

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl401-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:

- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Dual Rail-to-Rail Analog Comparators with Programmable Input/Output Configuration
- On-Chip Voltage Reference

Special Microcontroller Features:

- Operating Voltage Range of 1.8V to 3.6V
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 40 Years Minimum
- Self-Programmable under Software Control
- Programmable Reference Clock Output

- Fail-Safe Clock Monitor (FSCM) Operation:
 - Detects clock failure and switches to on-chip, Low-Power RC (LPRC) oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT):
 - Uses its own Low-Power RC oscillator
 - Windowed operating modes
 - Programmable period of 2 ms to 131s
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via 2 Pins
- Programmable High/Low-Voltage Detect (HLVD)
- Programmable Brown-out Reset (BOR):
 - Configurable for software controlled operation and shutdown in Sleep mode
 - Selectable trip points (1.8V, 2.7V and 3.0V)
 - Low-power 2.0V POR re-arm

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and bussing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F16KL402 family is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KL402 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24F16KL402 FAMILY DEVICES

	PIC24F04KLXXX	PIC24F08KL2XX		PIC24F08KL3XX		PIC24F08KL4XX	PIC24F16KLXXX	
	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash Program Memory (1408 instructions)	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash		GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash		GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table	000000h 00002h 00004h 0000FEh 000100h 000104h 0001FEh 000200h
User Memory Space		Program Memory (2816 instructions)		Program Memory (2816 instructions)	-	Program Memory (2816 instructions)	 Flash Program Memory (5632 instructions)	- 000AFEh
User Me	Unimplemented Read '0'			Unimplemented Read '0'		Unimplemented Read '0'	Unimplemented	002BFEh
				Data EEPROM (256 bytes)	- 	Data EEPROM (512 bytes)	 Read '0' Data EEPROM (512 bytes)	 7FFE00h 7FFF00h 7FFFFFh 800000h
Ī	Reserved	Reserved		Reserved		Reserved	Reserved	800800h
ace	Unique ID	Unique ID		Unique ID		Unique ID	Unique ID	800802h 800808h
lory Sp	Reserved	Reserved		Reserved		Reserved	Reserved	80080Ah
Mem	Device Config Registers	Device Config Registers		Device Config Registers		Device Config Registers	Device Config Registers	F80000h F8000Eh
Configuration Memory Space	Reserved	Reserved		Reserved		Reserved	Reserved	F80010h FEFFFEh
	DEVID (2)	DEVID (2)		DEVID (2)		DEVID (2)	DEVID (2)	FF0000h FFFFFFh

Note: Memory areas are not displayed to scale.

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in the Flash Configuration Word (FOSCSEL); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

PIC24F16KL402 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the power-up timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the BOR Reset does not automatically enable the PWRT.

7.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function, as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit only operates in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note: Even when the BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

7.4.2 DETECTING BOR

When BOR is enabled, the BOR bit (RCON<1>) is always reset to '1' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR and BOR bits are reset to '0' in the software, immediately after any POR event. If the BOR bit is '1' while POR is '0', it can be reliably assumed that a BOR event has occurred.

Note: Even when the device exits from Deep Sleep mode, both the POR and BOR are set.

7.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, BOR remains under hardware control and operates as previously described. However, whenever the device enters Sleep mode, BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
	—		—	—	—	—	HLVDIF				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0				
					U2ERIF ⁽¹⁾	U1ERIF					
bit 7							bit 0				
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15-9	Unimplemen	ted: Read as '	0'								
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrupt	t Flag Status bit	t						
		request has occ									
	0 = Interrupt i	request has not	t occurred								
bit 7-3	Unimplemen	ted: Read as '	0'								
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit ⁽¹⁾							
		request has occ									
	0 = Interrupt i	0 = Interrupt request has not occurred									
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit							
		request has occ									
		request has not									
bit 0	Unimplemented: Read as '0'										

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: This bit is unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

