E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Mis-aligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a mis-aligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24F16KL402 family devices, the entire implemented data memory lies in Near Data Space.

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region, where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-18.

	SFR Space Address												
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0					
000h	Core			ICN		Interrupts		—					
100h	Timers	— TM	२ —	—	— C	CP —	—	—					
200h	MSSP	SSP UART —		—	—	_	I/O	—					
300h	A	/D	—	—	—	—	_	—					
400h	-	—	—	—	—	_	— AN	SEL —					
500h			—	—	—	_	—	—					
600h	— CMP — —					_		_					
700h	— —		System	NVM/PMD	_	_	_	_					

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN		—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

F	ile Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
N١	/MCON	0760	WR	WREN	WRERR	PGMONLY		—	—		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
N١	/MKEY	0766	-	-	_	—		-	_					NVM Key	/ Register				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN		ULPSIDL					ULPSINK		—	_	—					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	T4MD	T3MD	T2MD	T1MD	—	—	—	SSP1MD	U2MD	U1MD	—	_	_	—	ADC1MD	0000
PMD2	0772	—	_	—	—	—	_	_	—	—	—	—	—	_	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	-	_	_	_	SSP2MD	_	0000
PMD4	0776	_	_	_	_	—	_	_	—	ULPWUMD	_	_	EEMD	REFOMD	_	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30	
<pre>intattribute ((space(auto_psv))) progAddr = &progAddr unsigned int offset;</pre>	// Global variable located in Pgm Memory
//Set up pointer to the first memory location to be written	
TBLPAG =builtin_tblpage(&progAddr); offset = &progAddr & 0xFFFF;	// Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0x4058;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts for next 5 // instructions</pre>
builtin_write_NVM();	// Instructions // C30 function to perform unlock // sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operati	ons	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poi	nter to the first program mem	ory	location to be written
;	program memo	ry selected, and writes enabl	ed	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write t	he i	latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•	1		
,	3∠na_program	_WOLA		
	MOV	$\# UW WUKD_{31}, WZ$		
		HUTRU RITE ST' MS	;	White DM los word into measure lately
	TRTMLT	₩2, [WU] W2 [W0]	;	Write PM IOW Word Into program latch
	IBTMIH	W3, [WU]	'	write PM high byte into program latch

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
—	—	—	_		—	—	DC ⁽¹⁾						
bit 15		-			•		bit 8						
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾						
bit 7	·				•		bit 0						
Legend:													
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15-9	Unimplemen	ted: Read as 'o)'										
bit 7-5	IPL<2:0>: CF	PU Interrupt Pric	ority Level Stat	us bits ^(2,3)									
	111 = CPU lr	nterrupt Priority	Level is 7 (15)	: user interrupt	s disabled								
	110 = CPU Ir	nterrupt Priority	l evel is 6 (14)	,									
	101 = CPU Ir	nterrupt Priority	l evel is 5 (13)										
	100 = CPU Ir	nterrupt Priority	l evel is 4 (12)										
	111 = CPU Interrupt Priority evel is 3 (11)												
	010 = CPU Interrupt Priority Level is 2 (10)												
	010 = CPU Interrupt Priority Level is 2 (10) $001 = CPU Interrupt Priority Level is 1 (9)$												

- 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	_	—	—	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
		ind. Deed as i	01				
	Unimplemen	ted: Read as					
bit 14-12	NVMIP<2:0>	: NVM Interrup	t Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as '	0'				
bit 6-4	AD1IP<2:0>:	A/D Conversio	on Complete In	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	• 001 – Interru	nt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	• •ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	-: UART1 Tran	smitter Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•	. , , ,		, ,			
	•						
	• 001 - Interry	nt is Driarity 1					
	001 - Interru	pt is Fliolity 1	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		—	_	_	_	_	— hit 0				
DIL 7							DILU				
Legend:											
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	ROEN: Refe	erence Oscillator	Output Enabl	e bit							
	1 = Reference	ce oscillator is en	abled on REI	⁼ O pin							
	0 = Referen	ce oscillator is dis	sabled								
bit 14	Unimpleme	nted: Read as '0	,								
bit 13	ROSSLP: R	eference Oscillat	or Output Sto	p in Sleep bit							
	1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep										
bit 12	ROSEL: Re	ference Oscillato	r Source Sele	ect bit							
511 12	1 = Primarv	oscillator is used	as the base	clock ⁽¹⁾							
	0 = System	clock is used as	the base cloc	k; the base cloc	ck reflects any	clock switching	of the device				
bit 11-8	RODIV<3:0:	>: Reference Oso	cillator Divisor	Select bits							
	1111 = Bas e	1111 = Base clock value divided by 32,768									
	1110 = Base	e clock value divi	ded by 16,38	4							
	1101 = Base	1101 = Base clock value divided by 8,192									
	1100 = Base	1100 = Base clock value divided by 4,096									
	1011 = Base	1011 = Base clock value divided by 2,048									
	1010 = Base	e clock value divi	ded by 1,024								
	1001 = Base	e clock value divi	ded by 256								
	0111 = Base	e clock value divi	ded by 128								
	0110 = Base	e clock value divi	ded by 64								
	0101 = Base	e clock value divi	ded by 32								
	0100 = Base	e clock value divi	ded by 16								
	0011 = Base	e clock value divi	ded by 8								
	0010 = Base	e clock value divi	ded by 4								
	0001 = Base	e clock value divi e clock value	ued by 2								
			,								

