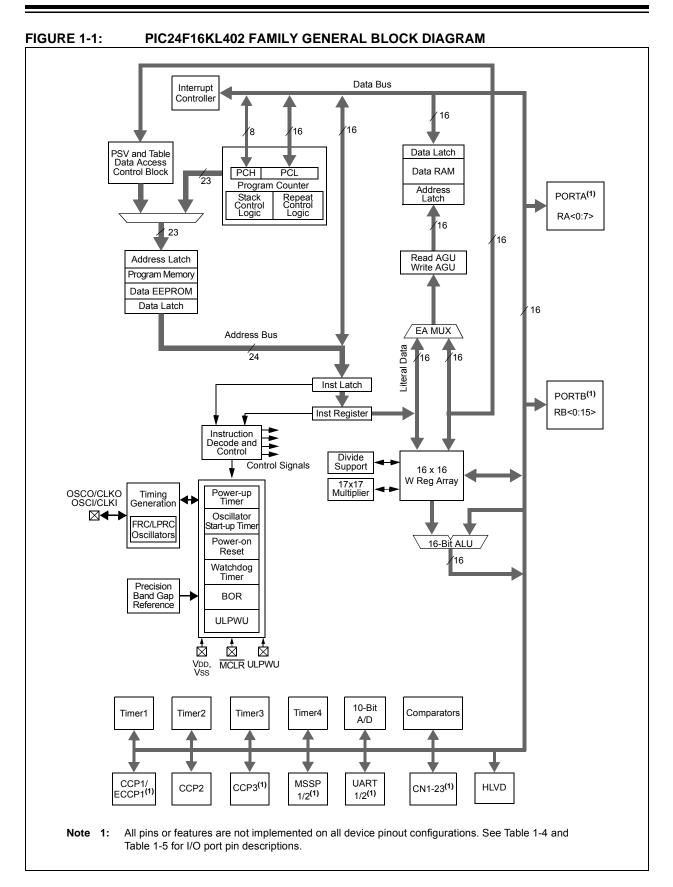


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-i-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6	: т	IMER	REGIS	TER N	IAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
TMR1	0100									Timer1 Reg	gister							0000	
PR1	0102								Tir	mer1 Period	Register							FFFF	
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000	
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000	
PR2	0108	_	_	_	_	_	_	_	_	Timer2 Period Register									
T2CON	010A	_	_	_	_	_	_	_	_	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000	
TMR3	010C									Timer3 Reg	gister							0000	
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000	
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000	
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000	
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	—	Timer4 Period Register									
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	—	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000	
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	—	_	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1				1				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	—	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	V1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_			Capture/Co	mpare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_	Capture/Compare/PWM3 Register Low Byte								
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_	Capture/Compare/PWM3 Register High Byte								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-10: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	—	—	_	_	_	_	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	00DF
PORTA	02C2		—						—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4		—						—	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	-	_	_	_	_	_	_	-	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices; read as '0'.

2: PORTA<5> is unavailable when MCLR functionality is enabled (MCLRE Configuration bit = 1).

TABLE 4-11: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices.

2: These ports and their associated bits are unimplemented in 14-pin devices.

TABLE 4-12: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	_	—	SDO2DIS ⁽¹⁾	SCK2DIS(1)	SDO1DIS	SCK1DIS	—	_	_	_	_	—	—	—	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Bu	uffer 0								xxxx
ADC1BUF1	0302								A/D Bu	uffer 1								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_		ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	OFFCAL	—	CSCNA		_	r		SMPI3	SMPI2	SMPI1	SMPI0	r	ALTS	0000
AD1CON3	0324	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0			ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—		—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_	_	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12(1)	CSSL11 ⁽¹⁾	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	_	CSSL4 ⁽¹⁾	CSSL3 ⁽¹⁾	CSSL2 ⁽¹⁾	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0', r = reserved bit. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

TABLE 4-14: ANALOG SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANCFG	04DE	_	—	—	—	_	_		_	_	_			_	—		VBGEN	0000
ANSA	04E0	-	_	-	—	_	-	_	_	_	_	_	_	ANSA3	ANSA2	ANSA1	ANSA0	000F
ANSB	04E2	ANSB15	ANSB14	ANSB13	ANSB12 ⁽¹⁾	—	_	_	_	—	—	_	ANSB4	ANSB3(2)	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	F01F ⁽³⁾

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 14-pin devices; read as '0'.

