E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl401t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"CPU"** (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by a 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete, but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme, with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing it is not recommended.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 5.5 "Programming Operations"**.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = &progAddr unsigned int offset;</pre>	// Global variable located in Pgm Memory $% \mathcal{T}_{\mathcal{T}}$
//Set up pointer to the first memory location to be written	
<pre>TBLPAG =builtin_tblpage(&progAddr); offset = &progAddr & 0xFFFF;</pre>	// Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0×4058 ;	// Initialize NVMCON
<pre>asm("DISI #5");</pre>	<pre>// Block all interrupts for next 5 // instructions</pre>
builtin_write_NVM();	<pre>// Instructions // C30 function to perform unlock // sequence and set WR</pre>

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

MOV #0x4004, W0 ;	
MOV W0, NVMCON ; Initialize NVMCON	
; Set up a pointer to the first program memory location to be written	
; program memory selected, and writes enabled	
MOV #0x0000, W0 ;	
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR	
MOV #0x6000, W0 ; An example program memory addre	SS
; Perform the TBLWT instructions to write the latches	
; 0th_program_word	
MOV #LOW_WORD_0, W2 ;	
MOV #HIGH_BYTE_0, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; lst_program_word	
MOV #LOW_WORD_1, W2 ;	
MOV #HIGH_BYTE_1, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2 ;	
MOV #HIGH_BYTE_2, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	latch
TBLWTH W3, [W0++] ; Write PM high byte into program	latch
•	
•	
· ·	
; 32nd_program_word	
MOV #LOW_WORD_31, W2 ;	
MOV #HIGH_BYTE_31, W3 ;	
TBLWTL W2, [W0] ; Write PM low word into program	
TBLWTH W3, [W0] ; Write PM high byte into program	latch

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in the Flash Configuration Word (FOSCSEL); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

PIC24F16KL402 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the power-up timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the BOR Reset does not automatically enable the PWRT.

7.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function, as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit only operates in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note: Even when the BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

10.4 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted, synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.5 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing, with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMD bits are used.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode. This enhances power savings for extremely critical power applications.

REGISTER 17-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:							
R = Read	lable bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Valu	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow						
bit 15-8	Unimple	mented: Read as '0'					
bit 7	WCOL: \	Nrite Collision Detect bit					
		0	while it is still transmitting the	e previous word (must be cleared			
	in sc 0 = No c	ftware)					
bit 6		MSSPx Receive Overflow In	diaatar hit(1)				
DILO	SPI Slav						
			SPxBUF register is still holding	the previous data. In case of over-			
				ave mode. The user must read the			
			ng data, to avoid setting overflo	ow (must be cleared in software).			
	0 = No o						
bit 5		MSSPx Enable bit ⁽²⁾					
		bles serial port and configures bles serial port and configure	s SCKx, SDOx, SDIx and \overline{SSx}	as serial port pins			
bit 4		ock Polarity Select bit					
DIL 4		state for clock is a high level					
		state for clock is a low level					
bit 3-0	SSPM<3	:0>: MSSPx Mode Select bit	_S (3)				
	1010 = \$	SPI Master mode, Clock = Fo	osc/(2 * ([SSPxADD] + 1)) ⁽⁴⁾				
	0101 = 5	SPI Slave mode, Clock = SCk	(x pin; SSx pin control is disabl	ed, $\overline{\text{SSx}}$ can be used as an I/O pin			
			<pre>Kx pin; SSx pin control is enab ABA subset/0</pre>	led			
		SPI Master mode, Clock = TN SPI Master mode, Clock = Fc	•				
		SPI Master mode, Clock = Fo					
		SPI Master mode, Clock = Fo					
Note 1:	In Master mo	de the overflow bit is not se	t since each new reception (ar	nd transmission) is initiated by			
		SSPxBUF register.					
•	- \\\/h======h=h=	-	why according used as instant on a star				

- 2: When enabled, these pins must be properly configured as input or output.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.
- 4: SSPxADD value of 0 is not supported when the Baud Rate Generator is used in SPI mode.

