

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХЕ

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

; Set up NVMCON for :	row erase operation	
MOV #0x40	58, WO ;	
MOV W0, N	VMCON ;	Initialize NVMCON
; Init pointer to ro	w to be ERASED	
MOV #tblp	age(PROG_ADDR), W0 ;	
MOV W0, T	BLPAG ;	Initialize PM Page Boundary SFR
MOV #tblo	<pre>ffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0, [w0] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0x55	, WO	
MOV W0, N	VMKEY ;	Write the 55 key
MOV #0xAA	, W1 ;	
MOV W1, N	VMKEY ;	Write the AA key
BSET NVMCO	N, #WR ;	Start the erase sequence
NOP	i	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device has been in Sleep mode

 0 = Device has not been in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device has been in Idle mode

 0 = Device has not been in Idle mode

 0 = Device has not been in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred (the BOR is also set after a POR)

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator **Configuration**".

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Interrupt Controller, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It has the following features:

- Up to eight processor exceptions and software traps
- · Seven user-selectable priority levels
- · Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

8.1 Interrupt Vector Table (IVT)

The IVT is shown in Figure 8-1. The IVT resides in the program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24F16KL402 family devices implement 32 non-maskable traps and unique interrupts; these are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE (AIVT)

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the Program Counter (PC) to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects the program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

8.3 Interrupt Control and Status Registers

Depending on the particular device, the PIC24F16KL402 family of devices implements up to 28 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC7, ICP9, IPC12, ICP16, ICP18 and IPC20
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIV table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU priority level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All interrupt registers are described in Register 8-3 through Register 8-30, in the following sections.

PIC24F16KL402 FAMILY

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Logond:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •
- •

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24F16KL402 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip, 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24F16KL402 FAMILY CLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-7	Unimplemen	ted: Read as '	כי				
bit 6-3	T2OUTPS<3:	0>: Timer2 Ou	tput Postscale	Select bits			
	1111 = 1:16 F	Postscale					
	1110 = 1:15 F	Postscale					
	•						
	•						
	0001 = 1:2 Po	ostscale					
	0000 = 1:1 Po	ostscale					
bit 2	bit 2 TMR2ON: Timer2 On bit						
	1 = Timer2 is	on					
hit 1 0			k Dracacla Sal	aat hita			
DIL 1-0			K Prescale Sel	ectons			
	01 = Prescale	eris 4					
	00 = Prescale	er is 1					

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

PIC24F16KL402 FAMILY

REGISTER 17-10: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

11.0	11.0	11.0	11.0				
0-0	0-0	0-0	0-0	K/VV-U	K/VV-U	K/VV-U	K/VV-U
	—	—		SDO2DIS()	SCK2DIS()	SDO1DIS	SCK1DIS
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—			—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-12	Unimplement	ted: Read as 'd)'				
bit 11	SDO2DIS: MS	SSP2 SDO2 Pi	n Disable bit ⁽¹⁾				
	1 = The SPI	output data (SD	O2) of MSSP2	2 to the pin is di	isabled		
	0 = The SPI	output data (SE	002) of MSSP2	2 is output to the	e pin		
bit 10	SCK2DIS: MS	SSP2 SCK2 Pir	n Disable bit ⁽¹⁾				
	1 = The SPI	clock (SCK2) o	f MSSP2 to the	e pin is disabled	ł		
	0 = The SPI	clock (SCK2) o	f MSSP2 is out	put to the pin			
bit 9	bit 9 SD01DIS: MSSP1 SD01 Pin Disable bit						
	1 = The SPI	output data (SD	O1) of MSSP1	I to the pin is di	isabled		
	0 = The SPI output data (SDO1) of MSSP1 is output to the pin						
bit 8	SCK1DIS: MS	SSP1 SCK1 Pir	n Disable bit				
	1 = The SPI	clock (SCK1) o	f MSSP1 to the	e pin is disabled	ł		
	0 = The SPI	clock (SCK1) o	f MSSP1 is out	put to the pin			
bit 7-0	Unimplement	ted: Read as 'o)'				

Note 1: These bits are implemented only on PIC24FXXKL40X/30X devices.

