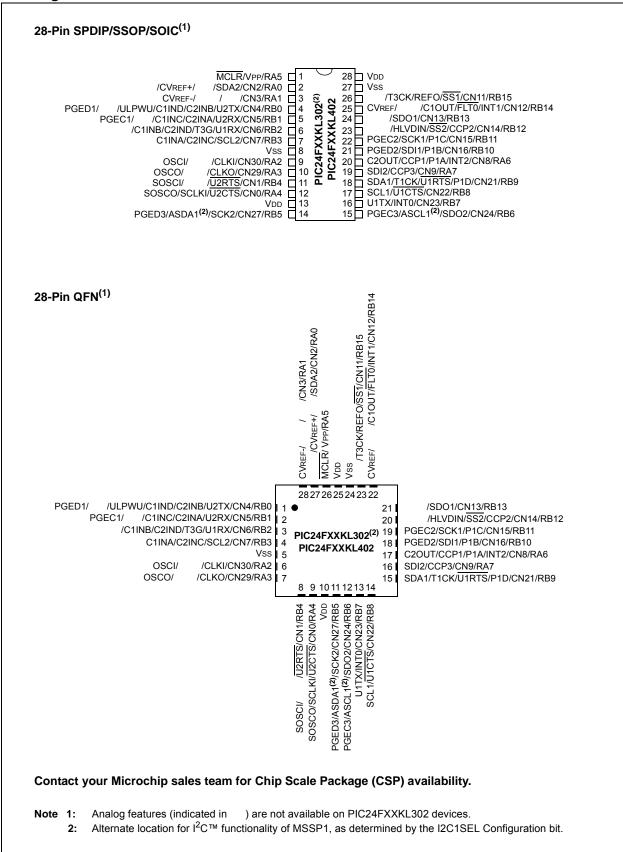


Welcome to E-XFL.COM

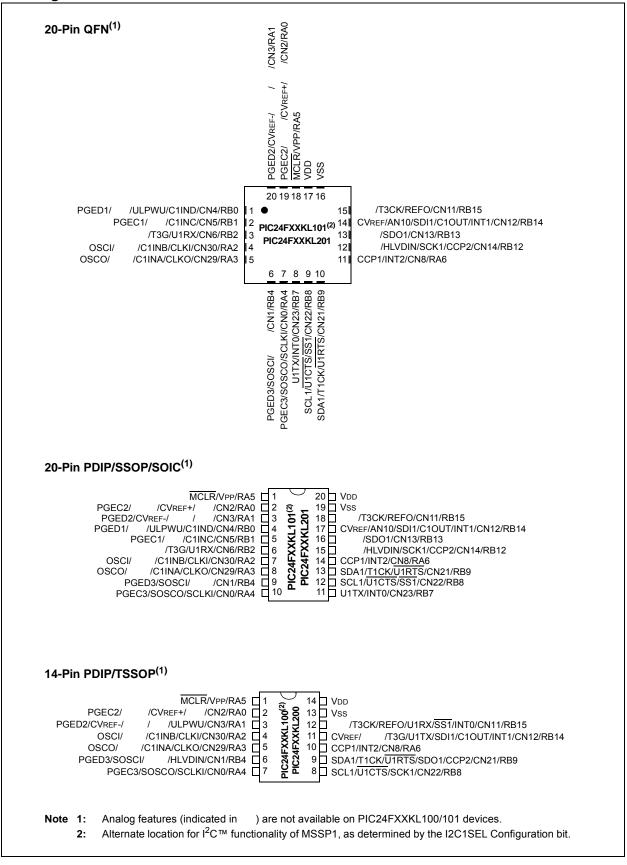
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-i-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL302/402