REGISTER 17-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—		—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Read		W = Writable bi	t	-	ented bit, read		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	-	ted: Read as '0'					
bit 7		e Collision Detect	bit				
	$\frac{\text{In Master Tra}}{1 = A \text{ write}}$	i <u>nsmit mode:</u> to the SSPxBUF	register wa	s attempted wh	ile the l^2 C co	nditions were r	not valid for a
		sion to be started					
	0 = No collis	ion					
	In Slave Tran					.,	
	1 = The SSP 0 = No collisi	xBUF register is w ion	ritten while it is	s still transmitting	the previous wo	rd (must be clea	red in software)
		ode (Master or SI	ave modes):				
	This is a "don						
bit 6	SSPOV: MSS	SPx Receive Over	flow Indicator	bit			
	In Receive m						
	1 = A byte is 0 = No overf	received while the low	SSPxBUF reg	ister is still holding	g the previous by	/te (must be clea	ired in software)
	In Transmit m						
		n't care" bit in Trar	smit mode.				
bit 5	SSPEN: MSS	SPx Enable bit ⁽¹⁾					
		the serial port and the serial port and				serial port pins	
bit 4		Release Control bi	-	lese pills as i/O	port pins		
DIL 4	In Slave mod		ι				
	1 = Releases						
	0 = Holds clo	ck low (clock strei	ch); used to e	ensure data setu	ıp time		
	In Master mo						
	Unused in thi		(2)				
bit 3-0		MSSPx Mode Se					
		lave mode, 10-bit lave mode, 7-bit a					
		irmware Controlle				labica	
	1000 = I ² C N	laster mode, Cloc	k = Fosc/(2 *		1)) ⁽³⁾		
		lave mode, 10-bit lave mode, 7-bit a					
	$\mathbf{U} \mathbf{T} \mathbf{U} = \mathbf{L} \mathbf{C} \mathbf{S}$	nave moue, 7-bit a	auuress				
Note 1:		d, the SDAx and S	-	-	-		
2:	Bit combination	ons not specifically	y listed here a	are either reserv	ed or implemen	ted in SPI mode	e only.

SSPxADD values of 0, 1 or 2 are not supported when the Baud Rate Generator is used with I²C mode.

REGISTER 17-7: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C[™] MODE)

bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	cknowledge sec ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	set on the 8 th ing edge of the	x = Bit is unkr	
R-0ACKTIM(2)bit 7Legend:R = Readable bit-n = Value at PObit 15-8Uibit 7Aubit 6PCbit 5SCbit 5SCbit 4Bi $\frac{12}{1}$ bit 3SIbit 3SIbit 2SI	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	R/W-0 DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
ACKTIM(2)bit 7Legend: R = Readable bit -n = Value at PObit 15-8Ui bit 7bit 5Si 0bit 6Pi 0bit 5Si 0bit 4 $\frac{12}{1}$ 0bit 3Si 0bit 3Si 0bit 2Si 	PCIE R R CKTIM: Ack Indicates Not an Ac CIE: Stop C Enables in Stop dete CIE: Start C Enables in Start dete OEN: Buffer CMaster m is bit is igno	SCIE W = Writable '1' = Bit is set ated: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru nterrupt on det ection interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	BOEN bit 0' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	SDAHT U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	SBCDE nented bit, read ared set on the 8 th	AHEN d as '0' x = Bit is unki	DHEN bit (
bit 7 Legend: R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 A(bit 6 P(1 0 bit 5 S(1 0 bit 5 S(1 0 bit 4 B(1 0 bit 3 S(0 bit 3 S(0 bit 2 S(1 0 0 bit 2 S(1 0 0 0 0 0 0 0 0 0 0 0 0 0	R CKTIM: Ack Indicates Not an Act Indicates Not an Act CIE : Stop C Enables in Stop dete CIE : Start C Enables in Start dete DEN: Buffer <u>C Master m</u> is bit is igno	W = Writable '1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge set ondition Interru- nterrupt on det- ction interrupts condition Interru- nterrupt on det- ction interrupts r Overwrite Ena- tode:	bit e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	U = Unimpler '0' = Bit is cle edge sequence, d on the 9 th risi p condition	nented bit, read ared set on the 8 th ing edge of the	d as '0' x = Bit is unkr falling edge of f	nown
Legend: R = Readable bit rn = Value at PO bit 15-8 Ui bit 7 AC bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr	nown
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr	
R = Readable bit -n = Value at PO bit 15-8 Ui bit 7 Ac bit 6 PC bit 5 SC bit 4 BC $\frac{ 2 }{1}$ bit 3 SC bit 2 SC 1	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr	
bit 15-8 Ui bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 5 S bit 5 S bit 4 B $\frac{ 2 }{1}$ bit 3 SI bit 2 SI bit 2 SI	R CKTIM: Ack = Indicates = Not an Acc CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> nis bit is igno	'1' = Bit is set ited: Read as ' knowledge Tim- the I ² C bus is i cknowledge sec ondition Interru- nterrupt on det- ection interrupts condition Interru- nterrupt on det- ection interrupts r Overwrite Ena- tode:	o' e Status bit ⁽²⁾ n an Acknowle quence, cleare upt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	'0' = Bit is cle edge sequence, d on the 9 th risi p condition 1) tart or Restart o	ared set on the 8 th ing edge of the	x = Bit is unkr	
bit 15-8 Ui bit 7 A bit 7 A bit 6 P bit 6 P bit 5 S bit 4 B bit 4 B $ ^2($ 1 bit 3 SI 0 bit 2 SI 1	nimplemen CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete OEN: Buffer <u>C Master m</u> nis bit is igno	Ated: Read as the knowledge Time the I ² C bus is in the chowledge set to the chowledge set	0' e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹ upt Enable bit ection of the S are disabled ⁽¹	edge sequence, d on the 9 th risi p condition l) tart or Restart o	set on the 8 th ing edge of the	falling edge of f	
bit 7 Au bit 6 Pi bit 6 Pi bit 5 Si bit 4 Bi $\frac{ 2 }{1}$ bit 3 Si bit 2 Si	CKTIM: Ack = Indicates = Not an Ac CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> nis bit is igno	knowledge Tim the I ² C bus is i cknowledge sec ondition Interru nterrupt on det condition Interrupts condition Interru nterrupt on det ection interrupts r Overwrite Ena	e Status bit ⁽²⁾ n an Acknowle quence, cleare pt Enable bit ection of a Sto are disabled ⁽¹⁾ upt Enable bit ection of the S are disabled ⁽¹⁾	d on the 9 th risi p condition) tart or Restart o	ing edge of the		the SCLx cloc
bit 6 PC bit 5 SC bit 5 SC bit 4 BC $\frac{1}{0}$ bit 4 BC $\frac{1}{2}$ Th $\frac{1}{2}$ 1 0 bit 3 SC 0 bit 3 SC 1 1 1 1 1 1 1 1 1 1 1 1 1	CIE: Stop C = Enables in = Stop dete CIE: Start C = Enables in = Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ondition Interru nterrupt on det ction interrupts condition Interru nterrupt on det ction interrupts r Overwrite Ena	ipt Enable bit ection of a Sto are disabled ⁽¹ ipt Enable bit ection of the S are disabled ⁽¹	p condition) tart or Restart c			
bit 5 SC 1 0 bit 4 BC $\frac{1^2}{1^2}$ $\frac{1^2}{1^2}$ bit 3 SC 1 0 bit 3 SC 1 0 1 0 1 1 1 1 1 1 1 1	CIE: Start C = Enables in = Start dete DEN: Buffen <u>C Master m</u> his bit is igno	condition Interrunt nterrupt on det ection interrupts r Overwrite Ena	upt Enable bit ection of the S are disabled ⁽¹	tart or Restart o	conditions		
bit 4 $\begin{bmatrix} 1^2 \\ 1^2 \\ 1 \end{bmatrix}$ bit 3 SI bit 2 SI	= Start dete DEN: Buffer <u>C Master m</u> his bit is igno	ection interrupts r Overwrite Ena lode:	are disabled ⁽¹		conditions		
bit 3 SI bit 2 SI 1	<u>C Master m</u> nis bit is igno	ode:	able bit				
Th I2 1 0 bit 3 SI 0 1 0 0 bit 2 SI 1 1	nis bit is igno						
bit 3 SI 0 1 0 1 0 1 0 1		ored.					
bit 3 SI 1 0 bit 2 SI 1	of the SS		the BF bit = 0		eceived addres	s/data byte, igr	noring the stat
0 bit 2 SI	DAHT: SDA	x Hold Time Se	election bit				
1				after the falling			
	BCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (Sla	ve mode only)		
0		slave bus collis s collision interr		led			
bit 1 AI	HEN: Addre	ess Hold Enable	e bit (Slave mo	ode only)			
	SSPxCO		l be cleared an	x for a matchin nd SCLx will be		ress byte; the	CKP bit of th
		Hold Enable bit		only)			
1	 Following of the SS 	g the 8th falling	-	for a received	data byte; slave	e hardware clea	ars the CKP b
Note 1: This b enable	= Data hold	SPxCON1 regis ding is disabled					