PIC24F16KL402 FAMILY

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$

 $TAD = TCY \bullet (ADCS + 1)$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

FIGURE 19-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

20.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator module, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710).

Depending on the particular device, the comparator module provides one or two analog comparators. The inputs to the comparator can be configured to use any one of up to four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator. The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is displayed in Figure 20-1. Diagrams of the possible individual comparator configurations are displayed in Figure 20-2.

Each comparator has its own control register, CMxCON (Register 20-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 20-2).

FIGURE 20-1: COMPARATOR MODULE BLOCK DIAGRAM

23.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the "dsPIC33/PIC24 Family Reference Manual" provided below:
 "Watchdog Timer (WDT)" (DS39697)
 - "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
 - "Programming and Diagnostics" (DS39716)

PIC24F16KL402 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Factory Programmed Unique ID

23.1 Code Protect Security Options

The Boot Segment (BS) and General Segment (GS) are two segments on this device with separate programmable security levels. The Boot Segment, configured via the FBS Configuration register, can have three possible levels of security:

- No Security (BSS = 111): The Boot Segment is not utilized and all addresses in program memory are part of the General Segment (GS).
- Standard Security (BSS = 110 or 101): The Boot Segment is enabled and code-protected, preventing ICSP reads of the Flash memory. Standard security also prevents Flash reads and writes of the BS from the GS. The BS can still read and write to itself.
- High Security (BSS = 010 or 001): The Boot Segment is enabled with all of the security provided by Standard Security mode. In addition, in High-Security mode, there are program flow change restrictions in place. While executing from the GS, program flow changes that attempt to enter the BS (e.g., branch (BRA) or CALL instructions) can only enter the BS at one of the first 32 instruction locations (0x200 to 0x23F). Attempting to jump into the BS at an instruction higher than this will result in an Illegal Opcode Reset.

The General Segment, configured via the FGS Configuration register, can have two levels of security:

- No Security (GSS0 = 1): The GS is not code-protected and can be read in all modes.
- Standard Security (GSS0 = 0): The GS is code-protected, preventing ICSP reads of the Flash memory.

For more detailed information on these Security modes, refer to the *"dsPlC33/PlC24 Family Reference Manual"*, **"CodeGuard™ Security"** (DS70199).

23.2 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location, F80000h. A complete list is provided in Table 23-1. A detailed explanation of the various bit functions is provided in Register 23-1 through Register 23-7.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 23-1:	CONFIGURATION REGISTERS
	LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions:} & 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \end{array} $					
Parameter No.	Units Conditions							
Module Differential Current (∆IPD)								
DC71	0.21	0.65	μA	1.8V	+82°C			
	0.45	0.95	μA	3.3V	+00 C	Watchdog Timer Current:		
	—	1.30	μA	1.8V	±125°C	∆WDT ^(2,3)		
	—	1.50	μA	3.3V	+125 C			
DC72	0.69	1.50	μA	1.8V	+85°C	32 kHz Crystal with Timer1:		
	1.00	1.50	μA	3.3V	+05 C	\triangle SOSC (SOSCSEL = 0) ⁽²⁾		
DC75	5.24	—	μA	1.8V	+85°C			
	5.16	11.00	μA	3.3V	105 0	<u>лні \/D(2,3)</u>		
	_	12.00	μA	1.8V	+125°C			
	—	15.00	μA	3.3V	123 0			
DC76	4.15	9.00	μA	3.3V	+85°C	ABOD(2,3)		
		11.0	μA	3.3V	+125°C	ABOR		
DC78	0.03	0.20	μA	1.8V	+85°C			
	0.03	0.20	μA	3.3V	+00 C			
		0.40	μA	1.8V	+125°C			
		0.40	μA	3.3V	123 0			

TABLE 26-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: This current applies to Sleep only.

26.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24F16KL402 Family AC characteristics and timing parameters.

TABLE 26-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
	Operating voltage VDD range as des	scribed in Section 26.1 "DC Characteristics".

FIGURE 26-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC24F16KL402 FAMILY

TABLE 26-28: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35		ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	FSCK	SCKx Frequency	_	10	MHz	

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension Lim	nits	MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	C1		5.90		
Contact Pad Width (X14)	X1			0.45	
Contact Pad Length (X14)	Y1			1.45	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13