

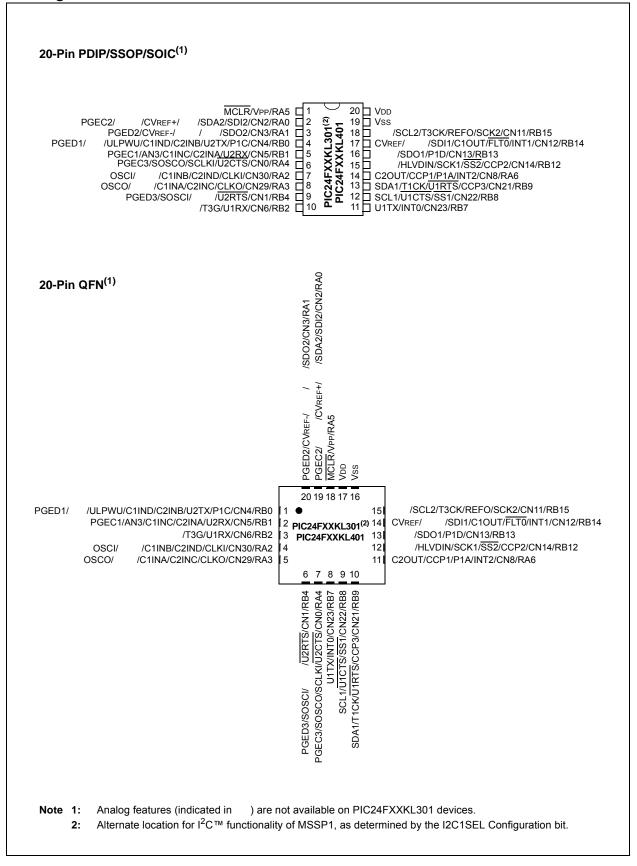
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl401-e-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL301/401

PIC24F16KL402	PIC24F08KL402	PIC24F08KL302	PIC24F16KL401	PIC24F08KL401	PIC24F08KL301
		DC – 3	32 MHz		
16K	8K	8K	16K	8K	8K
5632	2816	2816	5632	2816	2816
1024	1024	1024	1024	1024	1024
512	512	256	512	512	256
31 (27/4)	31 (27/4)	30 (26/4)	31 (27/4)	31 (27/4)	30 (26/4)
	24			18	
2/2	2/2	2/2	2/2	2/2	2/2
3	3	3	3	3	3
1	1	1	1	1	1
23	23	23	17	17	17
2	2	2	2	2	2
2	2	2	2	2	2
12	12	—	12	12	—
2	2	2	2	2	2
		Hardware Tra	aps, Configura		
76	Base Instruc	tions, Multiple	Addressing	Mode Variatio	ns
	PDIP/SSOP/S			DIP/SSOP/SC	
	16K 5632 1024 512 31 (27/4) 7 2/2 3 1 2 2 2 12 2 2 12 2 2 76 76	16K 8K 5632 2816 1024 1024 512 512 31 (27/4) 31 (27/4) PORTA<7:0> PORTB<15:0> 24 2/2 2/2 3 3 1 1 23 23 2 2 12 12 12 12 2 2 POR, BOR, RES REPEAT Instruction, 76 Base Instruct 76 Base Instruct	DC 3	DC 32 MHz 16K 8K 8K 16K 5632 2816 2816 5632 1024 1024 1024 1024 512 512 256 512 31 (27/4) 31 (27/4) 30 (26/4) 31 (27/4) PORTA<7:0> PORTB<15:0> PORT 2/2 2/2 2/2 3 3 3 1 1 1 23 23 23 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DC 32 MHz 16K 8K 8K 16K 8K 5632 2816 2816 5632 2816 1024 1024 1024 1024 1024 512 512 256 512 512 31 (27/4) 31 (27/4) 30 (26/4) 31 (27/4) 31 (27/4) PORTA<7:0> PORTA<6:0> PORTB<15:12,9:7,