2: The ACKTIM status bit is active only when the AHEN bit or DHEN bit is set.

REGISTER 19-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	OFFCAL ⁽¹⁾		CSCNA	—	—
bit 15							bit 8

R-x	U-0	R/W-0	R/W-0	R/W-0	R/W-0	r-0	R/W-0
r	—	SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVdd	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
lxx	AVDD	AVss

bit 12	OFFCAL: Offset Calibration bit ⁽¹⁾						
	1 = Conversions to get the offset calibration value						

0 =Conversions to get the actual input value

- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for MUX A Input Multiplexer bit
 - 1 = Scans inputs
 - 0 = Does not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 Reserved: Ignore this value
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 =
 - Reserved, do not use (may cause conversion data loss)
 - - 0010 = 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 - 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 **Reserved:** Always maintain as '0'
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 0 = Always uses MUX A input multiplexer settings
 - 0 Always uses MOX A input multiplexer settings
- **Note 1:** When the OFFCAL bit is set, inputs are disconnected and tied to AVss. This sets the inputs of the A/D to zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter in this mode. The conversion result is stored by the user software and used to compensate subsequent conversions. This can be done by adding the two's complement of the result obtained with the OFFCAL bit set to all normal A/D conversions.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
bit 7							bit (
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	1 = A/D interr	onversion Cloo nal RC clock rived from syste						
bit 14	1 = A/D is stil	tended Sampliı II sampling afte ished sampling	r SAMP = 0					
bit 13	1 = Charge p	arge Pump En ump for switch ump for switch	es is enabled					
bit 12-8	0 = Charge pump for switches is disabled SAMC<4:0>: Auto-Sample Time bits 11111 = 31 TAD • • • • • • • • • • • • •							
bit 7-6	Unimplement	ted: Maintain a	s '0'					
bit 5-0	ADCS<5:0>: 1 11111 = 64 • 11110 = 63 • • • • • • • • • • • • • • • • • • •	Тсү	n Clock Select	bits				

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾		
_	_	—	—	BSS2	BSS1	BSS0	BWRP		
bit 7 b									
Legend:									
R = Readable	bit	C = Clearable	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 7-4	Unimplement	ted: Read as 'o)'						
bit 3-1	BSS<2:0>: Bo	oot Segment P	rogram Flash (Code Protectior	n bits ⁽¹⁾				
	110 = Standa	rd security Boo	t Segment sta	ory space is Ge rts at 0200h, er	nds at 0AFEh				
	100 = Reserv	ed	t Segment sta	rts at 0200h, er	nds at 15FEh ⁽²⁾				
		ecurity Boot Se		t 0200h, ends a					
	001 = High-security Boot Segment starts at 0200h, ends at 15FEh ⁽²⁾ 000 = Reserved								
bit 0	BWRP: Boot	Segment Progr	am Flash Write	e Protection bit	(1)				
	1 = Boot Segr	ment may be w	ritten						
	0 = Boot Segment is write-protected								

REGISTER 23-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

- **Note 1:** Code protection bits can only be programmed by clearing them. They can be reset to their default factory state ('1'), but only by performing a bulk erase and reprogramming the entire device.
 - **2:** This selection is available only on PIC24F16KL40X devices.