Pin Diagrams: PIC24FXXKL10X/20X

PIC24F16KL402	PIC24F08KL402	PIC24F08KL302	PIC24F16KL401	PIC24F08KL401	PIC24F08KL301			
		DC – 3	32 MHz					
16K	8K	8K	16K	8K	8K			
5632	2816	2816	5632	2816	2816			
1024	1024	1024	1024	1024	1024			
512	512	256	512	512	256			
31 (27/4)	31 (27/4)	30 (26/4)	31 (27/4)	31 (27/4)	30 (26/4)			
	24			18				
2/2	2/2	2/2	2/2	2/2	2/2			
3	3	3	3	3	3			
1	1	1	1	1	1			
23	23	23	17	17	17			
2	2	2	2	2	2			
2	2	2	2	2	2			
12	12	—	12	12	—			
2	2	2	2	2	2			
POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)								
76	Base Instruc	tions, Multiple	Addressing	Mode Variatio	ns			
	PDIP/SSOP/S			DIP/SSOP/SC				
	16K 5632 1024 512 31 (27/4) 7 2/2 3 1 2 2 2 12 2 2 12 2 2 76 76	16K 8K 5632 2816 1024 1024 512 512 31 (27/4) 31 (27/4) PORTA<7:0> PORTB<15:0> 24 2/2 2/2 3 3 1 1 23 23 2 2 12 12 12 12 2 2 POR, BOR, RES REPEAT Instruction, 76 Base Instruct 76 Base Instruct	DC 3	DC 32 MHz 16K 8K 8K 16K 5632 2816 2816 5632 1024 1024 1024 1024 512 512 256 512 31 (27/4) 31 (27/4) 30 (26/4) 31 (27/4) PORTA<7:0> PORTB<15:0> PORT 2/2 2/2 2/2 3 3 3 1 1 1 23 23 23 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DC 32 MHz 16K 8K 8K 16K 8K 5632 2816 2816 5632 2816 1024 1024 1024 1024 1024 512 512 256 512 512 31 (27/4) 31 (27/4) 30 (26/4) 31 (27/4) 31 (27/4) PORTA<7:0> PORTA<6:0> PORTB<15:12,9:7,			

TABLE 1-2: DEVICE FEATURES FOR PIC24F16KL40X/30X DEVICES

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

; Set up	NVMCON for re	ow erase operation	
M	OV #0x405	8, WO ;	
M	OV WO, NVI	MCON ;	Initialize NVMCON
; Init po	inter to row	to be ERASED	
M	OV #tblpag	ge(PROG_ADDR), W0 ;	
M	OV WO, TB	LPAG ;	Initialize PM Page Boundary SFR
M	OV #tblof:	<pre>fset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TI	BLWTL WO, [W	0] ;	Set base address of erase block
D	ISI #5	;	Block all interrupts
			for next 5 instructions
MO	OV #0x55,	WO	
M	OV WO, NVI	MKEY ;	Write the 55 key
MO	OV #0xAA,	W1 ;	
MO	OV W1, NVI	MKEY ;	Write the AA key
B	SET NVMCON	, #WR ;	Start the erase sequence
NO	ЭР	;	Insert two NOPs after the erase
N	OP	;	command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

6.0 DATA EEPROM MEMORY

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Data
	EEPROM, refer to the "dsPIC33/PIC24
	Family Reference Manual", "Data
	EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFFFh. For PIC24FXXKL4XX devices, the size of the data EEPROM is 256 words (7FFE00h to 7FFFFh). For PIC24FXXKL3XX devices, the size of the data EEPROM is 128 words (7FFF0h to 7FFFFh). The data EEPROM is not implemented in PIC24F08KL20X or PIC24F04KL10X devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

//Disable Interrupts For 5 instr	uctions
asm volatile("disi #5");	
//Issue Unlock Sequence	
asm volatile ("mov #0x55, W0	\n"
"mov W0, NVMKEY	\n"
"mov #0xAA, W1	\n"
"mov W1, NVMKEY	\n");
// Perform Write/Erase operation	S
asm volatile ("bset NVMCON, #WR	\n"
"nop	\n"
"nop	\n");

