

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl401-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24F16KL402	PIC24F08KL402	PIC24F08KL302	PIC24F16KL401	PIC24F08KL401	PIC24F08KL301
Operating Frequency			DC – 3	32 MHz		
Program Memory (bytes)	16K	8K	8K	16K	8K	8K
Program Memory (instructions)	5632	2816	2816	5632	2816	2816
Data Memory (bytes)	1024	1024	1024	1024	1024	1024
Data EEPROM Memory (bytes)	512	512	256	512	512	256
Interrupt Sources (soft vectors/NMI traps)	31 (27/4)	31 (27/4)	30 (26/4)	31 (27/4)	31 (27/4)	30 (26/4)
I/O Ports	I	PORTA<7:0> PORTB<15:0>	>	PORTA<6:0> PORTB<15:12,9:7,4,2:0>		
Total I/O Pins		24		18		
Timers (8/16-bit)	2/2	2/2	2/2	2/2	2/2	2/2
Capture/Compare/PWM modules:						
Total	3	3	3	3	3	3
Enhanced CCP	1	1	1	1	1	1
Input Change Notification Interrupt	23	23	23	17	17	17
Serial Communications:						
UART	2	2	2	2	2	2
MSSP	2	2	2	2	2	2
10-Bit Analog-to-Digital Module (input channels)	12	12	—	12	12	—
Analog Comparators	2	2	2	2	2	2
Resets (and delays)	PO repea	R, BOR, RES	ET Instruction Hardware Tra (PWRT, OS	, MCLR, WD ⁻ aps, Configura T, PLL Lock)	F, Illegal Opco ation Word Mis	ode, smatch
Instruction Set	76	Base Instruc	tions, Multiple	Addressing	Mode Variatio	ns
Packages	28-Pin SI	DIP/SSOP/S	OIC/QFN	20-Pin F	DIP/SSOP/SO	DIC/QFN

TABLE 1-2: DEVICE FEATURES FOR PIC24F16KL40X/30X DEVICES

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

EXAMPLE 6-2: SINGLE-WORD ERASE

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

int __attribute__ ((space(eedata))) eeData = 0x1234; // Global variable located in EEPROM unsigned int offset; // Set up NVMCON to erase one word of data EEPROM NVMCON = 0×4058 ; // Set up a pointer to the EEPROM location to be erased TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer offset = __builtin_tbloffset(&eeData); // Initizlize lower word of address __builtin_tblwtl(offset, 0); // Write EEPROM data to write latch asm volatile ("disi #5"); // Disable Interrupts For 5 Instructions __builtin_write_NVM(); // Issue Unlock Sequence & Start Write Cycle // Optional: Poll WR bit to wait for while(NVMCONbits.WR=1); // write sequence to complete

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device has been in Sleep mode

 0 = Device has not been in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device has been in Idle mode

 0 = Device has not been in Idle mode

 0 = Device has not been in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred (the BOR is also set after a POR)

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator **Configuration**".

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE

	Reset - COTO Instruction	000000h	
	Reset - COTO Address	0000000h	
	Peserved	000002h	
	Oscillator Fail Tran Vector	00000411	
	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	Math Error Trap Vector		
	Recorded	-	
	Reserved	-	
	Reserved		
		000014h	
	Interrupt Vector 0	00001411	
		-	
		-	
	Interrupt Vector 52	00007Ch	Interrupt Vector Table (IVT) ⁽¹⁾
~	Interrupt Vector 53	00007Eh	
ority	Interrupt Vector 54	000080h	
Pric			
erF			
Drd	_		
al	Interrupt Vector 116	0000FCh	
Itur	Interrupt Vector 117	0000FEh	
2 S	Reserved	000100h	
ing	Reserved	000102h	
sas	Reserved		
scre	Oscillator Fail Trap Vector		
Ď	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	000114h	
	Interrupt Vector 1		(1)
			Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		-	
		00017Ch	
	Interrupt Vector 52	00017Ch	
	Interrupt Vector 55	00017EI	
		00010011	
		-	
•			
•	Interrupt Vector 116	1	
	Interrupt Vector 117	0001FFh	
	Start of Code	000200h	
]	
Mate	1. Soo Table 9.2 for the interment water	r liot	
NOTE		1151.	