REGISTER 23-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾
—		—	—	—	—	GSS0	GWRP
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'	
------------------------------------	--

bit 1	GSS0: General Segment Code Flash Code Protection bit ⁽¹⁾
-------	--

- 1 = No protection
- 0 = Standard security is enabled
- bit 0 **GWRP:** General Segment Code Flash Write Protection bit⁽¹⁾
 - 1 = General Segment may be written
 - 0 = General Segment is write-protected

Note 1: Code protection bits can only be programmed by clearing them. They can be reset to their default factory state ('1'), but only by performing a bulk erase and reprogramming the entire device.

23.4 Watchdog Timer (WDT)

For the PIC24F16KL402 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

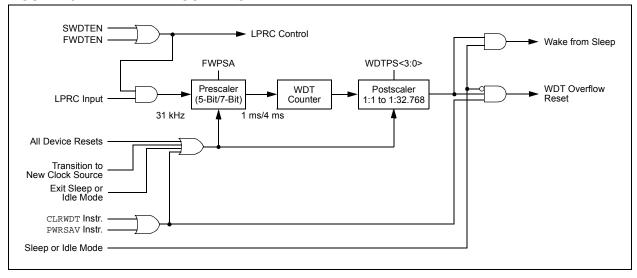
- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Time-out Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions							
	clear the prescaler and postscaler counts							
	when executed.							

23.4.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction, executed before that window, causes a WDT Reset similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

23.4.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWTEN<1:0> bits are set to '01', the WDT is enabled only in Run and Idle modes, and is disabled in Sleep. Software control of the WDT SWDTEN bit (RCON<5>) is disabled with this setting.

TABLE 26-19: PLL CLOCK TIMING SPECIFICATIONS

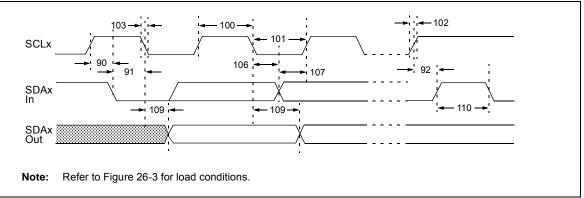
AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Sym Characteristic ⁽¹⁾		Min Typ ⁽²⁾ Max Units		Conditions				
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-20: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS										
Param No.	Characteristic	Min	Тур	Max	Units	s Conditions				
F20	FRC @ 8 MHz ⁽¹⁾	-2	_	+2	%	+25°C	$3.0V \leq V\text{DD} \leq 3.6V$			
		-5	_	+5	%	$-40^\circ C \le T \texttt{A} \le +85^\circ C$	$1.8V \leq V\text{DD} \leq 3.6V$			
		-10		+10	%	$-40^\circ C \le T A \le +125^\circ C$	$1.8V \leq V\text{DD} \leq 3.6V$			
F21	LPRC @ 31 kHz ⁽²⁾	-15	_	+15	%	$-40^\circ C \le T \texttt{A} \le +85^\circ C$	$1.8V \leq V\text{DD} \leq 3.6V$			
		-25	_	+25	%	$-40^\circ C \leq TA \leq +125^\circ C$	$1.8V \leq V\text{DD} \leq 3.6V$			

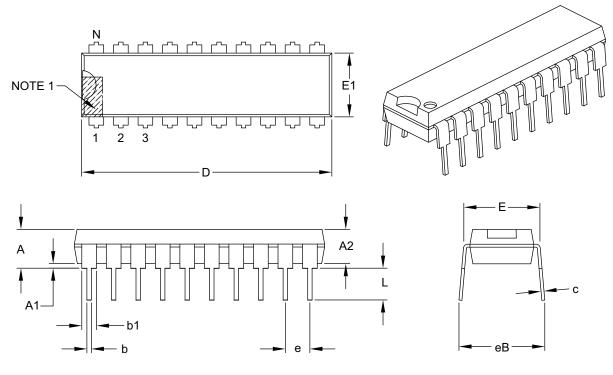

Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 26-21: INTERNAL RC OSCILLATOR SPECIFICATIONS

