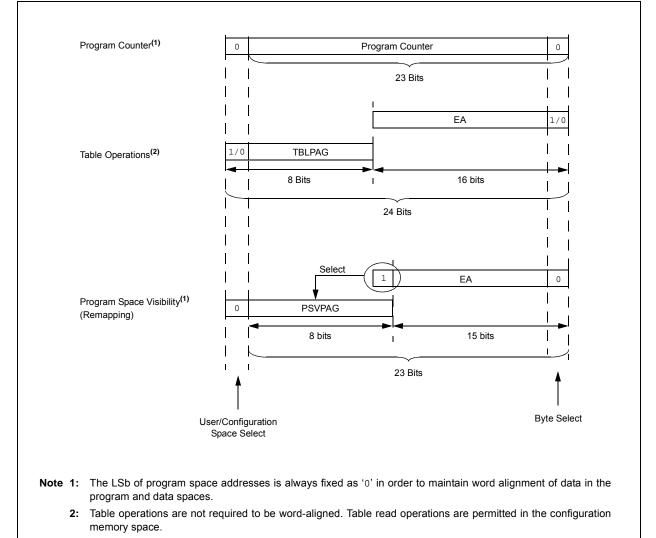
In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

IABLE 4-4: ICN REGISTER MAP	TABLE 4-4:	ICN REGISTER MAP
-----------------------------	------------	------------------

		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	D:4 7					1			All
		(4)						2.10	DILO	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
'	030 011	15PDE ⁽¹⁾	CN14PDE ⁽¹⁾	CN13PDE ⁽¹⁾	CN12PDE	CN11PDE	—	CN9PDE ⁽²⁾	CN8PDE	CN7PDE ⁽²⁾	CN6PDE(1)	CN5PDE ⁽¹⁾	CN4PDE ⁽¹⁾	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
5	058	_	CN30PDE	CN29PDE	_	CN27PDE ⁽²⁾	_	_	CN24PDE ⁽²⁾	CN23PDE ⁽¹⁾	CN22PDE	CN21PDE	_	_	—	_	CN16PDE ⁽²⁾	0000
5	062 CN	N15IE ⁽¹⁾	CN14IE ⁽¹⁾	CN13IE ⁽¹⁾	CN12IE	CN11IE	_	CN9IE ⁽¹⁾	CN8IE	CN7IE ⁽¹⁾	CN6IE ⁽²⁾	CN5PIE ⁽²⁾	CN4IE ⁽²⁾	CN3IE	CNIE	CN1IE	CN0IE	0000
;.	064	_	CN30IE	CN29IE	_	CN27IE ⁽²⁾	_	_	CN24IE ⁽²⁾	CN23IE ⁽¹⁾	CN22IE	CN21IE	_	_	—	_	CN16IE ⁽²⁾	0000
1	06E CN1	15PUE ⁽¹⁾	CN14PUE ⁽¹⁾	CN13PUE ⁽¹⁾	CN12PUE	CN11PUE	—	CN9PUE ⁽¹⁾	CN8PUE	CN7PUE ⁽¹⁾	CN6PUE ⁽²⁾	CN5PUE ⁽²⁾	CN4PUE ⁽²⁾	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
1	070	—	CN30PUE	CN29PUE	—	CN27PUE ⁽²⁾	—	_	CN24PUE ⁽²⁾	CN23PUE ⁽¹⁾	CN22PUE	CN21PUE	—	_	—	_	CN16PUE ⁽²⁾	0000
	062 CN 064 06E CN1	N15IE ⁽¹⁾ — N15PUE ⁽¹⁾	CN14IE ⁽¹⁾ CN30IE CN14PUE ⁽¹⁾	CN13IE ⁽¹⁾ CN29IE CN13PUE ⁽¹⁾	CN12IE — CN12PUE	CN11IE CN27IE ⁽²⁾ CN11PUE		CN9IE ⁽¹⁾ — CN9PUE ⁽¹⁾	CN8IE CN24IE ⁽²⁾ CN8PUE	CN7IE ⁽¹⁾ CN23IE ⁽¹⁾ CN7PUE ⁽¹⁾	CN6IE ⁽²⁾ CN22IE CN6PUE ⁽²⁾	CN5PIE ⁽²⁾ CN21IE CN5PUE ⁽²⁾	CN4IE ⁽²⁾ — CN4PUE ⁽²⁾		_		CN3IE CNIE CN1IE CN3PUE CN2PUE CN1PUE	CN3IE CNIE CN0IE CN16IE ⁽²⁾

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.