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE	—	_	T3IE
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
T2IE	CCP2IE	—		T1IE	CCP1IE	—	INTOIE
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable t	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
L:4 / C			- 1-14				
bit 15		/I Interrupt Enabl request is enabl					
		request is not er					
bit 14	Unimpleme	nted: Read as '0	,				
bit 13	AD1IE: A/D	Conversion Com	plete Interrup	t Enable bit			
		request is enabl					
L:1 40	-	request is not er		bla b :4			
bit 12		RT1 Transmitter request is enabl	•	DIE DIT			
		request is not er					
bit 11	U1RXIE: UA	RT1 Receiver In	terrupt Enable	e bit			
		request is enabl					
	-	request is not er					
bit 10-9	-	nted: Read as '0					
bit 8		3 Interrupt Enable					
		request is enabl request is not er					
bit 7		2 Interrupt Enable					
		request is enabl					
	0 = Interrupt	request is not er	nabled				
bit 6		pture/Compare/F	-	ot Enable bit			
		request is enabl request is not er					
bit 5-4		nted: Read as '0					
bit 3	-	Interrupt Enable					
bit 5		request is enabl					
		request is not er					
bit 2	CCP1IE: Ca	pture/Compare/F	WM1 Interru	ot Enable bit			
		request is enabl					
L:1 4		request is not er					
bit 1	-	nted: Read as '0					
bit 0		rnal Interrupt 0 E request is enabl					
		TEQUEST IS ETIDDI	6U				

REGISTER 8-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	U2ERIP2 ⁽¹⁾	U2ERIP1 ⁽¹⁾	U2ERIP0 ⁽¹⁾
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U1ERIP2 ⁽¹⁾	U1ERIP1 ⁽¹⁾	U1ERIP0 ⁽¹⁾			—	—
bit 7							bit 0

Legend:				
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-11	-	nented: Read as '0'		
bit 10-8	U2ERIP<2	2:0>: UART2 Error Interrupt	t Priority bits ⁽¹⁾	
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)	
	•			
•				
	•			
		errupt is Priority 1		
		errupt source is disabled		
bit 7	-	nented: Read as '0'		
bit 6-4	U1ERIP<	2:0>: UART1 Error Interrupt	t Priority bits ⁽¹⁾	
	111 = Inte	errupt is Priority 7 (highest p	priority interrupt)	
	•			
	•			
	•			
		errupt is Priority 1		
		errupt source is disabled		
bit 3-0	Unimplen	nented: Read as '0'		

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

ROI DOZE2 DOZE1 DOZE0 DOZEN ⁽¹⁾ RCDIV2 RCDIV1 RCD bit 15	′W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 Recadable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts clear the DOZEN bit bit 14-12 DOZE DOZE 110 = 1:64 101 = 1:32 100 = 1:16 111 = 1:32 100 = 1:1 DOZE Colspan="2">DOZE Enable bit ⁽¹⁾ 1 = DOZE DOZE Enable bit ⁽¹⁾ 1 = DOZE COCON:11:12) = 111 or 001: 101 = 1:2 DOZE 000 = 1:1 When COSC bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC Colspan="2">COSC 111 = 312 Colspan="2">Colspan= Set to 1:1 bit 10-8 RCDIV-2:0: FRC Postscaler Select b	DIV0
- -	bit 8
- -	1.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 101 = 1:32 100 = 1:16 011 = 1:3 010 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-4) 011 = 4 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (offault) 00 = 8 MHz (divide-by-2) (00Fault) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 110 = 156 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 111 = 1.95 kHz (divide-by-32) 112 = 1.05 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-32) 114 = 1.95 kHz (divide-by-32) 115 = 1.95 kHz (divide-by-32) 116 = 7.81 kHz (divide-by-32) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-32) 119 = 31.25 kHz (divide-by-32) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-32) 112 = 1.95 kHz (divide-by-32) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.95 kHz (divide-by-4) 118 = 1.95 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 112 = 1.95 kHz (divide-by-4) 113 = 1.95 kHz (divide-by-4) 114 = 1.95 kHz (divide-by-4) 115 = 1.55 kHz (divide-by-4) 116 = 1.55 kHz (divide-by-4) 117 = 1.55 kHz (divide-by-4) 118 = 1.55 kHz (divide-by-4) 119 = 1.55 kHz (divide-by-4) 110 = 1.55 kHz (divide-by-4) 111 = 1.95 kHz (divide-by-4) 111 = 1.95 kHz (divi	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' .n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15ROI: Recover on Interrupt bit .1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 .1 = Interrupts have no effect on the DOZEN bitbit 14-12DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits111 = 1:128 .100 = 1:6 .011 = 1:8 .000 = 1:16 .001 = 1:2 .000 = 1:1bit 11DOZEN: DOZE Enable bit(¹⁾ .1 = DOZE+2:0> bits specify the CPU-to-peripheral clock ratio .000 = 6.000 = 0.0000 = 0.00000000000000	bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 100 = 1:64 100 = 1:16 111 = 1:2 010 = 1:12 000 = 1:16 011 = 1:2 000 = 1:1 bit 10 DOZEE-2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON<14:12) = 111 or 001:	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DDZE<2:0>: CPU-to-Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 4 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) 100 = 4 MHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 100 = 50 KHz (divide-by-2) 101 = 7.81 kHz (divide-by-2) 102 = 7.81 kHz (divide-by-2) 104 = 4 MHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 105 = 7.81 kHz (divide-by-2) 106 = 7.81 kHz (divide-by-2) 107 = 7.81 kHz (divide-by-2) 108 = 7.81 kHz (divide-by-2) 109 = 3.125 kHz (divide-by-32) 100 = 3.125 kHz (divide-by-4) 101 = 1.5.62 kHz (divide-by-4) 102 = 3.125 kHz (divide-by-4) 103 = 3.125 kHz (divide-by-4) 104 = 3.125 kHz (divide-by-4) 105 = 3.125 kHz (div	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
bit 11 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU-to-peripheral clock ratio 0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-3) 010 = 2 MHz (divide-by-3) 010 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-4) 010 = 125 kHz (divide-by-4)	
0 = CPU and the peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12) = 111 or 001: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 4 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-256) 100 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-36) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
When $COSC < 2:0 > (OSCCON < 14:12) = 111 \text{ or } 001:$ 111 = 31.25 kHz (divide-by-256) 100 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1) When $COSC < 2:0 > (OSCCON < 14:12 >) = 110:$ 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-16) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4)	
000 = 500 kHz (divide-by-1)	