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0			
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—			
bit 7							bit 0			
Legend:		C = Clearable	bit							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15-4	Unimplemen	ted: Read as '0)'							
bit 3	IPL3: CPU In	terrupt Priority	Level Status bit	(2)						
	1 = CPU Inter	rupt Priority Le	vel is greater th	nan 7						
	0 = CPU Inter	rupt Priority Le	vel is 7 or less							
bit 1-0	bit 1-0 Unimplemented: Read as '0'									
Note 1:	See Register 3-2	for the descript	ion of this bit. v	which is not dee	dicated to inter	rupt control fun	ctions.			
2:	The IPL3 bit is co	ncatenated with	the IPL<2:0>	bits (SR<7:5>)	to form the CF	PU Interrupt Pri	ority Level.			

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIF		AD1IF	U1TXIF	U1RXIF		—	T3IF
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IF	CCP2IF		_	T1IF	CCP1IF	—	INTOIF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	NVMIF: NVM	Interrupt Flag S	Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 14		ted: Read as '0)'				
bit 13	AD1IF: A/D C	conversion Corr	plete Interrupt	Flag Status bit	t		
	1 = Interrupt r	equest has occ	urred	•			
	0 = Interrupt r	equest has not	occurred				
bit 12	U1TXIF: UAR	T1 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	urred				
hit 11		2T1 Receiver In	terrunt Elan St	atus hit			
	1 = Interrupt r	request has occ	urred	atus bit			
	0 = Interrupt r	equest has not	occurred				
bit 10-9	Unimplemen	ted: Read as 'o)'				
bit 8	T3IF: Timer3	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	urred				
h:+ 7	0 = Interrupt r	request has not	occurred				
Dit 7	1 = Interrupt r	interrupt Flag S	otatus dit				
	0 = Interrupt r	request has not	occurred				
bit 6	CCP2IF: Cap	ture/Compare/F	WM2 Interrup	t Flag Status b	it		
	1 = Interrupt r	equest has occ	urred	-			
	0 = Interrupt r	equest has not	occurred				
bit 5-4	Unimplemen	ted: Read as 'o)'				
bit 3	T1IF: Timer1	Interrupt Flag S	Status bit				
	\perp = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 2	CCP1IF: Cap	ture/Compare/F	PWM1 Interrup	t Flag Status b	it (ECCP1 on P	IC24FXXKL40	X devices)
	1 = Interrupt r	equest has occ	urred				,
	0 = Interrupt r	equest has not	occurred				
bit 1	Unimplemen	ted: Read as '0)'				
bit 0	INTOIF: Exter	nal Interrupt 0 I	lag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				

R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0
U2TXIF ⁽	¹⁾ U2RXIF ⁽¹⁾	INT2IF	—	T4IF ⁽¹⁾	—	CCP3IF ⁽¹⁾	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1IF	CNIF	CMIF	BCL1IF	SSP1IF
bit 7							bit 0
Lenend							
Legena:	able bit	M - Mritabla	~i+		controd hit roa	d oo 'O'	
		vv = vvritable i	JIL	0' = 0	nenteu bit, rea	u as u v = Bit is unkny	own
	alFOR				areu		JW11
bit 15		T2 Transmitter	Interrunt Elag	Status hit(1)			
bit 15	1 = Interrupt r	request has occ	urred	Status bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit ⁽¹⁾			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 13	INT2IF: Exter	nal Interrupt 2 I	-lag Status bit				
	1 = Interrupt r	equest has occ	urred				
h:+ 40		request has not	occurrea				
DIL 12 bit 11		ted: Read as () Status hit(1)				
	1 = Interrupt r	equest has occ					
	0 = Interrupt r	request has not	occurred				
bit 10	Unimplemen	ted: Read as '0)'				
bit 9	CCP3IF: Cap	ture/Compare/F	PWM3 Interrup	ot Flag Status b	it ⁽¹⁾		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 8-5	Unimplemen	ted: Read as '0)'				
bit 4	INT1IF: Exter	nal Interrupt 1 I	-lag Status bit				
	1 = Interrupt r	request has occ	urred				
hit 3	CNIE: Input C	equest has not		lag Status bit			
DIL 3	1 = Interrupt r		urred	ay Status bit			
	0 = Interrupt r	request has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status bit	t			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 1	BCL1IF: MSS	SP1 I ² C™ Bus (Collision Interr	upt Flag Status	bit		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	request has not	occurred				
dit U	SSP1IF: MSS	SP1 SPI/IC Eve	ent Interrupt F	lag Status bit			
	\perp = interrupt r	equest has occ					
			Coouricu				
Note 1:	These bits are un	implemented or	n PIC24FXXK	L10X and PIC2	4FXXKL20X d	levices.	