2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'.

A	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		0					
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TBI	_PAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		د0	xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TBI	TBLPAG<7:0>		Data EA<15:0>				
		12	xxx xxxx	XXX	***	xxx			
Program Space Visibility	User	0	PSVPAG<7:	:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾		:0> (1)			
(Block Remap/Read)		0	XXXX XXX	xx	XXX XXXX XXX	x xxxx			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on PIC24F16KL402 family devices.

7.0 RESETS

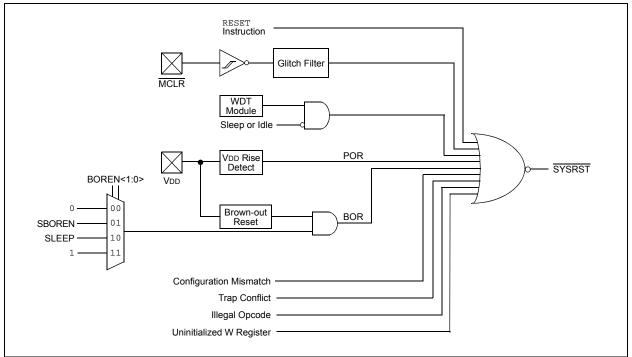
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on a Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value, after a device Reset, will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Interrupt Controller, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It has the following features:

- Up to eight processor exceptions and software traps
- · Seven user-selectable priority levels
- · Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

8.1 Interrupt Vector Table (IVT)

The IVT is shown in Figure 8-1. The IVT resides in the program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24F16KL402 family devices implement 32 non-maskable traps and unique interrupts; these are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE (AIVT)

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the Program Counter (PC) to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects the program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 8-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	—	—	—	—	—	HLVDIE	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	
		<u> </u>		—	U2ERIE ⁽¹⁾	U1ERIE		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown	
bit 15-9	Unimplemer	nted: Read as '	0'					
bit 8	HLVDIE: Hig	h/Low-Voltage	Detect Interrup	ot Enable bit				
		request is enat						
	•	request is not e						
bit 7-3	Unimplemer	nted: Read as '	0'					
bit 2	U2ERIE: UA	RT2 Error Inter	rupt Enable bit	(1)				
		request is enat						
	•	request is not e						
bit 1		RT1 Error Inter	•					
		request is enab request is not e						
bit 0		nted: Read as '						

Note 1: This bit is unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15				- -			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
<u>.</u>							
bit 15-1	Unimpleme	nted: Read as '	o'				
L:1 0			A				

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable Bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Power-Saving Features, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features with Deep Sleep" (DS39727).

The PIC24F16KL402 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption using several strategies:

- Clock frequency
- · Instruction-based Idle and Sleep modes
- · Hardware-based periodic wake-up from Sleep
- · Software Controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	SLEEP mode
PWRSAV	#IDLE_MODE	;	Put	the	device	into	IDLE mode

11.3 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the PIC24F16KL402 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to VSS by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE (ASSEMBLY LANGUAGE)

MOV	#0xFF00, W0	; Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
MOV	W0, TRISB	
MOV	#0x00FF, W0	; Enable PORTB<15:8> digital input buffers
MOV	W0, ANSB	
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 11-2: PORT WRITE/READ EXAMPLE (C LANGUAGE)

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
ANSB = $0 \times 00 FF;$	// Enable PORTB<15:8> digital input buffers
NOP();	// Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

NOTES:

REGISTER 17-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		—	_	—	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	nown
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7	GCEN: Gene	ral Call Enable	bit (Slave mod	e only)			
		nterrupt when a		ddress (0000h) is received in	the SSPxSR	
		call address is o					
bit 6		cknowledge Sta	-		e only)		
		edge was not re edge was receiv		ave			
bit 5		nowledge Data		ceive mode on	_{Խ/} (1)		
DIL 5	1 = No Ackno				iy).		
	0 = Acknowle	0					
bit 4	ACKEN: Ack	nowledge Sequ	ience Enable b	it (Master mod	le only) ⁽²⁾		
				SDAx and SO	CLx pins, and	transmits ACI	KDT data bit
		cally cleared by					
		edge sequence		(2)			
bit 3		ive Enable bit (Receive mode f	_	e mode only)-			
	1 = Enables i 0 = Receive i						
bit 2		ondition Enable	bit (Master mo	de only) ⁽²⁾			
5.12		Stop condition o			matically cleare	ed by hardware	
	0 = Stop cond			1 /	,	,	
bit 1	RSEN: Repea	ated Start Cond	lition Enable bi	t (Master mode	e only) ⁽²⁾		
				DAx and SCLx	c pins; automat	ically cleared by	y hardware
	-	d Start condition					
bit 0		ondition Enable	bit ⁽²⁾				
	Master Mode		n SDAx and S	CL x nins: auto	matically cleare	ed by hardware	
	0 = Start cond						
	Slave Mode:						
				ve transmit and	d slave receive	(stretch is enab	oled)
	0 = Clock stre	etching is disab	led				
Note 1:	The value that wi	II be transmitte	d when the use	r initiates an A	.cknowledge se	equence at the e	end of a
	receive.						
2:	If the I ² C module			e set (no spoo	ling) and the S	SPxBUF may n	ot be written
	(or writes to the S	SHXROF are d	isabled).				