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_			—	_
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA
oit 7						•	bit C
_egend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	own
oit 15-8	Unimplemen	ted: Read as '	0'				
oit 7-6	CMPL<1:0>:	Complementa	ry Mode Output	t Assignment S	teering bits		
	Steering 01 = P1A and 10 = P1A and 11 = P1A and	n mode d P1B are sele d P1C are sele d P1D are sele	it assignment cted as the com cted as the com cted as the com	nplementary ou nplementary ou	itput pair itput pair	bits are used	
oit 5	Unimplemen	ted: Read as '	0'				
oit 4		Steering Sync b					
			occurs on the r occurs at the b			le boundary	
oit 3	STRD: Steeri	ng Enable D b	it				
		has the PWM vis assigned to	waveform with p port pin	oolarity control	from CCP1M<	1:0>	
oit 2	STRC: Steeri	ng Enable C bi	it				
		has the PWM vis assigned to	waveform with p port pin	oolarity control	from CCP1M<	1:0>	
oit 1	STRB: Steeri	ng Enable B bi	t				
		has the PWM ، is assigned to إ	waveform with p port pin	olarity control	from CCP1M<	1:0>	
oit O	STRA: Steeri	ng Enable A bi	t				
	1 = P1A pin I	has the PWM v	waveform with r	olarity control	from CCP1M<	1.0>	

REGISTER 16-5: PSTR1CON: ECCP1 PULSE STEERING CONTROL REGISTER⁽¹⁾

Note 1: This register is only implemented on PIC24FXXKL40X/30X devices. In addition, PWM Steering mode is available only when CCP1M<3:2> = 11 and PM<1:0> = 00.