TABLE 1-2: DEVICE FEATURES FOR PIC24F16KL40X/30X DEVICES

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
CN0	10	7	12	9	I	ST	Interrupt-on-Change Inputs
CN1	9	6	11	8	I	ST	
CN2	2	19	2	27	I	ST	
CN3	3	20	3	28	I	ST	
CN4	4	1	4	1	Ι	ST	
CN5	5	2	5	2	I	ST	
CN6	6	3	6	3	I	ST	
CN7	_	_	7	4	I	ST	
CN8	14	11	20	17	I	ST	
CN9	—	—	19	16	I	ST]
CN11	18	15	26	23	I	ST	
CN12	17	14	25	22	I	ST	
CN13	16	13	24	21	I	ST	
CN14	15	12	23	20	I	ST	
CN15	_	_	22	19	I	ST	
CN16	—	_	21	18	I	ST	
CN21	13	10	18	15	I	ST	
CN22	12	9	17	14	I	ST	
CN23	11	8	16	13	I	ST	
CN24	_	_	15	12	I	ST	
CN27	_	_	14	11	I	ST	
CN29	8	5	10	7	I	ST	
CN30	7	4	9	6	I	ST	
CVREF	17	14	25	22	I	ANA	Comparator Voltage Reference Output
CVREF+	2	19	2	27	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	20	3	28	I	ANA	Comparator Reference Negative Input Voltage
FLT0	17	14	25	22	I	ST	ECCP1 Enhanced PWM Fault Input
HLVDIN	15	12	23	20	I	ST	High/Low-Voltage Detect Input
INT0	11	8	16	13	I	ST	Interrupt 0 Input
INT1	17	14	25	22	I	ST	Interrupt 1 Input
INT2	14	11	20	17	I	ST	Interrupt 2 Input
MCLR	1	18	1	26	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	7	4	9	6	I	ANA	Main Oscillator Input
OSCO	8	5	10	7	0	ANA	Main Oscillator Output
P1A	14	11	20	17	0	—	ECCP1 Output A (Enhanced PWM Mode)
P1B	5	2	21	18	0	_	ECCP1 Output B (Enhanced PWM Mode)
P1C	4	1	22	19	0	_	ECCP1 Output C (Enhanced PWM Mode)
P1D	16	13	18	15	0	_	ECCP1 Output D (Enhanced PWM Mode)

TABLE 1-4:	PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS ((CONTINUED)

Legend:

TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 4-6	: Т	IMER	REGIS	TER N	IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Reg	gister							0000
PR1	0102								Tir	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000
PR2	0108	_	_	_	_	_	_	_	_	Timer2 Period Register								OOFF
T2CON	010A	_	_	_	_	_	_	_	_	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Reg	gister							0000
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	_				Timer4 Perio	d Register				00FF
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	—	_	_	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1				1				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	_	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	V1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_			Capture/Co	mpare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	VI3 Register	Low Byte			0000
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-10: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	—	—	_	_	_	_	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	00DF
PORTA	02C2		_						—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4		_						—	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	-	_	_	_	_	_	_	-	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices; read as '0'.

2: PORTA<5> is unavailable when MCLR functionality is enabled (MCLRE Configuration bit = 1).

TABLE 4-11: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices.

2: These ports and their associated bits are unimplemented in 14-pin devices.

TABLE 4-12: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	_	—	SDO2DIS ⁽¹⁾	SCK2DIS(1)	SDO1DIS	SCK1DIS	—	_	_	_	_	—	—	—	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	0 R/W-0	R/W-0 ⁽³⁾	U-0	U-0	U-0	R/W-0	R/W-0
TRAP	R IOPUWR	SBOREN	_	—	_	CM	PMSLP
bit 15							bit 8
R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	R SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:			:4		a a material in the second		
R = Read		W = Writable b	IT	•	nented bit, read		
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR. Tra	p Reset Flag bit					
bit io		Conflict Reset has	occurred				
		Conflict Reset has		b			
bit 14	IOPUWR: III	egal Opcode or L	Jninitialized V	V Access Reset	Flag bit		
	1 = An illega	al opcode detecti	on, an illegal	address mode	or an Uninitial	ized W register	r is used as an
		Pointer and cau					
	-	al opcode or Unin		-	is not occurred		
bit 13		oftware Enable/D		R bit ⁽³⁾			
		urned on in softw urned off in softw					
bit 12-10	Unimpleme	nted: Read as '0					
bit 9	CM: Configu	ration Word Misn	natch Reset I	Flag bit			
		uration Word Mis					
	•	uration Word Mis			ed		
bit 8		gram Memory Po	•	•			
		memory bias vo memory bias vo					
h:+ 7		mal Reset (MCLF			y Sleep		
bit 7		r Clear (pin) Rese	,	ed			
		r Clear (pin) Rese					
bit 6	SWR: Softwa	are Reset (Instru	ction) Flag bi	t			
		instruction has t					
		r instruction has r					
bit 5	SWDTEN: S	oftware Enable/D	Disable of WE)T bit ⁽²⁾			
	1 = WDT is e						
1.11.4	0 = WDT is 0						
bit 4		chdog Timer Time	-				
		e-out has occurre					
Note 1.	All of the Depart	tatua hita may ha	act or closer	d in coffword C	atting one of th	ana hita in aaft	wara daga nat
Note 1:	All of the Reset s cause a device F	•	set of cleare	eu în soitware. S	beaung one of th	IESE DIIS IN SOT	ware upes not
2:	If the FWDTEN (is '1' (unprog	rammed), the V	VDT is always o	enabled, regard	dless of the
	SWDTEN bit set	-		,-			
3.	The SBOREN bi	it is forced to '0' v	vhen disabler	d by the Config	iration hits BO	REN<1.0> (FP	

3: The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in the Flash Configuration Word (FOSCSEL); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

PIC24F16KL402 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the power-up timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the BOR Reset does not automatically enable the PWRT.

