

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

		Pin N	umber				
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description
AN0	2	19	2	27	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL30X
AN1	3	20	3	28	I	ANA	family devices.
AN2	4	1	4	1	I	ANA	
AN3	5	2	5	2	I	ANA	
AN4	6	3	6	3	Ι	ANA	
AN5	_	_	7	4	Ι	ANA	
AN9	18	15	26	23	I	ANA	
AN10	17	14	25	22	Ι	ANA	
AN11	16	13	24	21	Ι	ANA	
AN12	15	12	23	20	Ι	ANA	
AN13	7	4	9	6	Ι	ANA	
AN14	8	5	10	7	I	ANA	
AN15	9	6	11	8	I	ANA	
ASCL1	_	_	15	12	I/O	I ² C™	Alternate MSSP1 I ² C Clock Input/Output
ASDA1	_	_	14	11	I/O	l ² C	Alternate MSSP1 I ² C Data Input/Output
AVdd	20	17	28	25	Ι	ANA	Positive Supply for Analog modules
AVss	19	16	27	24	Ι	ANA	Ground Reference for Analog modules
CCP1	14	11	20	17	I/O	ST	CCP1/ECCP1 Capture Input/Compare and PWM Output
CCP2	15	12	23	20	I/O	ST	CCP2 Capture Input/Compare and PWM Output
CCP3	13	10	19	16	I/O	ST	CCP3 Capture Input/Compare and PWM Output
C1INA	8	5	7	4	I	ANA	Comparator 1 Input A (+)
C1INB	7	4	6	3	I	ANA	Comparator 1 Input B (-)
C1INC	5	2	5	2	I	ANA	Comparator 1 Input C (+)
C1IND	4	1	4	1	I	ANA	Comparator 1 Input D (-)
C1OUT	17	14	25	22	0	_	Comparator 1 Output
C2INA	5	2	5	2	I	ANA	Comparator 2 Input A (+)
C2INB	4	1	4	1	Ι	ANA	Comparator 2 Input B (-)
C2INC	8	5	7	4	Ι	ANA	Comparator 2 Input C (+)
C2IND	7	4	6	3	Ι	ANA	Comparator 2 Input D (-)
C2OUT	14	11	20	17	0		Comparator 2 Output
CLK I	7	4	9	6	Ι	ANA	Main Clock Input
CLKO	8	5	10	7	0	_	System Clock Output

TABLE 1-4: PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs); one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility"). Depending on the particular device, PIC24F16KL402 family devices implement either 512 or 1024 words of data memory. If an EA points to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24F16KL402 FAMILY DEVICES⁽³⁾

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.

EXAMPLE 6-2:

- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

interrupt (NVIVIII' is set).

SINGLE-WORD ERASE

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

int __attribute__ ((space(eedata))) eeData = 0x1234; // Global variable located in EEPROM unsigned int offset; // Set up NVMCON to erase one word of data EEPROM NVMCON = 0×4058 ; // Set up a pointer to the EEPROM location to be erased TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer offset = __builtin_tbloffset(&eeData); // Initizlize lower word of address __builtin_tblwtl(offset, 0); // Write EEPROM data to write latch asm volatile ("disi #5"); // Disable Interrupts For 5 Instructions __builtin_write_NVM(); // Issue Unlock Sequence & Start Write Cycle // Optional: Poll WR bit to wait for while(NVMCONbits.WR=1); // write sequence to complete

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the Table Read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location followed by a TBLRDL instruction.

A typical read sequence using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and Table Read (builtin_tblrdl) procedures from the C30 compiler library is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

<pre>intattribute ((space(eedata))) eeData = 0x1234;</pre>	// Global variable located in EEPROM
int data;	// Data read from EEPROM
unsigned int offset;	
<pre>// Set up a pointer to the EEPROM location to be en TBLPAG =builtin_tblpage(&eeData); offset =builtin_tbloffset(&eeData); data =builtin_tblrdl(offset);</pre>	rased // Initialize EE Data page pointer // Initizlize lower word of address // Write EEPROM data to write latch