REGISTER 19-5: AD1CSSL: A/D INPUT SCAN SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CSSL<	<15:8> (1)				
bit 15							bit 8	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSSL<7:6> —				CSSL<4:0>(1)				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
				(4)				
bit 15-6	CSSL<15:6>	A/D Input Pin	Scan Selection	n bits ⁽¹⁾				
		onding analog ch hannel omitted f		•				
bit 5	Unimpleme	nted: Read as 'd)'					
bit 4-0	CSSL<4:0>:	A/D Input Pin S	can Selection	bits ⁽¹⁾				
		onding analog ch						
		hannel omitted f						

REGISTER 19-6: ANCFG: ANALOG INPUT CONFIGURATION REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 VBGEN								
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — VBGEN bit 7 Juit 2 Juit 2 Juit 2 Juit 2 Legend: Juit 2 Juit 2 Juit 2 Juit 2	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — VBGEN bit 7 bit 7 Legend:	_	_	—	—	—	—	—	—
- - - - VBGEN bit 7 bit 0 bit 0 bit 0 Legend: - - - - VBGEN	bit 15							bit 8
- - - - VBGEN bit 7 bit 0 bit 0 bit 0 Legend: - - - - VBGEN								
bit 7 bit (Legend:	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
Legend:	_	—	—	—	—	—	—	VBGEN
	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	Legend:							
	R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	l as '0'		

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

bit 0

-n = Value at POR

VBGEN: Internal Band Gap Reference Enable bit

'1' = Bit is set

1 = Internal band gap voltage is available as a channel input to the A/D Converter

0 = Band gap is not available to the A/D Converter

x = Bit is unknown

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

24.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- · Local file history feature
- Built-in support for Bugzilla issue tracker

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

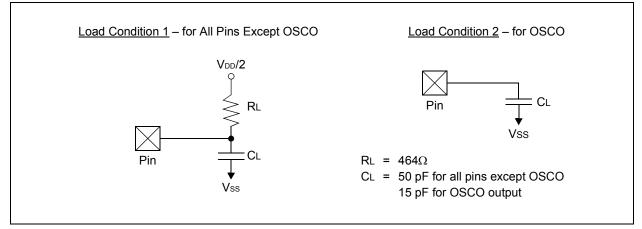
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]


26.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24F16KL402 Family AC characteristics and timing parameters.

TABLE 26-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
	Operating voltage VDD range as de	scribed in Section 26.1 "DC Characteristics".

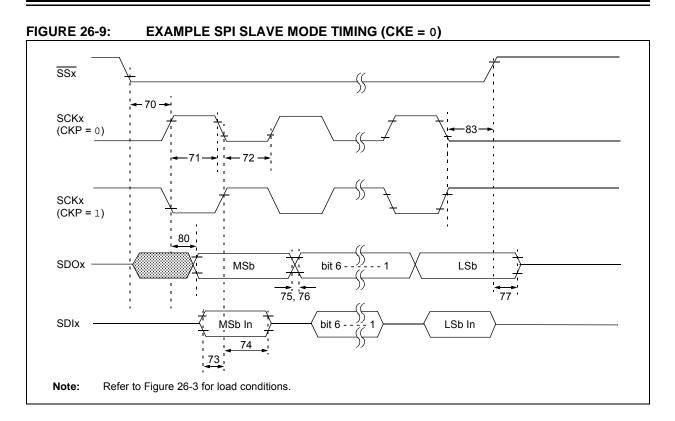
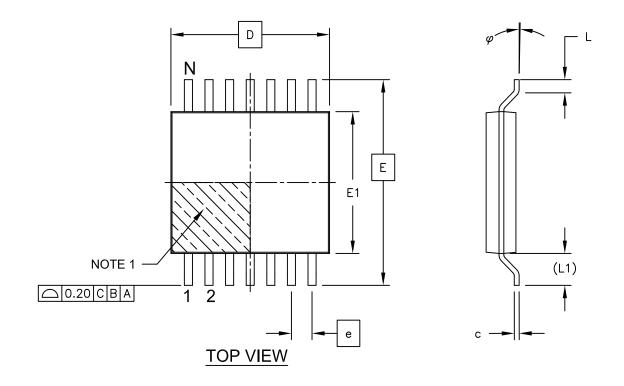

FIGURE 26-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

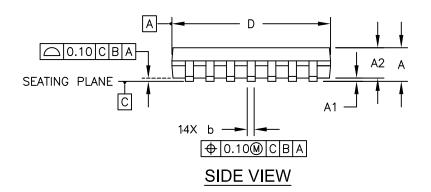
TABLE 26-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx			400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-29: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