7.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function, as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit only operates in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note: Even when the BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—			INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardwa	are Settable/C	learable bit			
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14 bit 13-3	0 = Uses stan DISI: DISI In: 1 = DISI instr 0 = DISI instr Unimplement	rnate Interrupt V dard (default) v struction Status ruction is active ruction is not ac ted: Read as '0	ector table bit tive				
bit 2 bit 1	1 = Interrupt o 0 = Interrupt o INT1EP: Exte 1 = Interrupt o	rnal Interrupt 2 on negative edg on positive edge rnal Interrupt 1 on negative edge	e e Edge Detect F e	-			
bit 0	INTOEP: Exte 1 = Interrupt c	on positive edge rnal Interrupt 0 on negative edg on positive edge	Edge Detect F e	Polarity Select b	bit		

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

PIC24F16KL402 family devices consist of two types of secondary oscillators:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
 - High-Power/High-Accuracy mode
 - Low-Power/Low-Accuracy mode

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 23.2 "Configuration Bits"). The Primary Configuration bits, Oscillator POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits. POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSMx Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	<u>If FSCM is Enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

NOTES:

REGISTER 16-6: CCPTMRS0: CCP TIMER SELECT CONTROL REGISTER 0⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
—	C3TSEL0	—	—	C2TSEL0	—	—	C1TSEL0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-7	Unimplemen	ted: Read as '	י)				
bit 6	C3TSEL0: CO	CP3 Timer Sele	ection bit				
		es TMR3/TMR4 es TMR3/TMR2					
bit 5-4	Unimplemen	ted: Read as ')'				
bit 3	C2TSEL0: C0	CP2 Timer Sele	ection bit				
	1 = CCP2 use	es TMR3/TMR4	4				
	0 = CCP2 use	es TMR3/TMR2	2				
bit 2-1	Unimplemen	ted: Read as 'o)'				
bit 0	C1TSEL0: CO	CP1/ECCP1 Tir	mer Selection b	bit			
		CP1 uses TMF					
	0 = CCP1/EC	CP1 uses TMF	R3/TMR2				

Note 1: This register is unimplemented on PIC24FXXKL20X/10X devices; maintain as '0'.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
—	—	—	—	REV3	REV2	REV1	REV0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U =					U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

REGISTER 23-9: DEVREV: DEVICE REVISION REGISTER

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Revision Identifier bits

Assembly Mnemonic		Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTIC	CS				re -40°C ≤	1.8V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended	
Parameter No.	Max	Units			Conditions		
IDD Current							
DC20	0.154	0.350	m (1.8V	1951/20		
	0.301	0.630	- mA	3.3V	+85V°C	0.5 MIPS,	
		.500	mA	1.8V	+125°C	Fosc = 1 MHz	
	—	.800		3.3V	+120 C		
DC22	0.300	_	m (1.8V	- +85°C	1 MIPS,	
	0.585	_	mA	3.3V		Fosc = 2 MHz	
DC24	7.76	12.0	m (3.3V	+85°C	16 MIPS, Fosc = 32 MHz	
		18.0	- mA	3.3V +125°C	+125°C		
DC26	1.44	_	m۸	1.8V	.05%0	FRC (4 MIPS),	
	2.71	_	- mA	3.3V	+85°C	Fosc = 8 MHz	
DC30	4.00	28.0		1.8V	195%		
	9.00	55.0	μA	3.3V	+85°C	LPRC (15.5 KIPS),	
		45.0		1.8V	112500	Fosc = 31 kHz	
	_	90.0	μA	3.3V	+125°C		