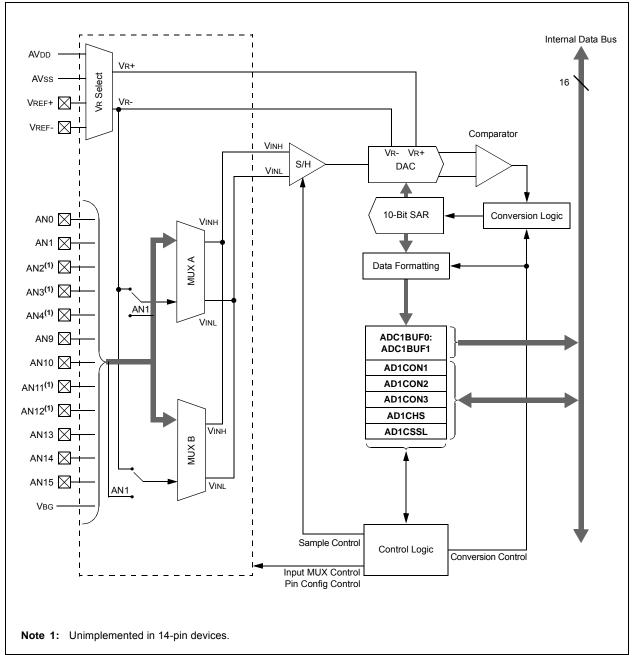
REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	ULPWUIF	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
R = Readable bit -n = Value at POR							nown	

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred


0 = Interrupt request has not occurred

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
ULPEN		ULPSIDL	_	—	_		ULPSINK		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		—	—		—				
bit 7							bit 0		
l							1		
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15	ULPEN: ULP	WU Module En	able bit						
	1 = Module is								
	0 = Module is	disabled							
bit 14	Unimplemen	ted: Read as '	כ'						
bit 13	ULPSIDL: UL	PWU Stop in I	dle Select bit						
				ne device enters	s Idle mode				
	0 = Continues	s module opera	tion in Idle mo	de					
bit 12-9	Unimplemen	ted: Read as '	כ'						
bit 8	ULPSINK: UL	_PWU Current	Sink Enable bi	t					
	1 = Current si	ink is enabled							
	0 = Current si	ink is disabled							
bit 7-0	Unimplemen	ted: Read as '	כ'						

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_		<u> </u>	—	<u> </u>	—	<u> </u>					
pit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0				
oit 7							bit C				
egend:											
R = Reada		W = Writable	bit	U = Unimplem			as '0'				
n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
oit 15-7		ted. Deed oo W	,								
	-	ted: Read as '		_							
oit 6-3		0>: Timer4 Ou	tput Postscale	Select bits							
	1111 = 1:16 1110 = 1:15										
	•	OSISCAIE									
	•										
	•	•									
		0001 = 1:2 Postscale 0000 = 1:1 Postscale									
oit 2	TMR4ON: Tir	ner4 On bit									
	1 = Timer4 is 0 = Timer4 is										
oit 1-0	T4CKPS<1:0	>: Timer4 Cloc	k Prescale Sel	ect bits							
	10 = Prescaler is 16										
	01 = Prescaler is 4										
		-									

REGISTER 15-1: T4CON: TIMER4 CONTROL REGISTER

FIGURE 19-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB	—	—	_	CH0SB3	CH0SB2	CH0SB1	CH0SB0	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA				CH0SA3	CH0SA2	CH0SA1	CH0SA0	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'		
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	iown	
	0111 = Low 0110 = Inter	4 3 2(1) 1(1) 0 er guardband ra er guardband ra rnal band gap re erved; do not us (1) (1)	iil (0.215 * VDI eference (VBG)))				
bit 7	0001 = AN1 0000 = AN0 CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VR-							
bit 6-4	Unimplemented: Read as '0'							
	Unimpleme	nted: Read as '	0'					

REGISTER 19-4: AD1CHS: A/D INPUT SELECT REGISTER

Note 1: Unimplemented on 14-pin devices; do not use.