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—		_	—	—	—		DC ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7				•			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as 'o)'				
bit 7-5	IPL<2:0>: CF	PU Interrupt Price	ority Level Stat	us bits ^(2,3)			
	111 = CPU lr	nterrupt Priority	Level is 7 (15)	user interrupts	s disabled		
		nterrupt Priority	• • •				
		nterrupt Priority	()				
		nterrupt Priority					
		nterrupt Priority	• • •				
		nterrupt Priority					
		nterrupt Priority	• • •				
		nterrunt Priority	()				

- 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0
U2TXIF ⁽¹⁾	U2RXIF ⁽¹⁾	INT2IF		T4IF ⁽¹⁾		CCP3IF ⁽¹⁾	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF
bit 7							bit (
Legend:							
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
				- (1)			
bit 15		T2 Transmitter		Status bit ⁽¹⁾			
		equest has occ					
L:1 4 4		equest has not					
bit 14		RT2 Receiver Ir		atus bit			
		equest has occ equest has not					
bit 13	•	nal Interrupt 2					
bit 10		equest has occ	-				
		equest has not					
bit 12	-	ted: Read as '					
bit 11	-	Interrupt Flag S					
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 10	Unimplement	ted: Read as '	כי				
bit 9	CCP3IF: Capt	ture/Compare/I	PWM3 Interrup	ot Flag Status b	it ⁽¹⁾		
		equest has occ					
	-	equest has not					
bit 8-5	-	ted: Read as '					
bit 4		nal Interrupt 1	•				
		equest has occ equest has not					
bit 3	•	hange Notifica		lag Status bit			
DIT 3	-	equest has occ	-	lay Status bit			
		equest has oct					
bit 2	-	arator Interrupt					
		equest has occ	-				
		equest has not					
bit 1	BCL1IF: MSS	SP1 I ² C™ Bus	Collision Interr	upt Flag Status	bit		
	1 = Interrupt r	equest has occ	curred				
	-	equest has not					
bit 0		SP1 SPI/I ² C Ev		ag Status bit			
		equest has occ equest has not					
			aggirrad				

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	NVMIP2	NVMIP1	NVMIP0		_	_	
bit 15			÷		÷		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7		1					bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 11-7 bit 6-4	• • 001 = Interru 000 = Interru Unimplemen AD1IP<2:0>:	pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' A/D Conversic pt is Priority 7 (abled 0' n Complete Int	terrupt Priority	bits		
	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled	interrupt)			
bit 3	-	ted: Read as '					
bit 2-0	111 = Interru • •	>: UART1 Trans pt is Priority 7 (-	-			
		pt is Priority 1 pt source is dis	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	<u>If FSCM is Enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

REGISTER 11-1: ANSA: PORTA ANALOG SELECTION REGISTER

- -	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	—						—
	bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:

bit 3-0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

ANSA<3:0>: Analog Select Control bits

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSB15	ANSB14	ANSB13 ⁽¹⁾	ANSB12 ⁽¹⁾	—	—	—	—
bit 15		•					bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	ANSB4	ANSB3 ⁽²⁾	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	ANSB<15:12>: Analog Select Control bits ⁽¹⁾ 1 = Digital input buffer is not active (use for analog input) 0 = Digital input buffer is active
bit 11-5	Unimplemented: Read as '0'
bit 4-0	ANSB<4:0>: Analog Select Control bits ⁽²⁾
	1 = Digital input buffer is not active (use for analog input)0 = Digital input buffer is active

Note 1: ANSB<13:12,2:0> are unimplemented on 14-pin devices.

2: ANSB<3> is unimplemented on 14-pin and 20-pin devices.

16.0 CAPTURE/COMPARE/PWM (CCP) AND ENHANCED CCP MODULES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Capture/Compare/PWM module, refer to the "dsPIC33/PIC24 Family Reference Manual".

Depending on the particular device, PIC24F16KL402 family devices include up to three CCP and/or ECCP modules. Key features of all CCP modules include:

- 16-bit input capture for a range of edge events
- 16-bit output compare with multiple output options
- Single-output Pulse-Width Modulation (PWM) with up to 10 bits of resolution
- User-selectable time base from any available timer
- Special Event Trigger on capture and compare events to automatically trigger a range of peripherals

ECCP modules also include these features:

- Operation in Half-Bridge and Full-Bridge (Forward and Reverse) modes
- Pulse steering control across any or all Enhanced PWM pins with user-configurable steering synchronization
- User-configurable external Fault detect with auto-shutdown and auto-restart

PIC24FXXKL40X/30X devices instantiate three CCP modules, one Enhanced (ECCP1) and two standard (CCP2 and CCP3). All other devices instantiate two standard CCP modules (CCP1 and CCP2).