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24F16KL402 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip, 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24F16KL402 FAMILY CLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>		—	_		—	—
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-6	Unimplemen	ted: Read as '	כ'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	ximum frequer	ncy deviation				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	y calibrated free	quency	
	111111						
	•						
	•						
	100001						
	100000 = Mir	nimum frequen	cy deviation				

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
			_	_	_	_	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PM1	PM0	DC1B1	DC1B0	CCP1M3 ⁽²⁾	CCP1M2 ⁽²⁾	CCP1M1 ⁽²⁾	CCP1M0 ⁽²⁾				
bit 7	-	_					bit 0				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
		- Bitle eet									
bit 15-8	Unimpleme	nted: Read as '	ר'								
bit 7-6		hanced PWM (- Dutput Configu	ration hits							
	If CCP1M<3	$2^{\circ} = 00 01 10^{\circ}$									
	xx = P1A is a	assigned as a ca	<u>, ,</u> pture input or c	ompare output;	P1B, P1C and	P1D are assign	ed as port pins				
	If CCP1M<3	: 2> = 11:				c .					
	11 = Full-brid	dge output reve	rse: P1B is mo	dulated; P1C is	active; P1A ar	nd P1D are ina	ctive				
	10 = Half-bri	dge output: P	1A, P1B are	modulated wit	h dead-band	control; P1C	and P1D are				
	assigne	ed as port pins	ard: D1D is mo	dulated: D1A is	activo: D1P	1C are inactive	`				
	01 = Full-bridge output forward: P1D is modulated; P1A is active; P1B, P1C are inactive 00 = Single output: P1A_P1B_P1C and P1D are controlled by steering										
bit 5-4	DC1B<1:0>	DC1B<1:0 , PWM Duty Cycle bit 1 and bit 0 for CCP1 Module bits									
	Capture and	Compare mode	es:								
	Unused.										
	PWM mode:										
	These bits a	re the two Leas	t Significant bi	ts (bit 1 and bit	0) of the 10-b	it PWM duty cy	cle. The eight				
	Most Signific	ant bits (DC1B<	<9:2>) of the du	uty cycle are for	und in CCPR1L						
bit 3-0	CCP1M<3:0	>: ECCP1 Modu	le Mode Selec								
	1111 = PVVN	/I mode: P1A an	id P1C are acti	ive-low; P1B ar	id P1D are acti	VE-IOW ve-bigh					
	1101 = PWN	/I mode: P1A an	id P1C are acti	ive-high: P1B a	nd P1D are act	tive-low					
	1100 = PWN	/I mode: P1A an	d P1C are acti	ive-high; P1B a	nd P1D are ac	tive-high					
	1011 = Com	pare mode: Spe	ecial Event Trig	ger; resets time	er on CCP1 ma	atch (CCPxIF b	it is set)				
	1010 = Com	pare mode: Ge	nerates softwa	re interrupt on c	compare match	(CCP1IF bit is	set, CCP1 pin				
	1001 = Com	us I/O state)	alizes CCP1 nii	n hiah: on comr	are match for	es CCP1 nin la	w (CCP1IF bit				
	is se	t)		in ngn, on oomp							
	1000 = Com	pare mode: Init	ializes CCP1 p	oin low; on com	pare match, fo	rces CCP1 pin	high (CCP1IF				
	bit is	set)	10th rising a	data							
	0111 = Capi	ure mode: Ever	y 16th rising ed v 4th rising ed	uge ne							
	0101 = Capi	ure mode: Ever	y rising edge	90							
	0100 = Capi	ture mode: Ever	y falling edge								
	0011 = Rese	erved									
	0010 = Com	pare mode: log	gles output on	match (CCP11	F bit is set)						
	0001 = Rest	ture/Compare/P	WM is disabled	d (resets CCP1	module)						
Note 1:	This register is in configured as Re	nplemented only egister 16-1.	y on PIC24FX)	KKL40X/30X de	evices. For all o	ther devices, C	CP1CON is				

2: CCP1M<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCP1 match.

