

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl401-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL302/402

		Pin Number				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
SCK1	15	12	8	I/O	ST	MSSP1 SPI Serial Input/Output Clock
SCL1	12	9	8	I/O	I ² C	MSSP1 I ² C Clock Input/Output
SCLKI	10	7	12	I	ST	Digital Secondary Clock Input
SDA1	13	10	9	I/O	l ² C	MSSP1 I ² C Data Input/Output
SDI1	17	14	11	I	ST	MSSP1 SPI Serial Data Input
SDO1	16	13	9	0	—	MSSP1 SPI Serial Data Output
SOSCI	9	6	11	I	ANA	Secondary Oscillator Input
SOSCO	10	7	12	0	ANA	Secondary Oscillator Output
SS1	12	9	12	0	_	SPI1 Slave Select
T1CK	13	10	9	I	ST	Timer1 Clock
ТЗСК	18	15	12	I	ST	Timer3 Clock
T3G	6	3	11	I	ST	Timer3 External Gate Input
U1CTS	12	9	8	I	ST	UART1 Clear-to-Send Input
U1RTS	13	10	9	0	_	UART1 Request-to-Send Output
U1RX	6	3	12	I	ST	UART1 Receive
U1TX	11	8	11	0	_	UART1 Transmit
ULPWU	3	1	3	I	ANA	Ultra Low-Power Wake-up Input
Vdd	20	17	14	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	2	19	2	Ι	ANA	A/D Reference Voltage Input (+)
VREF-	3	20	3	Ι	ANA	A/D Reference Voltage Input (-)
Vss	19	16	13	Р	—	Ground Reference for Logic and I/O Pins

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-6	: 1	IMER	REGIS	STER N	/IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Re	gister							0000
PR1	0102								Ti	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	—	—	—	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS		0000
TMR2	0106	_	_	—											0000			
PR2	0108	_	_	—	_	_	—	_	—				Timer2 Perio	d Register				00FF
T2CON	010A	—	—	—	—	—	—	—	—	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Re	gister							0000
T3GCON	010E	—	_	—	—	—	—	—	_	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	—	-	-	_	-	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	—	_	—	—	—	—	—	—				Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	—	_	—	—	—	—	—	—	Timer4 Period Register 0						00FF		
T4CON ⁽¹⁾	0116	_	_	_	_	_	_	_	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0(1)	013C	_	_	—	—	_	—	—	—	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	—	—	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	—	—	-	—	—	—	—	—	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	—	—	—	—	_	_	—	—			Capture/C	ompare/PWI	/1 Register	Low Byte			0000
CCPR1H	0194	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	_	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS(1)	0198	_	_	-	_	_	_	_	—	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON ⁽¹⁾	019A	—	_	—	_	_	_	—	—	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	—	_	_	_	_	—			Capture/C	ompare/PWI	/12 Register	Low Byte			0000
CCPR2H	01A0	_	_	—	_	_	_	_	—			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	—	_	_	_	_	—	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	—	_	_	_	—	—	Capture/Compare/PWM3 Register Low Byte						0000		
CCPR3H ⁽¹⁾	01AC	—	—	_		—	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

4.2.5 SOFTWARE STACK

In addition to its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing					
	will concatenate the SRL register to the					
	MSB of the PC prior to the push.					

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6, in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-20 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.

REGISTER 8-25: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	T3GIP2	T3GIP1	T3GIP0	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	plemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	a = Bit is unknown			
bit 15-7	Unimplemen	ted: Read as '0	כי							
bit 6-4	bit 6-4 T3GIP<2:0>: Timer3 External Gate Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can operate as a free-running, interval timer/counter, or serve as the time counter for a software-based Real-Time Clock (RTC). Timer1 is only reset on initial VDD power-on events. This allows the timer to continue operating as an RTC clock source through other types of device Reset.

Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
TON	—	TSIDL	—	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	IGAIE	TCKPS1	TCKPS0	_	ISYNC	ICS	—				
DIL 7							DILU				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	TON: Timer1 1 = Starts 16 0 = Stops 16	On bit S-bit Timer1 S-bit Timer1									
bit 14	Unimplemen	nted: Read as '	Ο'								
bit 13	TSIDL: Time 1 = Discontin 0 = Continue	 SIDL: Timer1 Stop in Idle Mode bit = Discontinues module operation when device enters Idle mode = Continues module operation in Idle mode 									
bit 12-10	Unimplemen	nted: Read as '	כי								
bit 9-8	T1ECS <1:0>	: Timer1 Exter	ded Clock Sel	ect bits ⁽¹⁾							
	11 = Reserve 10 = Timer1 01 = Timer1 00 = Timer1	 11 = Reserved; do not use 10 = Timer1 uses the LPRC as the clock source 01 = Timer1 uses the external clock from T1CK 00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source 									
bit 7	Unimplemen	nted: Read as '	כ'								
bit 6	TGATE: Time <u>When TCS =</u> This bit is ign <u>When TCS =</u> 1 = Gated tir 0 = Gated tir	er1 Gated Time <u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	Accumulation n is enabled n is disabled	Enable bit							
bit 5-4	TCKPS<1:0>	-: Timer1 Input	Clock Prescale	e Select bits							
	11 = 1:256 $10 = 1:64$ $01 = 1:8$ $00 = 1:1$										
bit 3	Unimplemen	nted: Read as '	D'								
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	ect bit						
	When TCS = 1 = Synchro 0 = Does no When TCS = This bit is ign	<u>1:</u> onizes external of ot synchronize e <u>0:</u> ored.	clock input external clock i	nput							
bit 1	TCS: Timer1 1 = Timer1 c 0 = Internal	TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Eosc/2)									
bit 0	Unimplemen	nted: Read as '	כ'								
Note 1:	The T1ECSx bits	are valid only v	when TCS = 1.								