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

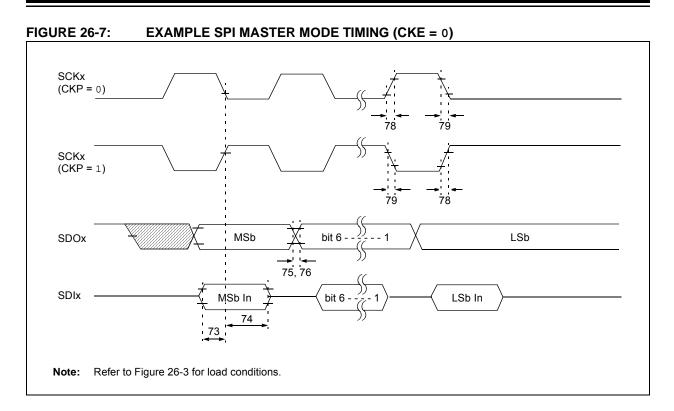
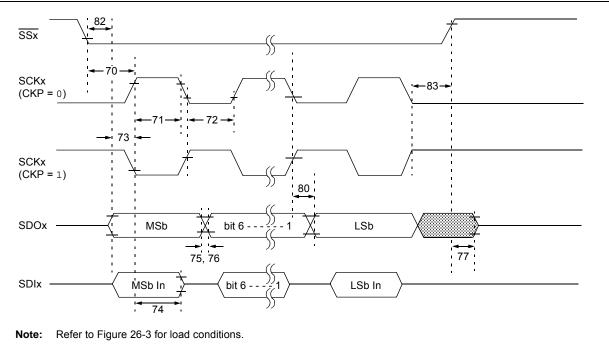

2: IDD is measured with all peripherals disabled. All I/Os are configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)⁽²⁾

DC CHARACTERIST			e -40°C ≤ 1	s: 1.8V to 3.6V $FA \le +85^{\circ}C$ for Industrial $FA \le +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions							
Idle Current (IIDLE)										
DC40	0.035	0.080	~^^	1.8V	195°C					
	0.077	0.150	- mA	3.3V	+85°C	0.5 MIPS,				
	_	0.160	1.8V 1.25		+125°C	Fosc = 1 MHz				
	_	0.300	- mA	3.3V	+125 C					
DC42	0.076	_		1.8V	+85°C	1 MIPS,				
	0.146	_	mA	3.3V		Fosc = 2 MHz				
DC44	2.52	3.20	mA	3.3V	+85°C	16 MIPS,				
	_	5.00	mA	3.3V	+125°C	Fosc = 32 MHz				
DC46	0.45	—	mA	1.8V	+85°C	FRC (4 MIPS),				
	0.76	—	mA	3.3V	+00 C	Fosc = 8 MHz				
DC50	0.87	18.0	μA	1.8V	195°C					
	1.55	40.0	μA	3.3V	+85°C	LPRC (15.5 KIPS),				
	—	27.0	μA	1.8V	+125°C	Fosc = 31 kHz				
	_	50.0	μA	3.3V	+125°C					


Note 1: Data in the Typical column is at 3.3V, +25°C, unless otherwise stated.

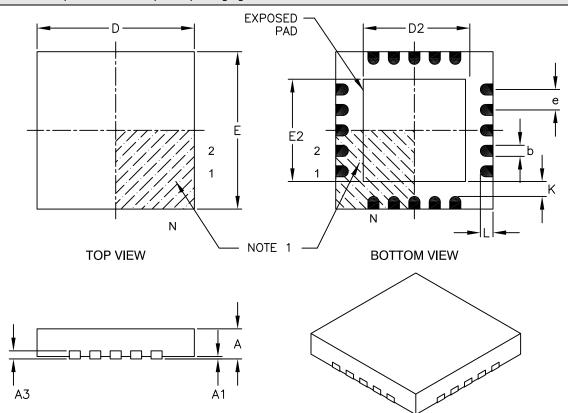
2: IIDLE is measured with all I/Os configured as outputs and set low; PMDx bits are set to '1' and WDT, etc., are all disabled.

TABLE 26-27: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
	FSCK	SCKx Frequency	—	10	MHz	

FIGURE 26-10: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Tcy	_	ns		
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	ave mode) Single Byte		—	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	40	_	ns		
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	ance	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx	—	50	ns		
82	TssL2DoV	SDOx Data Output Valid After SSx	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		_	10	MHz	

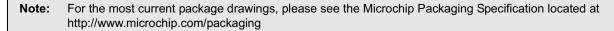

TABLE 26-30: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

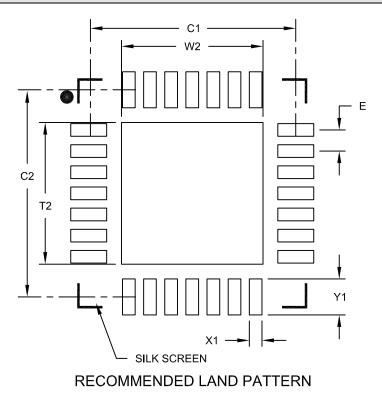
Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	Units	N	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	Е		5.00 BSC		
Exposed Pad Width	E2	3.15	3.25	3.35	
Overall Length	D		5.00 BSC		
Exposed Pad Length	D2	3.15	3.25	3.35	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.35	0.40	0.45	
Contact-to-Exposed Pad	К	0.20	-	-	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5 mm Body [QFN] Land Pattern With 0.55 mm Contact Length

	Units	N	ILLIMETER	S
Dimensio	Dimension Limits			MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			0.85

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2140A