REGISTER 20-1: CMxCON: COMPARATOR x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0		
CON	COE	CPOL	CLPWR		_	CEVT	COUT		
bit 15			•		•		bit		
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
EVPOL1	⁽¹⁾ EVPOL0 ⁽¹⁾		CREF			CCH1	CCH0		
bit 7							bit		
Legend:									
R = Reada	abla bit	W = Writable	hit		montod bit roo	d aa '0'			
					nented bit, rea				
-n = Value	atPOR	'1' = Bit is se	['0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	CON: Compa	arator Enable b	it						
	•	ator is enabled							
		ator is disabled							
bit 14	COE: Compa	arator Output E	nable bit						
			resent on the C	kOUT pin					
	-	ator output is in	-						
bit 13		•	Polarity Select b	bit					
		ator output is in							
bit 12	-	 0 = Comparator output is not inverted CLPWR: Comparator Low-Power Mode Select bit 							
		•	Low-Power mo						
			perate in Low-Po						
bit 11-10	Unimplemer	Unimplemented: Read as '0'							
bit 9	CEVT: Comp	arator Event bi	t						
	1 = Compara	ator event defir	ned by EVPOL<	1:0> has occu	ırred; subsequ	ent triggers and	interrupts a		
		until the bit is o							
	-	ator event has							
bit 8		parator Output	bit						
	<u>When CPOL</u> 1 = VIN+ > V								
	0 = VIN + < V								
	When CPOL								
	1 = VIN+ < V								
	0 = VIN + > V								
bit 7-6			t/Interrupt Polar						
		rigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) rigger/event/interrupt is generated on the high-to-low transition of the comparator output							
						f the comparato of the comparato			
			t generation is o		Ign transition o		output		
bit 5		nted: Read as	•						
bit 4	-		ice Select bits (non-invertina ii	nput)				
			nects to the inte	-					
			nects to the CxI		J				
Note 1:	If EVPOL<1:0> is	s set to a value	other than '00'.	the first interr	upt generated	will occur on an	y transition c		
	COUT, regardles								
	bits setting.								

2: Unimplemented on 14-pin (PIC24FXXKL100/200) devices.

25.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 25-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

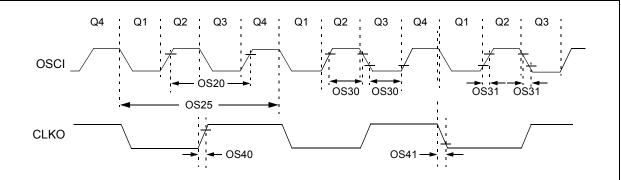
However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

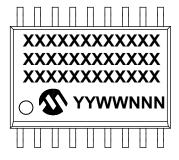

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

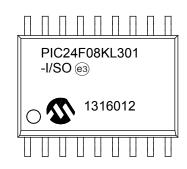
Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP	wa, wa	No Operation	1	1	None
1101	NOP		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
1.01	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wdo	Pop from Top-of-Stack (TOS) to Wdb	1	2	None
	POP.S	WILU	Pop Shadow Registers	1	1	All
סוופע		f	Push f to Top-of-Stack (TOS)	1	1	None
PUSH	PUSH		, ,			
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

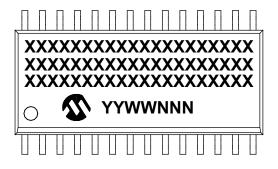
TABLE 26-18: EXTERNAL CLOCK TIMING REQUIREMENTS

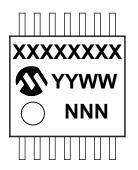

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 8	MHz MHz	EC ECPLL
		Oscillator Frequency	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	—	_		—	See Parameter OS10 for Fosc value
OS25	TCY	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns	

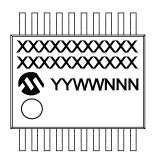
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

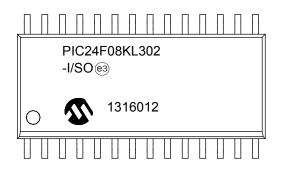

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

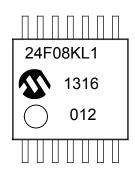
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).