2: These bits are unimplemented in 14-pin and 20-pin devices; read as '0'

3: Reset value for 28-pin devices is shown.

TABLE 4-15: COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	_		_	_	C2EVT ⁽¹⁾	C1EVT	—	—	_		_	_	C2OUT	C1OUT	xxxx
CVRCON	0632	_	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	CLPWR	—	_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	—	_	CCH1	CCH0	xxxx
CM2CON ⁽¹⁾	0636	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented in PIC24FXXKL10X/20X devices; read as '0'.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	—	—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	-	HLSIDL	_	—	_	_	_	VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY		_	_		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	-	-	—	—		_		NVM Key Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	_	ULPSIDL		—	_		ULPSINK		_		_	_		_	_	0000

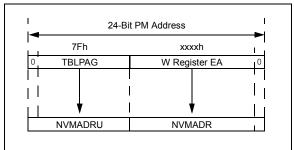
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	T4MD	T3MD	T2MD	T1MD	_	_		SSP1MD	U2MD	U1MD		—	_		ADC1MD	0000
PMD2	0772	_	—	—	_	—	—	_	-	_	_	—	_	—	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_			CMPMD	_	-	—	_	_		—	_	SSP2MD	—	0000
PMD4	0776		_	_	_	_	_	-	—	ULPWUMD		_	EEMD	REFOMD	—	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS30001037C-page 42


6.3 NVM Address Register

As with Flash program memory, the NVM Address Registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", is unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Table Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note:	Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.
	The C30 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

7.0 RESETS

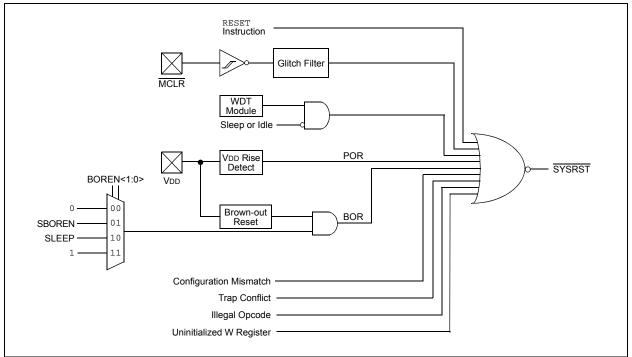
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on a Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value, after a device Reset, will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in the Flash Configuration Word (FOSCSEL); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

PIC24F16KL402 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the power-up timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the BOR Reset does not automatically enable the PWRT.

7.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function, as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit only operates in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

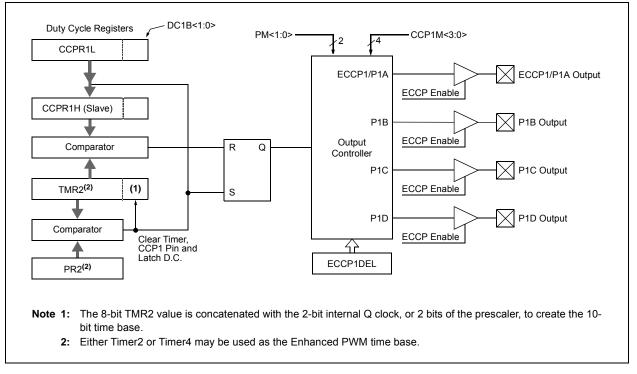
Note: Even when the BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	<u>If FSCM is Enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