FIGURE 17-4: MSSPx BLOCK DIAGRAM (I^2C^{TM} MASTER MODE)

© 2011-2013 Microchip Technology Inc.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: This feature is is only available for the 16x BRG mode (BRGH = 0).
 - 2: Bit availability depends on pin availability.

REGISTER 19-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	OFFCAL ⁽¹⁾	—	CSCNA	—	—
bit 15							bit 8

R-x	U-0	R/W-0	R/W-0	R/W-0	R/W-0	r-0	R/W-0
r	—	SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVdd	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

bit 12	OFFCAL: Offset Calibration bit ⁽¹⁾
	1 = Conversions to get the offset calibration value

0 =Conversions to get the actual input value

- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for MUX A Input Multiplexer bit
 - 1 = Scans inputs
 - 0 = Does not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 Reserved: Ignore this value
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 =
 - Reserved, do not use (may cause conversion data loss)
 - - 0010 = 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 - 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 **Reserved:** Always maintain as '0'
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 0 = Always uses MUX A input multiplexer settings
- **Note 1:** When the OFFCAL bit is set, inputs are disconnected and tied to AVss. This sets the inputs of the A/D to zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter in this mode. The conversion result is stored by the user software and used to compensate subsequent conversions. This can be done by adding the two's complement of the result obtained with the OFFCAL bit set to all normal A/D conversions.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB	_	—	_	CH0SB3	CH0SB2	CH0SB1	CH0SB0	
bit 15					•	•	bit 8	
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA			_	CH0SA3	CH0SA2	CH0SA1	CH0SA0	
bit 7							bit 0	
[
Legend:								
R = Readab	le bit	W = Writable b	bit U = Unimplemented bit, rea			d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15 bit 14-12	CHONB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VR-							
bit 11 9		Channel 0 Per	sitivo Input Sc	loct for MUX R	Multiployor So	tting bite		
	1111 = AN15 1110 = AN14 1101 = AN13 1100 = AN12 1011 = AN10 1001 = AN9 1000 = Upper 0111 = Lower 0110 = Intern 0101 = Reser 0100 = AN4 ⁽¹⁾ 0011 = AN3 ⁽¹⁾ 0011 = AN3 ⁽¹⁾ 0010 = AN1 0000 = AN0	(1) (1) r guardband rail r guardband rail lal band gap refe rved; do not use l) l)	(0.785 * VDD (0.215 * VDD erence (VBG))				
bit 7	CH0NA: Char 1 = Channel (0 = Channel (nnel 0 Negative) negative input) negative input	Input Select i is AN1 is VR-	for MUX A Multi	iplexer Setting	bit		
bit 6-4	Unimplemen	ted: Read as '0	,					
bit 3-0	CH0SA<3:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits Bit combinations are identical to those for CH0SB<3:0> (above).							

REGISTER 19-4: AD1CHS: A/D INPUT SELECT REGISTER

Note 1: Unimplemented on 14-pin devices; do not use.

NOTES:

21.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

25.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 25-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

26.1 DC Characteristics

FIGURE 26-2: PIC24F16KL402 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED)

TABLE 26-18: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—		—	See Parameter OS10 for Fosc value	
OS25	TCY	Instruction Cycle Time ⁽²⁾	62.5	—	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_		ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.50 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.15	3.25	3.35	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.15	3.25	3.35	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.35 0.40 0.45			
Contact-to-Exposed Pad	K	0.20			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-140B Sheet 2 of 2

Т

Timer1	115
Timer2	117
Timer3	119
Oscillator	119
Overflow Interrupt	119
Timer4	123
PR4 Register	123
TMR4 Register	123
TMR4 to PR4 Match Interrupt	123
Timing Diagrams	
Capture/Compare/PWM (ECCP1, ECCP2)	214
CLKO and I/O	212
Example SPI Master Mode (CKE = 0)	215
Example SPI Master Mode (CKE = 1)	216
Example SPI Slave Mode (CKE = 0)	217
Example SPI Slave Mode (CKE = 1)	218
External Clock	210
I ² C Bus Data	219
I ² C Bus Start/Stop Bits	219
MSSPx I ² C Bus Data	222
MSSPx I ² C Bus Start/Stop Bits	221
Timing Requirements	
A/D Conversion	224
Capture/Compare/PWM (ECCP1, ECCP2)	214
CLKO and I/O	212
Comparator	213
Comparator Voltage Reference Settling Time	213
External Clock	210
I ² C Bus Data (Slave Mode)	220
I ² C Bus Data Requirements (Master Mode)	222
I ² C Bus Start/Stop Bits (Master Mode)	221
I ² C Bus Start/Stop Bits (Slave Mode)	219
PLL Clock Specifications	211
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	213
SPI Mode (Master Mode, CKE = 0)	215
SPI Mode (Master Mode, CKE = 1)	216
SPI Slave Mode (CKE = 1)	218
Timing Requirements SPI Mode (Slave Mode,	
CKE = 0)	217

U

UART	149
Baud Rate Generator (BRG)	150
Break and Sync Transmit Sequence	151
IrDA Support	151
Operation of UxCTS and UxRTS Control Pins	151
Receiving in 8-Bit or 9-Bit Data Mode	151
Transmitting in 8-Bit Data Mode	151
Transmitting in 9-Bit Data Mode	151
Unique ID	182
w	

Watchdog Timer (WDT)	184
Windowed Operation	184
WWW Address	257
WWW, On-Line Support	7