			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions	
	TFRC	FRC Start-up Time	—	5	_	μS		
	TLPRC	LPRC Start-up Time	—	70	_	μS		

FIGURE 26-14: MSSPx I²C[™] BUS DATA TIMING


TABLE 26-34: I²C[™] BUS DATA REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—		
			400 kHz mode	2(Tosc)(BRG + 1)	—		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)			
			400 kHz mode	2(Tosc)(BRG + 1)	—	_	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	_	Only relevant for Repeated
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	—	Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)			After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	—	clock pulse is generated
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input	100 kHz mode	250		ns	(Note 1)
		Setup Time	400 kHz mode	100	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	—	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	_	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
D102	Св	Bus Capacitive L	oading		400	pF	

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter 102 + Parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

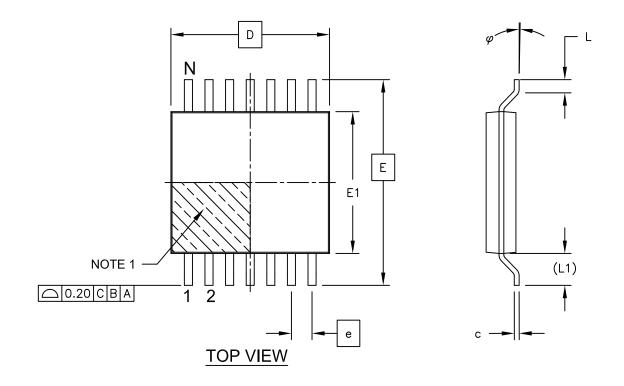
	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	_	.430

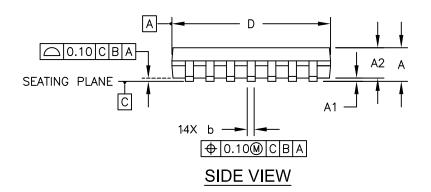
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

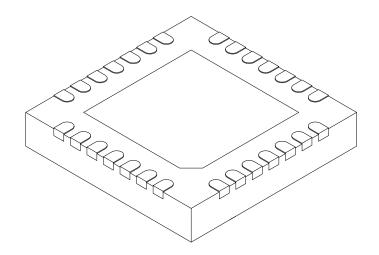

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	nits MIN NOM M		MAX
Number of Pins	N	28		
Pitch	е	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E	5.00 BSC		
Exposed Pad Width	E2	3.15	3.25	3.35
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.15	3.25	3.35
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.35	0.40	0.45
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-140B Sheet 2 of 2

INDEX

1	•
•	١

A/D	
10-Bit High-Speed A/D Converter	157
Conversion Timing Requirements	224
Module Specifications	223
A/D Converter	
Analog Input Model	164
Transfer Function	165
AC Characteristics	
A/D Module	223
Capacitive Loading Requirements on	
Output Pins	209
Internal RC Oscillator Accuracy	211
Internal RC Oscillator Specifications	211
Load Conditions and Requirements	209
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	158
16-Bit Timer1	115
Accessing Program Memory with	
Table Instructions	
CALL Stack Frame	43
Capture Mode Operation	126
Comparator Module	
Comparator Voltage Reference Module	171
Compare Mode Operation	
CPU Programmer's Model	
Data Access From Program Space	
Address Generation	44
Data EEPROM Addressing with TBLPAG and	
NVM Registers	55
Enhanced PWM Mode	127
High/Low-Voltage Detect (HLVD) Module	173
Individual Comparator Configurations	168
MCLR Pin Connections Example	
MSSPx Module (I ² C Master Mode)	137
MSSPx Module (I ² C Mode)	
MSSPx Module (SPI Mode)	
PIC24F CPU Core	
PIC24F16KL402 Family (General)	13
PSV Operation	46
PWM Operation (Simplified)	126
Recommended Minimum Connections	
Reset System	
Serial Resistor	107
Shared I/O Port Structure	111
Simplified UARTx	149
SPI Master/Slave Connection	136
Suggested Placement of Oscillator Circuit	
System Clock	
Table Register Addressing	
Timer2	117
Timer3	119
Timer4	
Watchdog Timer (WDT)	184