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-0	R/P-1	R/P-1			
MCLRE ⁽¹) BORV1 ⁽²⁾	BORV0 ⁽²⁾	I2C1SEL ⁽³⁾	PWRTEN		BOREN1	BOREN0			
bit 7							bit C			
Logondi										
Legend:						1				
R = Reada		P = Program		•	nented bit, read					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7		R Pin Enable	hit(1)							
			A5 input pin is o	lisabled						
			; MCLR is disa							
bit 6-5	BORV<1:0>:	Brown-out Res	set Enable bits ⁽	2)						
	11 = Brown-o	ut Reset is set	to the low trip p	point						
		ut Reset is set to the middle trip point								
			to the high trip POR is enable ו			ad)				
bit 4		-	I ² C [™] Pin Map	-	DON 13 SEIECI	eu)				
			1/SDA1 pins (R	U U						
			L1/SDA1 pins (,	nd ASDA1/RB	5)				
bit 3		wer-up Timer								
	1 = PWRT is	enabled								
	0 = PWRT is	disabled								
bit 2	Unimplemen	ted: Read as '	0'							
bit 1-0	BOREN<1:0>	Brown-out R	eset Enable bit	S						
			dware; SBOREI							
			hile device is a		oled in Sleep; S	BOREN bit is o	disabled			
			the SBOREN b dware; SBORE	•	Ч					
			·							
	The MCLRE fuse					node entry. This	s prevents a			
	user from accider				age test entry.					
	Refer to Table 26-				rogrommod (-	1) in all other a	$lowiooo for l^2$			
	Implemented in 28 functionality to be		nny. This dit pos	muon must de p	rogrammed (=	⊥) in all other c	ievices for I ²			

REGISTER 23-6: FPOR: RESET CONFIGURATION REGISTER

DC CHARACTERISTIC	Standard Operating Conditions:1.8V to 3.6VOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions				
IDD Current							
DC20	0.154	0.350	m (1.8V			
	0.301	0.630	– mA	3.3V	+85V°C	0.5 MIPS, Fosc = 1 MHz	
		.500	mA	1.8V	+125°C		
	—	.800		3.3V	+125 C		
DC22	0.300			1.8V	10500	1 MIPS,	
	0.585 —	- mA	3.3V	+85°C	Fosc = 2 MHz		
DC24	7.76	12.0	m (3.3V	+85°C	16 MIPS,	
		18.0	- mA	3.3V	+125°C	Fosc = 32 MHz	
DC26	1.44	_	m۸	1.8V	+85°C	FRC (4 MIPS),	
	2.71	_	- mA	3.3V	+05 C	Fosc = 8 MHz	
DC30	4.00	28.0		1.8V	195%		
	9.00	55.0	μA	3.3V	+85°C	LPRC (15.5 KIPS), Fosc = 31 kHz	
		45.0	μA	1.8V	112500		
	_	90.0		3.3V	+125°C		

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IDD is measured with all peripherals disabled. All I/Os are configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)⁽²⁾

DC CHARACTERIST	Standard Operating Conditions:1.8V to 3.6VOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions						
Idle Current (IDLE)									
DC40	0.035	0.080	~^^	1.8V	195°C				
	0.077	0.150	- mA	3.3V	- +85°C	0.5 MIPS,			
	—	0.160	~ ^	1.8V	+125°C	Fosc = 1 MHz			
	_	0.300	- mA	3.3V	+125 C				
DC42	0.076	_		1.8V	+85°C	1 MIPS,			
	0.146	_	- mA	3.3V		Fosc = 2 MHz			
DC44	2.52	3.20	mA	3.3V	+85°C	16 MIPS,			
	_	5.00	mA	3.3V	+125°C	Fosc = 32 MHz			
DC46	0.45	—	mA	1.8V	+85°C	FRC (4 MIPS),			
	0.76	—	mA	3.3V	+05 C	Fosc = 8 MHz			
DC50	0.87	18.0	μA	1.8V	195°C				
	1.55	40.0	μA	3.3V	- +85°C	LPRC (15.5 KIPS),			
	—	27.0	μA	1.8V	+125°C	Fosc = 31 kHz			
	_	50.0	μA	3.3V	- +125°C				