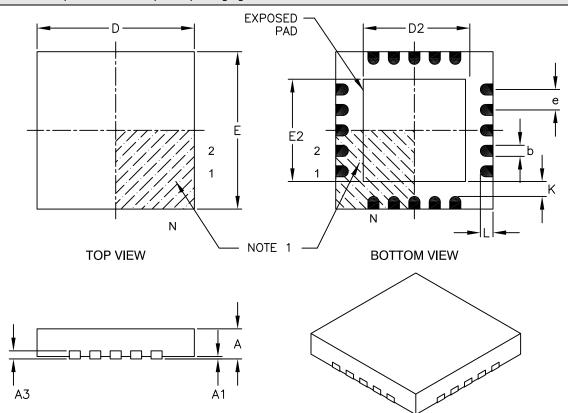

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge		40	_	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	9	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		—	10	MHz	


Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	1ILLIMETER	s
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		5.00 BSC	
Exposed Pad Width	E2	3.15	3.25	3.35
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.15	3.25	3.35
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.35	0.40	0.45
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-139B

INDEX

1	•
•	١

A/D	
10-Bit High-Speed A/D Converter	157
Conversion Timing Requirements	224
Module Specifications	223
A/D Converter	
Analog Input Model	164
Transfer Function	165
AC Characteristics	
A/D Module	223
Capacitive Loading Requirements on	
Output Pins	
Internal RC Oscillator Accuracy	211
Internal RC Oscillator Specifications	211
Load Conditions and Requirements	209
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	158
16-Bit Timer1	115
Accessing Program Memory with	
Table Instructions	
CALL Stack Frame	43
Capture Mode Operation	126
Comparator Module	
Comparator Voltage Reference Module	171
Compare Mode Operation	
CPU Programmer's Model	
Data Access From Program Space	
Address Generation	44
Data EEPROM Addressing with TBLPAG and	
NVM Registers	55
Enhanced PWM Mode	127
High/Low-Voltage Detect (HLVD) Module	173
Individual Comparator Configurations	168
MCLR Pin Connections Example	
MSSPx Module (I ² C Master Mode)	137
MSSPx Module (I ² C Mode)	
MSSPx Module (SPI Mode)	
PIC24F CPU Core	
PIC24F16KL402 Family (General)	13
PSV Operation	46
PWM Operation (Simplified)	126
Recommended Minimum Connections	
Reset System	
Serial Resistor	107
Shared I/O Port Structure	111
Simplified UARTx	149
SPI Master/Slave Connection	136
Suggested Placement of Oscillator Circuit	
System Clock	
Table Register Addressing	
Timer2	117
Timer3	119
Timer4	
Watchdog Timer (WDT)	184

С

C Compilers
MPLAB XC Compilers 188
Capture/Compare/PWM (CCP) 125
CCP/ECCP
CCP I/O Pins 125
Timer Selection 125
Code Examples
Data EEPROM Bulk Erase 57
Data EEPROM Unlock Sequence 53
Erasing a Program Memory Row,
Assembly Language 50
Erasing a Program Memory Row, C Language 51
I/O Port Write/Read (Assembly Language) 114
I/O Port Write/Read (C Language) 114
Initiating a Programming Sequence,
Assembly Language 52
Initiating a Programming Sequence, C Language 52
Loading the Write Buffers, Assembly Language 51
Loading the Write Buffers, C Language 52
PWRSAV Instruction Syntax 105
Reading Data EEPROM Using the
TBLRD Command58
Sequence for Clock Switching
Single-Word Erase
Single-Word Write to Data EEPROM 57
Ultra Low-Power Wake-up Initialization 107
Code Protection
Comparator
Comparator Voltage Reference
Configuring
Configuration Bits
Core Features
CPU
ALU
Control Registers
Core Registers
Programmer's Model
Customer Change Notification Service
Customer Support
D

Data EEPROM Memory	53
Erasing	56
Nonvolatile Memory Registers	
NVMCON	53
NVMKEY	53
NVMADR(U)	55
Operations	55
Programming	
Bulk Erase	57
Reading Data EEPROM	58
Single-Word Write	57
Data Memory	
Address Space	33
Memory Map	33
Near Data Space	34
Organization	34
SFR Space	34
Software Stack	43
Space Width	33

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13