С

C Compilers
MPLAB XC Compilers 188
Capture/Compare/PWM (CCP) 125
CCP/ECCP
CCP I/O Pins 125
Timer Selection 125
Code Examples
Data EEPROM Bulk Erase 57
Data EEPROM Unlock Sequence 53
Erasing a Program Memory Row,
Assembly Language 50
Erasing a Program Memory Row, C Language 51
I/O Port Write/Read (Assembly Language) 114
I/O Port Write/Read (C Language) 114
Initiating a Programming Sequence,
Assembly Language 52
Initiating a Programming Sequence, C Language 52
Loading the Write Buffers, Assembly Language 51
Loading the Write Buffers, C Language 52
PWRSAV Instruction Syntax 105
Reading Data EEPROM Using the
TBLRD Command58
Sequence for Clock Switching
Single-Word Erase
Single-Word Write to Data EEPROM 57
Ultra Low-Power Wake-up Initialization 107
Code Protection
Comparator
Comparator Voltage Reference
Configuring
Configuration Bits
Core Features
CPU
ALU
Control Registers
Core Registers
Programmer's Model
Customer Change Notification Service
Customer Support
D

Data EEPROM Memory	53
Erasing	56
Nonvolatile Memory Registers	
NVMCON	53
NVMKEY	53
NVMADR(U)	55
Operations	55
Programming	
Bulk Erase	57
Reading Data EEPROM	58
Single-Word Write	57
Data Memory	
Address Space	33
Memory Map	33
Near Data Space	34
Organization	34
SFR Space	34
Software Stack	43
Space Width	33

DC Characteristics	
BOR Trip Points	
Comparator	
Comparator Voltage Reference	
Data EEPROM Memory	
High/Low-Voltage Detect	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Device Features for PIC24F16KL20X/10X	
Devices (Summary)	
Device Features for PIC24F16KL40X/30X	
Devices (Summary)	11

Е

Electrical Characteristics	
Absolute Maximum Ratings	199
Thermal Operating Conditions	201
Thermal Packaging Characteristics	201
V/F Graph, Extended2	200
V/F Graph, Industrial	200
Enhanced CCP	125
Equations	
A/D Conversion Clock Period	164
UARTx Baud Rate with BRGH = 0	150
UARTx Baud Rate with BRGH = 1	150
Errata	7
Examples	
Baud Rate Error Calculation (BRGH = 0)	150

F

Flash Program Memory	
Control Registers	
Enhanced ICSP Operation	
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	

G

Inter-Integrated Circuit. See I ² C.	
Internet Address	257
Interrupt Sources	
TMR3 Overflow	119
TMR4 to PR4 Match (PWM)	123
Interrupts	
Alternate Interrupt Vector Table (AIVT)	65
Control and Status Registers	68
Implemented Vectors	67
Interrupt Vector Table (IVT)	65
Reset Sequence	65
Setup Procedures	
Trap Vectors	67
Vector Table	66

Μ

Master Synchronous Serial Port (MSSP) 13	
I/O Pin Configuration for SPI1	35
Microchip Internet Web Site	57
MPLAB Assembler, Linker, Librarian	88
MPLAB ICD 3 In-Circuit Debugger 18	89
MPLAB PM3 Device Programmer18	89
MPLAB REAL ICE In-Circuit Emulator System 18	89
MPLAB X Integrated Development	
Environment Software1	87
MPLAB X SIM Software Simulator 18	89
MPLIB Object Librarian 18	88
MPLINK Object Linker 18	88

Ν

Near Data	Space	34

0

101
101
102
119

Ρ

Packaging	
Details	228
Marking	225
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Descriptions	
PIC24F16KL20X/10X Devices	18
PIC24F16KL40X/30X Devices	14
Power-Saving	109
Power-Saving Features	105
Clock Frequency, Clock Switching	105
Coincident Interrupts	106
Instruction-Based Modes	105
Idle	106
Sleep	106
Selective Peripheral Control	109
Ultra Low-Power Wake-up (ULPWU)	107
Product Identification System	259
Program and Data Memory	
Access Using Table Instructions	45
Program Space Visibility	46
Program and Data Memory Spaces	
Addressing	43
Interfacing	43