20-Lead SOIC (7.50 mm)

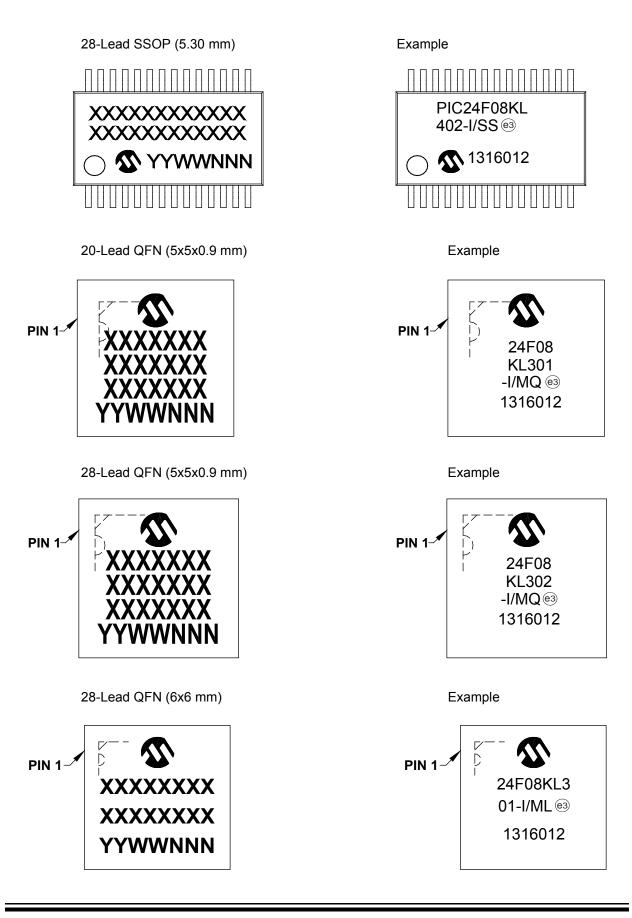

Example


28-Lead SOIC (7.50 mm)


14-Lead TSSOP (4.4 mm)

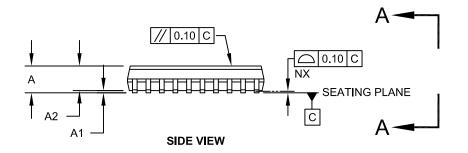

20-Lead SSOP (5.30 mm)

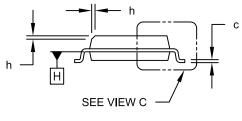
Example



Example

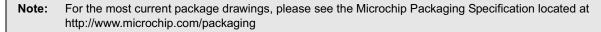
Example

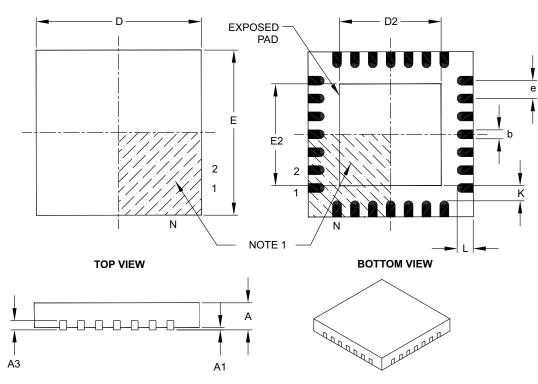



20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW





VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	e		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

NOTES:

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group – Pin Count —— Tape and Reel FI Temperature Rar Package ———		 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	