16.1 Timer Selection

On all PIC24F16KL402 family devices, the CCP and ECCP modules use Timer3 as the time base for capture and compare operations. PWM and Enhanced PWM operations may use either Timer2 or Timer4. PWM time base selection is done through the CCPTMRS0 register (Register 16-6).

16.2 CCP I/O Pins

To configure I/O pins with a CCP function, the proper mode must be selected by setting the CCPxM<3:0> bits.

Where the Enhanced CCP module is available, it may have up to four PWM outputs depending on the selected operating mode. These outputs are designated, P1A through P1D. The outputs that are active depend on the ECCP operating mode selected. To configure I/O pins for Enhanced PWM operation, the proper PWM mode must be selected by setting the PM<1:0> and CCPxM<3:0> bits.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission Through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- Two-Level Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · Two-Level Deep, FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
01	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f - WREG	1	1	C, DC, N, OV, 1
505	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV,
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV,
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	
GUDD			_			C, DC, N, OV,
SUBB	SUBB	f	f = f - WREG - (C)	1	1	C, DC, N, OV,
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	Wn = Wn - lit10 - (C)	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, 2
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, 2
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV,
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, 1
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, 1
SWAP	SWAP.b	WD,#1105,Wd Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP.D	Wn	Wn = Byte Swap Wn	1	1	None

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \mbox{ to } 3.6V \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $						
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					ditions	
	Vol	Output Low Voltage							
DO10		All I/O Pins	—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V	
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V	
	Vон	Output High Voltage							
DO20		All I/O Pins	3	—	—	V	Юн = -3.0 mA	VDD = 3.6V	
			1.6	—	—	V	Юн = -1.0 mA	VDD = 2.0V	
DO26		OSC2/CLKO	3	—		V	Юн = -1.0 mA	VDD = 3.6V	
			1.6	—	-	V	Юн = -0.5 mA	VDD = 2.0V	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at +25°C unless otherwise stated.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS							
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
		Program Flash Memory					
D130	Ер	Cell Endurance	10,000 ⁽²⁾	_	_	E/W	
D131	Vpr	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current During Programming	—	10	—	mA	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

TABLE 26-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard O Operating te	• •	onditions:	1.8V to 3.6V -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	—	10	25	ns	
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

NOTES:

Т

Timer1	115
Timer2	117
Timer3	119
Oscillator	119
Overflow Interrupt	119
Timer4	123
PR4 Register	123
TMR4 Register	123
TMR4 to PR4 Match Interrupt	123
Timing Diagrams	
Capture/Compare/PWM (ECCP1, ECCP2)	214
CLKO and I/O	
Example SPI Master Mode (CKE = 0)	
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	
Example SPI Slave Mode (CKE = 1)	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	219
MSSPx I ² C Bus Data	222
MSSPx I ² C Bus Start/Stop Bits	221
Timing Requirements	
A/D Conversion	
Capture/Compare/PWM (ECCP1, ECCP2)	
CLKO and I/O	
Comparator	
Comparator Voltage Reference Settling Time	
External Clock	
I ² C Bus Data (Slave Mode)	
I ² C Bus Data Requirements (Master Mode)	
I ² C Bus Start/Stop Bits (Master Mode)	
I ² C Bus Start/Stop Bits (Slave Mode)	
PLL Clock Specifications	211
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	
SPI Mode (Master Mode, CKE = 0)	
SPI Mode (Master Mode, CKE = 1)	
SPI Slave Mode (CKE = 1)	218
Timing Requirements SPI Mode (Slave Mode,	
CKE = 0)	217

U

UART	149
Baud Rate Generator (BRG)	150
Break and Sync Transmit Sequence	151
IrDA Support	
Operation of UxCTS and UxRTS Control Pins	151
Receiving in 8-Bit or 9-Bit Data Mode	151
Transmitting in 8-Bit Data Mode	151
Transmitting in 9-Bit Data Mode	151
Unique ID	182
w	

Watchdog Timer (WDT)	184
Windowed Operation	184
WWW Address	257
WWW, On-Line Support	7