ROI DOZE2 DOZE1 DOZE0 DOZEN ⁽¹⁾ RCDIV2 RCDIV1 RCD bit 15	′W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 Recadable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts clear the DOZEN bit bit 14-12 DOZE DOZE 110 = 1:64 101 = 1:32 100 = 1:16 111 = 1:32 100 = 1:1 DOZE Colspan="2">DOZE Enable bit ⁽¹⁾ 1 = DOZE DOZE Enable bit ⁽¹⁾ 1 = DOZE COCON:11:12) = 111 or 001: 101 = 1:2 OOI: State (divide-by-64) 101 = 250 kHz (divide-by-64) OOI: State (divide-by-64) 101 = 250 kHz (divide-by-20) OOI: 111 F 3125 kHz (divide-by-20) 101 = 250 kHz (divide-by-21) OII: 2 101 = 20 OIII = 1MHz (divide-by-20)	DIV0
- -	bit 8
- -	1.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 101 = 1:32 100 = 1:16 011 = 1:3 010 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-4) 011 = 4 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (00Fault) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 112 = 1.05 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-32) 114 = 1.95 kHz (divide-by-32) 115 = 1.95 kHz (divide-by-32) 116 = 7.81 kHz (divide-by-32) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-32) 119 = 31.25 kHz (divide-by-32) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-32) 112 = 1.95 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 112 = 1.95 kHz (divide-by-4) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.55 kHz (divide-by-4) 118 = 1.55 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 111 = 1.95 kHz (divi	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' .n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15ROI: Recover on Interrupt bit .1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 .1 = Interrupts have no effect on the DOZEN bitbit 14-12DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits111 = 1:128 .100 = 1:6 .011 = 1:8 .000 = 1:16 .001 = 1:2 .000 = 1:1bit 11DOZEN: DOZE Enable bit(1) .000 = 1:1bit 11DOZEN: DOZE Enable bit(1) .000 = 1:1bit 10-RCDIV<2:0>: FRC Postscaler Select bitsWhen COSC-2:0> (DSCCON<14:12) = 111 or .001; .111 = 31.25 kHz (divide-by-26) .100 = 125 kHz (divide-by-4) .001 = 25 kHz (divide-by-4)001 = 2 MHz (divide-by-16) .001 = 4 MHz (divide-by-16) .001 = 4 MHz (divide-by-256) .100 = 2.8 kHz (divide-by-26) .100 = 31.25 kHz (divide-by-26) .100 = 31.25 kHz (divide-by-32) .100 = 31.25 kHz (divide-by-32) .100 = 31.25 kHz (divide-by-4) .101 = 25 kHz (divide-by-32) .100 = 31.25 kHz (divide-by-4) .101 = 15.62 kHz (divide-by-4) .101 = 125 kHz (divide-by-4) .111 = 1.95 kHz (divide-by-32) .100 = 31.25 kHz (divide-by-4) .111 = 1.25 kHz	bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 100 = 1:16 111 = 1:2 010 = 1:12 000 = 1:16 011 = 1:2 000 = 1:1 bit 10 DOZEE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001:	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DDZE<2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 4 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 4 MHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 101 = 7.81 kHz (divide-by-2) 102 = 7.81 kHz (divide-by-2) 104 = 4 MHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 106 = 7.81 kHz (divide-by-2) 107 = 7.81 kHz (divide-by-2) 108 = 7.81 kHz (divide-by-2) 109 = 3.125 kHz (divide-by-32) 100 = 3.125 kHz (divide-by-4) 101 = 1.5.62 kHz (divide-by-4) 102 = 3.125 kHz (divide-by-4) 103 = 3.125 kHz (divide-by-4) 104 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (divide-by-4) 106 = 3.125 kHz (divide-by-4) 107 = 3.125 kHz (divide-by-4) 108 = 3.125 kHz (divide-by-4) 109 = 3.125 kHz (divide-by-4) 100 = 3.125 kHz (divide-by-4) 101 = 1.5.5 kHz (divide-by-4) 102 = 3.125 kHz (divide-by-4) 103 = 3.5 kHz (divide-by-4) 104 = 3.5 kHz (divide-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-3) 010 = 2 MHz (divide-by-3) 010 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-4) 010 = 125 kHz (divide-by-4)	
0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 4 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-256) 100 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
When $COSC < 2:0 > (OSCCON < 14:12) = 111 \text{ or } 001:$ 111 = 31.25 kHz (divide-by-256) 100 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When $COSC < 2:0 > (OSCCON < 14:12 >) = 110:$ 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-16) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
000 = 500 kHz (divide-by-1)	


REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	_	TSIDL	_	_	_	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15		I					bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplerr	nented bit. read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16-						
	0 = Stops 16-	bit Timer1					
bit 14	Unimplement	ted: Read as ')'				
bit 13		1 Stop in Idle N					
				device enters Idl	e mode		
L:1 10 10		module opera		de			
bit 12-10 bit 9-8	-	ted: Read as ' : Timer1 Exten		La at hita(1)			
DIL 9-0	11 = Reserve			lect bits ?			
		ises the LPRC	as the clock s	ource			
		ises the extern					
	00 = Timer1 u	ises the Secon	dary Oscillato	r (SOSC) as the	clock source		
bit 7	Unimplement	ted: Read as '	י'				
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit			
	When TCS =	-					
	This bit is igno When TCS =						
		<u>u.</u> ne accumulatio	n is enabled				
		ne accumulatio					
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3		ted: Read as ')'				
bit 2	-			hronization Sele	ect bit		
	When TCS =		, ,				
	1 = Synchron	nizes external (
		t synchronize e	external clock i	input			
	When TCS =						
hit 1	This bit is igno	Clock Source S	Soloct bit				
bit 1		ock source is s		ECS<1.05			
		clock (Fosc/2)					
bit 0	Unimplement	ted: Read as '	כ'				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—		<u> </u>		—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾	CCPxM1 ⁽¹⁾	CCPxM0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown
bit 15-6	Unimplement	ted: Read as '	0'				
bit 5-4	-			it 0 for CCPx Mo	odule bits		
		Compare mode					
	Unused.						
	Unused. <u>PWM mode:</u>						
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0>	ant bits (DCxB< :: CCPx Module	<9:2>) of the d	uty cycle are fou			cle. The eigh
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2 ^{>}) of the d	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge	<9:2 ^{>}) of the d e Mode Select ecial Event Trig	uty cycle are fou	und in CCPRxL	 tch (CCPxIF bi	t is set)
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time ire interrupt on co bin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1001 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the die e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c oin high; on con n low; on compar dge ge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1001 = Reset 1011 = Comp 1010 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

REGISTER 16-4: ECCP1DEL: ECCP1 ENHANCED PWM CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	_	—	
bit 15	•	•					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	
bit 7	·	•					bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown		
bit 15-8	Unimplemer	ted: Read as '0)'					
bit 7	PRSEN: PW	M Restart Enab	le bit					
	1 = Upon au	to-shutdown, the	e ECCPASE b	it clears automa	tically once the	e shutdown eve	ent goes away;	
		I restarts autom						
	0 = Upon au	to-shutdown, E0	CCPASE must	be cleared by s	software to res	tart the PWM		
bit 6-0	PDC<6:0>: F	WM Delay Cou	nt bits					
bit 6-0		WM Delay Counter of Fcy (Fc		between the sc	heduled time	when a PWM	signal should	

Note 1: This register is implemented only on PIC24FXXKL40X/30X devices.