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

2: IIDLE is measured with all I/Os configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

DC CHARACTERIS		Operating C temperature		/ to 3.6V +85°C for Industrial +125°C for Extended		
Parameter No.	Typical ⁽¹⁾	Max	Units		Con	ditions
Power-Down Curre	nt (IPD)					
DC60	0.01	0.20	μA	-40°C		
	0.03	0.20	μA	+25°C		
	0.06	0.87	μA	+60°C	1.8V	
	0.20	1.35	μA	+85°C		
	—	8.00	μA	+125°C		Sleep Mode ⁽²⁾
	0.01	0.54	μA	-40°C		Sleep Mode
	0.03	0.54	μA	+25°C		
	0.08	1.68	μA	+60°C	3.3V	
	0.25	2.45	μA	+85°C		
	_	10.00	μA	+125°C		

Т

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks disabled. All I/Os are configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled

TABLE 26-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V					
			Operating temperature				$A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended	
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	—	_	μS		
SY11	TPWRT	Power-up Timer Period	50	64	90	ms		
SY12	TPOR	Power-on Reset Delay	1	5	10	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	—	100	ns		
SY20	Twdt	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler	
		Period	3.4	4.0	4.6	ms	1:128 prescaler	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μs		
SY45	TRST	Internal State Reset Time		5		μS		
SY55	TLOCK	PLL Start-up Time	—	100	_	μS		
SY65	Tost	Oscillator Start-up Time	_	1024		Tosc		
SY71	Трм	Program Memory Wake-up Time	—	1		μs	Sleep wake-up with PMSLP = 0	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-24: COMPARATOR TIMINGS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time ^(1,2)		150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid ⁽²⁾	_	—	10	μS	

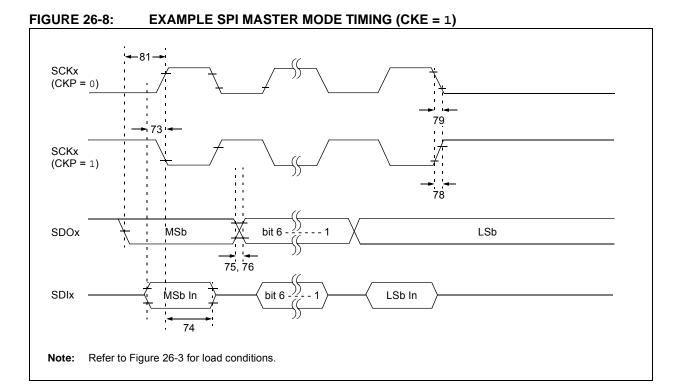

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-25: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾		_	10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

^{2:} Parameters are characterized but not tested.

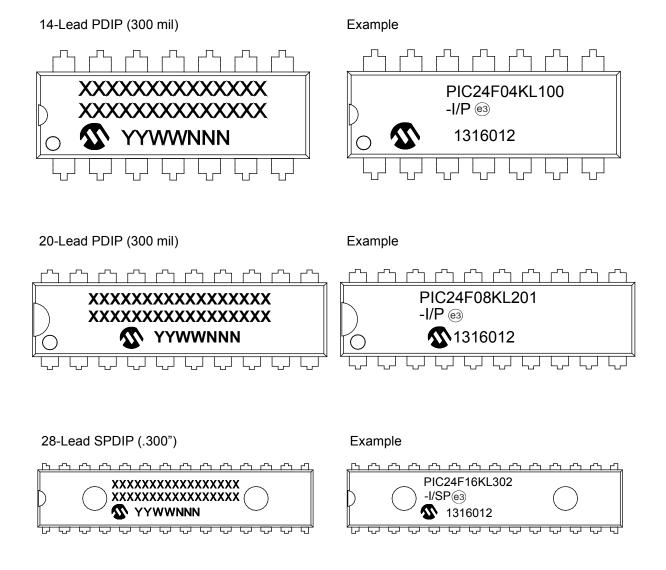
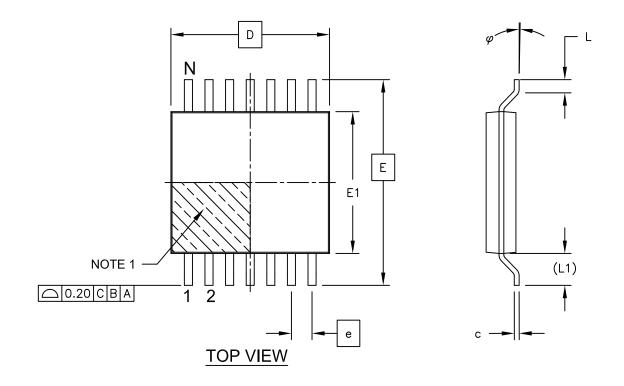