FIGURE 17-4: MSSPx BLOCK DIAGRAM (I^2C^{TM} MASTER MODE)

© 2011-2013 Microchip Technology Inc.

REGISTER 17-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15-8	Unimplemen	Unimplemented: Read as '0'			
bit 7	WCOL: Write	WCOL: Write Collision Detect bit			
	1 = The SSP: in softwar	 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 			
	0 = No collision				
bit 6	SSPOV: MSSPx Receive Overflow Indicator bit ⁽¹⁾				
	 <u>SPI Slave mode:</u> 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read the SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 0 = No overflow 				
bit 5	SSPEN: MSS	Px Enable bit ⁽²⁾			
	1 = Enables serial port and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables serial port and configures these pins as I/O port pins				
bit 4	CKP: Clock P	CKP: Clock Polarity Select bit			
	 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level 				
bit 3-0	SSPM<3:0>: MSSPx Mode Select bits ⁽³⁾				
	1010 = SPI M 0101 = SPI S 0100 = SPI S 0011 = SPI M 0010 = SPI M 0001 = SPI M	laster mode, Clock = Fosc/(2 lave mode, Clock = SCKx pin; lave mode, Clock = SCKx pin laster mode, Clock = TMR2 o laster mode, Clock = Fosc/32 laster mode, Clock = Fosc/8 laster mode, Clock = Fosc/2	* ([SSPxADD] + 1)) ⁽⁴⁾ SSx pin control is disabled, S ; SSx pin control is enabled utput/2	Sx can be used as an I/O pin	
Note 1: In w	Master mode, t riting to the SSF	he overflow bit is not set since PxBUF register.	e each new reception (and tra	nsmission) is initiated by	

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.
- 4: SSPxADD value of 0 is not supported when the Baud Rate Generator is used in SPI mode.

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$

 $TAD = TCY \bullet (ADCS + 1)$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

FIGURE 19-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

25.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 25-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles. 20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е	0.65 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.15	3.25	3.35
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.15	3.25	3.35
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.35	0.40	0.45
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

Т

Timer1	115
Timer2	117
Timer3	119
Oscillator	119
Overflow Interrupt	119
Timer4	123
PR4 Register	123
TMR4 Register	123
TMR4 to PR4 Match Interrupt	123
Timing Diagrams	
Capture/Compare/PWM (ECCP1, ECCP2)	214
CLKO and I/O	212
Example SPI Master Mode (CKE = 0)	215
Example SPI Master Mode (CKE = 1)	216
Example SPI Slave Mode (CKE = 0)	217
Example SPI Slave Mode (CKE = 1)	218
External Clock	210
I ² C Bus Data	219
I ² C Bus Start/Stop Bits	219
MSSPx I ² C Bus Data	222
MSSPx I ² C Bus Start/Stop Bits	221
Timing Requirements	
A/D Conversion	224
Capture/Compare/PWM (ECCP1, ECCP2)	214
CLKO and I/O	212
Comparator	213
Comparator Voltage Reference Settling Time	213
External Clock	210
I ² C Bus Data (Slave Mode)	220
I ² C Bus Data Requirements (Master Mode)	222
I ² C Bus Start/Stop Bits (Master Mode)	221
I ² C Bus Start/Stop Bits (Slave Mode)	219
PLL Clock Specifications	211
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	213
SPI Mode (Master Mode, CKE = 0)	215
SPI Mode (Master Mode, CKE = 1)	216
SPI Slave Mode (CKE = 1)	218
Timing Requirements SPI Mode (Slave Mode,	
CKE = 0)	217

U

UART	149
Baud Rate Generator (BRG)	150
Break and Sync Transmit Sequence	151
IrDA Support	151
Operation of UxCTS and UxRTS Control Pins	151
Receiving in 8-Bit or 9-Bit Data Mode	151
Transmitting in 8-Bit Data Mode	151
Transmitting in 9-Bit Data Mode	151
Unique ID	182
w	

Watchdog Timer (WDT)	184
Windowed Operation	184
WWW Address	257
WWW, On-Line Support	7

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Traden Architecture — Flash Memory Fa Program Memory Product Group – Pin Count — Tape and Reel Fl Temperature Ran Package — Pattern —	PIC 24 F 16 KL4 02 T - 1 / PT - XXX markamily	 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	