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

NOTES:

REGISTER 16-4: ECCP1DEL: ECCP1 ENHANCED PWM CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkn	nown		
bit 15-8	Unimplement	ted: Read as 'd)'						
bit 7	PRSEN: PWN	/I Restart Enab	le bit						
	1 = Upon aut	o-shutdown, the	e ECCPASE bi	t clears automa	atically once the	e shutdown eve	ent goes away;		
	the PWM	restarts autom	atically	h	- ()				
	0 = Upon aut	o-snutdown, EQ		be cleared by s	software to res	tart the PWW			
bit 6-0	PDC<6:0>: P	WM Delay Cou	nt bits						
	PDCn = Number of Fcy (Fosc/2) cycles between the scheduled time when a PWM signal should								
	trans	ition active and	the actual tim	ne it transitions	active.				

Note 1: This register is implemented only on PIC24FXXKL40X/30X devices.

'1' = Bit is set

REGISTER 17-8: SSPxADD: MSSPx SLAVE ADDRESS/BAUD RATE GENERATOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bi	t	U = Unimplen	nented bit, read	d as '0'	

'0' = Bit is cleared

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 ADD<7:0>: Slave Address/Baud Rate Generator Value bits SPI Master and I²C[™] Master modes: Reloads value for Baud Rate Generator. Clock period is (([SPxADD] + 1) *2)/Fosc. I²C Slave modes: Represents 7 or 8 bits of the slave address, depending on the addressing mode used: 7-Bit mode: Address is ADD<7:1>; ADD<0> is ignored. 10-Bit LSb mode: ADD<7:0> are the Least Significant bits of the address. 10-Bit MSb mode: ADD<2:1> are the two Most Significant bits of the address; ADD<7:3> are always '11110' as a specification requirement, ADD<0> is ignored.

REGISTER 17-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	_	—	—	—	_	—	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			MSK<	:7:0>(1)				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
L								
bit 15-8	Unimpleme	nted: Read as 'o)'					

bit 7-0 MSK<7:0>: Slave Address Mask Select bits⁽¹⁾

1 = Masking of corresponding bit of SSPxADD is enabled

0 = Masking of corresponding bit of SSPxADD is disabled

Note 1: MSK0 is not used as a mask bit in 7-bit addressing.

x = Bit is unknown

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission Through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- Two-Level Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- Two-Level Deep, FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-1: AD1CON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R-0, HSC
SSRC2	SSRC1	SSRC0	—	_	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	Clearable bit						
R = Readable	e bit W = Writable bit	U = Unimplemented bit, rea	d as '0'					
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	ADON: A/D Operating Mode bit ⁽¹⁾							
	1 = A/D Converter module is operating0 = A/D Converter is off							
bit 14	Unimplemented: Read as '0'							
bit 13	ADSIDL: A/D Stop in Idle Mode bit							
	1 = Discontinues module operation when0 = Continues module operation in Idle m	device enters Idle mode ode						
bit 12-10	Unimplemented: Read as '0'							
bit 9-8	FORM<1:0>: Data Output Format bits							
	11 = Signed fractional (sddd dddd dd00 0000) 10 = Fractional (dddd dddd dd00 0000) 01 = Signed integer (ssss sssd dddd dddd) 00 = Integer (0000 00dd dddd dddd)							
bit 7-5	SSRC<2:0>: Conversion Trigger Source S	Select bits						
	<pre>111 = Internal counter ends sampling and 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 010 = Timer1 compare ends sampling and 001 = Active transition on INT0 pin ends s 000 = Clearing the SAMP bit ends sampling</pre>	starts conversion (auto-conve d starts conversion ampling and starts conversion	rt)					
bit 4-3	Unimplemented: Read as '0'	5						
bit 2	ASAM: A/D Sample Auto-Start bit							
	 1 = Sampling begins immediately after the 0 = Sampling begins when the SAMP bit is 	e last conversion completes; S s set	AMP bit is auto-set					
bit 1	SAMP: A/D Sample Enable bit							
	 1 = A/D Sample-and-Hold amplifier is sam 0 = A/D Sample-and-Hold amplifier is hold 	pling input ing						
bit 0	DONE: A/D Conversion Status bit							
	 1 = A/D conversion is done 0 = A/D conversion is not done 							

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

24.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- · Local file history feature
- Built-in support for Bugzilla issue tracker

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected				
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None				
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None				
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None				
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None				
ULNK	ULNK		Unlink Frame Pointer	1	1	None				
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z				
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z				
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z				
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z				
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z				
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N				

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard O Operating te	perating Co emperature	onditions:	1.8V to 3.6V $\label{eq:alpha} \begin{array}{l} -40^\circ C \leq T_A \leq +85^\circ C \text{ for Industrial} \\ -40^\circ C \leq T_A \leq +125^\circ C \text{ for Extended} \end{array}$		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	_	10	25	ns		
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensior	Dimension Limits			MAX			
Number of Pins	Ν		28				
Pitch	е		.100 BSC				
Top to Seating Plane	Α	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

 Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension Lim	nits	MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D		12.80 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2