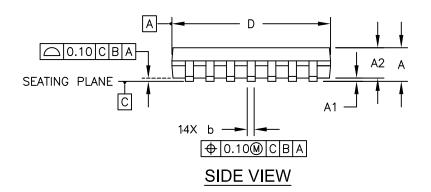
TABLE 26-28: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	—	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	FSCK	SCKx Frequency	_	10	MHz	

27.0 PACKAGING INFORMATION

27.1 Package Marking Information




Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	will be	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.

© 2011-2013 Microchip Technology Inc.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

INDEX

1	•
•	١

A/D	
10-Bit High-Speed A/D Converter	157
Conversion Timing Requirements	224
Module Specifications	223
A/D Converter	
Analog Input Model	164
Transfer Function	165
AC Characteristics	
A/D Module	223
Capacitive Loading Requirements on	
Output Pins	
Internal RC Oscillator Accuracy	211
Internal RC Oscillator Specifications	211
Load Conditions and Requirements	209
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	158
16-Bit Timer1	115
Accessing Program Memory with	
Table Instructions	
CALL Stack Frame	43
Capture Mode Operation	126
Comparator Module	
Comparator Voltage Reference Module	171
Compare Mode Operation	
CPU Programmer's Model	
Data Access From Program Space	
Address Generation	44
Data EEPROM Addressing with TBLPAG and	
NVM Registers	55
Enhanced PWM Mode	127
High/Low-Voltage Detect (HLVD) Module	173
Individual Comparator Configurations	168
MCLR Pin Connections Example	
MSSPx Module (I ² C Master Mode)	137
MSSPx Module (I ² C Mode)	
MSSPx Module (SPI Mode)	
PIC24F CPU Core	
PIC24F16KL402 Family (General)	13
PSV Operation	46
PWM Operation (Simplified)	126
Recommended Minimum Connections	
Reset System	
Serial Resistor	107
Shared I/O Port Structure	111
Simplified UARTx	149
SPI Master/Slave Connection	136
Suggested Placement of Oscillator Circuit	
System Clock	
Table Register Addressing	
Timer2	117
Timer3	119
Timer4	
Watchdog Timer (WDT)	184

С

C Compilers
MPLAB XC Compilers 188
Capture/Compare/PWM (CCP) 125
CCP/ECCP
CCP I/O Pins 125
Timer Selection 125
Code Examples
Data EEPROM Bulk Erase 57
Data EEPROM Unlock Sequence 53
Erasing a Program Memory Row,
Assembly Language 50
Erasing a Program Memory Row, C Language 51
I/O Port Write/Read (Assembly Language) 114
I/O Port Write/Read (C Language) 114
Initiating a Programming Sequence,
Assembly Language 52
Initiating a Programming Sequence, C Language 52
Loading the Write Buffers, Assembly Language 51
Loading the Write Buffers, C Language 52
PWRSAV Instruction Syntax 105
Reading Data EEPROM Using the
TBLRD Command58
Sequence for Clock Switching
Single-Word Erase
Single-Word Write to Data EEPROM 57
Ultra Low-Power Wake-up Initialization 107
Code Protection
Comparator
Comparator Voltage Reference
Configuring
Configuration Bits
Core Features
CPU
ALU
Control Registers
Core Registers
Programmer's Model
Customer Change Notification Service
Customer Support
D

Data EEPROM Memory	53
Erasing	56
Nonvolatile Memory Registers	
NVMCON	53
NVMKEY	53
NVMADR(U)	55
Operations	55
Programming	
Bulk Erase	57
Reading Data EEPROM	58
Single-Word Write	57
Data Memory	
Address Space	33
Memory Map	33
Near Data Space	34
Organization	34
SFR Space	34
Software Stack	43
Space Width	33