NOTES:

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

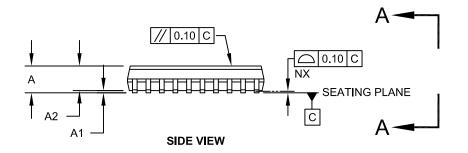
DC CH	ARACT	ERISTICS	Standard O Operating te		e -40°C <u>s</u>	\leq TA \leq +8	o 3.6V 5°C for Industrial 25°C for Extended
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ^(4,5)					
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
DI31	IPU	Maximum Load Current		—	30	μA	VDD = 2.0V
		for Digital High Detection w/Internal Pull-up	—	—	1000	μA	VDD = 3.3V
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.050	±0.100	μA	Vss ≤ VPiN ≤ VDD, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μA	$VSS \le VPIN \le VDD$, Pin at high-impedance

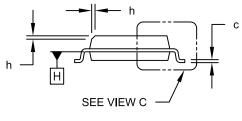
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

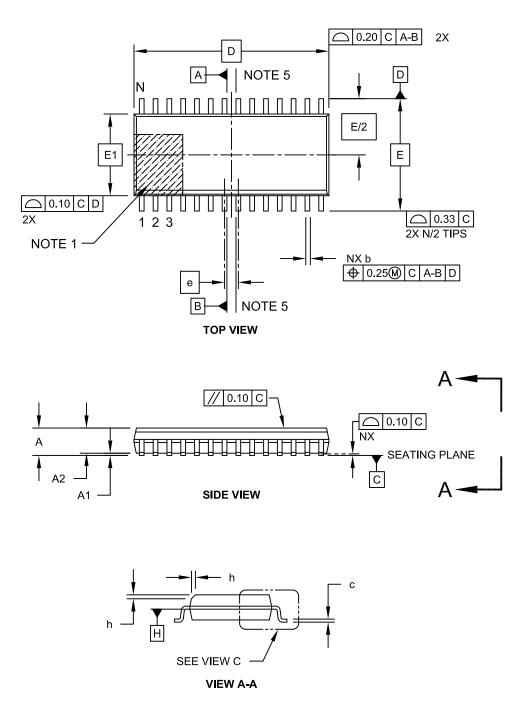
4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.


5: VIH requirements are met when the internal pull-ups are enabled.


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW



VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

Program Memory	
Address Space	
Data EEPROM	
Device Configuration Words	
Hard Memory Vectors	
Organization	
Program Space	
Memory Map	
Program Verification	
PWM (CCP Module)	
TMR4 to PR4 Match	

R

Register Maps	
A/D Converter	41
Analog Select	41
CCP/ECCP	38
Comparator	41
CPU Core	35
ICN	
Interrupt Controller	37
MSSP	39
NVM	42
Pad Configuration	40
PMD	42
PORTA	40
PORTB	40
System, Clock Control	
Timer	
UART	
Ultra Low-Power Wake-up	
Registers	
AD1CHS (A/D Input Select)	162
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select)	
ANCFG (Analog Input Configuration)	
ANSA (PORTA Analog Selection)	
ANSB (PORTB Analog Selection)	
CCP1CON (ECCP1 Control, Enhanced CCP)	
CCPTMRS0 (CCP Timer Select Control 0)	
CCPxCON (CCPx Control, Standard CCP)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CVRCON (Comparator Voltage	20, 70
Reference Control)	172
DEVID (Device ID)	
DEVREV (Device Revision)	
ECCP1AS (ECCP1 Auto-Shutdown Control)	
ECCP1DEL (ECCP1 Enhanced PWM Control)	
FBS (Boot Segment Configuration)	
FGS (General Segment Configuration)	
FICD (In-Circuit Debugger Configuration)	
FOSC (Oscillator Configuration)	
FOSCSEL (Oscillator Selection Configuration)	
FPOR (Reset Configuration)	180
FWDT (Watchdog Timer Configuration)	
HLVDCON (High/Low-Voltage Detect Control)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 0)	
IEC2 (Interrupt Enable Control 2)	
IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3)	

IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
INTCON 2 (Interrupt Control 2)	
INTCON1 (Interrupt Control 1)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC12 (Interrupt Priority Control 12)	
IPC16 (Interrupt Priority Control 16)	
IPC18 (Interrupt Priority Control 18)	
IPC2 (Interrupt Priority Control 2)	
IPC20 (Interrupt Priority Control 20)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC9 (Interrupt Priority Control 9)	
NVMCON (Flash Memory Control)	
NVMCON (Nonvolatile Memory Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tune)	
PADCFG1 (Pad Configuration Control)	
PSTR1CON (ECCP1 Pulse Steering Control)	
RCON (Reset Control)	
DEEOCONI (Defenses Ossillatan Control)	
REFOCON (Reference Oscillator Control)	103
SR (ALU STATUS)	103
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud	103 28, 69
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator)	103 28, 69 146
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode)	103 28, 69 146 142
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode)	103 28, 69 146 142 141
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode)	103 28, 69 146 142 141 143
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode)	103 28, 69 146 142 141 143 145
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode)	103 28, 69 146 142 141 143 145 144
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode)	103 28, 69 146 142 141 143 145 144 146
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxMSK (1 ² C Slave Address Mask) SSPxSTAT (MSSPx Status, 1 ² C Mode)	103 28, 69 146 142 141 143 145 144 146 139
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxMSK (I ² C Slave Address Mask) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode)	103 28, 69 146 142 141 143 145 144 146 139 138
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode)	103 28, 69 146 142 141 143 145 144 146 139 138 116
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control)	
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control)	
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T3CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (ULPWU Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 108
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 124 152
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UXSTA (UARTx Status and Control)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 124 152
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 152 154
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR)	103 28, 69 146 142 141 143 145 144 146 139 138 116 118 120 121 124 154 154
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer3 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection	103 28, 69 146 142 141 143 145 144 146 139 138 116 120 121 124 152 154 63 61
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, 1 ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, 1 ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, 1 ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UXMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR)	$\begin{array}{c} 103\\28, 69\\146\\142\\141\\143\\145\\144\\145\\146\\139\\16\\18\\16\\120\\121\\124\\16\\16\\16\\16\\16\\16\\16\\$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T3CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 62\\ 62\\ 62\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times RCON Flag Operation	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 62\\ 61\\ 61\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T3CON (Timer2 Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3CON (Timer3 Gate Control) T3GCON (Timer3 Gate Control) T4CON (Timer4 Control) ULPWCON (ULPWU Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times Device Times RCON Flag Operation SFR States Revision History	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$
SR (ALU STATUS) SSPxADD (MSSPx Slave Address/Baud Rate Generator) SSPxCON1 (MSSPx Control 1, I ² C Mode) SSPxCON1 (MSSPx Control 1, SPI Mode) SSPxCON2 (MSSPx Control 2, I ² C Mode) SSPxCON3 (MSSPx Control 3, I ² C Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxCON3 (MSSPx Control 3, SPI Mode) SSPxSTAT (MSSPx Status, I ² C Mode) SSPxSTAT (MSSPx Status, SPI Mode) T1CON (Timer1 Control) T2CON (Timer2 Control) T3GCON (Timer3 Gate Control) T3GCON (Timer3 Gate Control) ULPWCON (ULPWU Control) UxMODE (UARTx Mode) UxSTA (UARTx Status and Control) Resets Brown-out Reset (BOR) Clock Source Selection Delay Times RCON Flag Operation SFR States	$\begin{array}{c} 103\\ 28, 69\\ 146\\ 142\\ 141\\ 143\\ 145\\ 144\\ 146\\ 139\\ 138\\ 116\\ 138\\ 116\\ 118\\ 120\\ 121\\ 124\\ 108\\ 152\\ 154\\ 154\\ 63\\ 61\\ 62\\ 62\\ 61\\ 63\\ \end{array}$

Serial Peripheral Interface. See SPI Mode.	
SFR Space	34
Software Stack	43