

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
	—	_		_	_	—	DC			
bit 15	·						bit 8			
R/W-0 ⁽¹	l) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С			
bit 7							bit 0			
. .										
Legend:			••							
R = Read	able bit	W = Writable b	it	U = Unimplem	nented bit, read					
-n = value	e at POR	" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unkn	lown			
hit 15_0	Unimplemen	ted: Read as '0'	1							
bit 8	DC: ALU Half	f Carry/Borrow b	it							
	1 = A carry-o	out from the 4 th lo	ow-order bit (f	or byte-sized da	ata) or 8 th low-o	order bit (for wo	ord-sized data)			
	of the res	sult occurred		5	,	Υ.	,			
	0 = No carry-	out from the 4 th	or 8 th low-ord	ler bit of the res	sult has occurre	ed				
bit 7-5	IPL<2:0>: CF	V Interrupt Prio	rity Level (IPL	.) Status bits ^{(1,2}						
	111 = CPU Ir	terrupt Priority L	_evel is 7 (15) _evel is 6 (14)	; user interrupt	s disabled					
	101 = CPU Ir	nterrupt Priority L	_evel is 5 (14)							
	100 = CPU Ir	nterrupt Priority L	_evel is 4 (12)							
	011 = CPU Ir	nterrupt Priority L	Level is 3 (11)							
	010 = CPU Ir 001 = CPU Ir	nterrupt Priority I	_evel is 2 (10) evel is 1 (9)							
	000 = CPU Ir	nterrupt Priority L	_evel is 0 (8)							
bit 4	RA: REPEAT	Loop Active bit								
	1 = REPEAT 0	oop in progress								
L :+ 0	0 = REPEAT ION	oop not in progre	ess							
DIL 3	1 = Result wa	live bil s negative								
	0 = Result wa	is non-negative	(zero or positi	ve)						
bit 2	OV: ALU Ove	erflow bit								
	1 = Overflow	occurred for sigi	ned (2's comp	lement) arithm	etic in this arith	metic operatior	า			
	0 = No overflo	ow has occurred								
bit 1	Z: ALU Zero I	Z: ALU Zero bit								
	1 = An operat 0 = The most	lion, which effec recent operatio	ts the ∠ bit, ha n, which effec	as set it at some ts the Z bit, has	e time in the pa s cleared it (i.e.	ist , a non-zero re:	sult)			
bit 0	C: ALU Carry	/Borrow bit								
	1 = A carry-ou	ut from the Most	Significant bi	t (MSb) of the r	result occurred					
	0 = No carry-	out from the Mos	st Significant I	oit (MSb) of the	e result occurred	d				
Note 1:	The IPL Status bi	ts are read-only	when NSTDI	S (INTCON1<1	5>) = 1.					
2:	The IPL Status bi	ts are concatena	ated with the I	PL3 bit (CORC	ON<3>) to form	n the CPU Inter	rrupt Priority			

2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-8: MSSP REGISTER MAP

-																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
SSP1BUF	0200	_	_	—	_	_	_	_				MSSP1 F	Receive Buff	er/Transmit	Register			00xx
SSP1CON1	0202	_	_	—	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	0204	_	_	—	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	0206	_	_	—	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	0208	_	_	—	_	_	—	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP1ADD	020A	—	_	-	—	—	—	—	_	MSSP1 Address Register (I ² C [™] Slave Mode) 00 MSSP1 Baud Rate Reload Register (I ² C Master Mode)							0000	
SSP1MSK	020C	_	_	_	_	_	—	_	_		М	SSP1 Addr	ess Mask R	egister (I ² C	Slave Mode	e)		00FF
SSP2BUF ⁽¹⁾	0210	_	_	_	_	_	—	_	_			MSSP2 F	Receive Buff	er/Transmit	Register			00xx
SSP2CON1(1)	0212	_	_	_	_	_	—	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2(1)	0214	_	_	_	_	_	—	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3(1)	0216	_	_	—	—	_	—	—	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	0218	_	_	—	_	_	—	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	021A	—	—	-	—	—	—	-	—	MSSP2 Address Register (I ² C Slave Mode) 00 MSSP2 Baud Rate Reload Register (I ² C Master Mode)							0000	
SSP2MSK ⁽¹⁾	021C	_		—	_	_	-	—	_		М	SSP2 Addr	ess Mask R	egister (I ² C	Slave Mode	e)		00FF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-9: UART REGISTER MAP

	•••	•••••			-													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—	_	—		—			UART1 Transmit Register 2							xxxx		
U1RXREG	0226	—	_	—		—				UART1 Receive Register 00							0000	
U1BRG	0228							Baud Ra	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	_	_	_	UART2 Transmit Register x2							xxxx		
U2RXREG	0236	_	_	—	_	_	_	_	UART2 Receive Register 00							0000		
U2BRG	0238							Baud Ra	ate Genera	tor Prescaler	Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.5 SOFTWARE STACK

In addition to its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6, in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-20 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location, used as data, should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside of a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle, in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles, in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

; Set up NVMCON for :	row erase operation	
MOV #0x40	58, WO ;	
MOV W0, N	VMCON ;	Initialize NVMCON
; Init pointer to ro	w to be ERASED	
MOV #tblp	age(PROG_ADDR), W0 ;	
MOV W0, T	BLPAG ;	Initialize PM Page Boundary SFR
MOV #tblo	<pre>ffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0, [w0] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0x55	, WO	
MOV W0, N	VMKEY ;	Write the 55 key
MOV #0xAA	, W1 ;	
MOV W1, N	VMKEY ;	Write the AA key
BSET NVMCO	N, #WR ;	Start the erase sequence
NOP	i	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device has been in Sleep mode

 0 = Device has not been in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device has been in Idle mode

 0 = Device has not been in Idle mode

 0 = Device has not been in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred (the BOR is also set after a POR)

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** The SBOREN bit is forced to '0' when disabled by the Configuration bits, BOREN<1:0> (FPOR<1:0>). When the Configuration bits are set to enable SBOREN, the default Reset state will be '1'.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator **Configuration**".

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

	Legend:				
R = Readable bit V		bit	W = Writable bit	U = Unimplemented bit, read	ad as '0' x = Bit is unknown
	-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15 NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled					
	bit 14-5	Unimplemen	ted: Read as '0'		
	bit 4	MATHERR: A 1 = Overflow t 0 = Overflow t	withmetic Error Trap Status bit trap has occurred trap has not occurred		
	bit 3	ADDRERR: A 1 = Address e 0 = Address e	Address Error Trap Status bit error trap has occurred error trap has not occurred		
	bit 2	STKERR: Sta	ick Error Trap Status bit		

bit 0	Unimplemented: Read as '0'
	1 = Oscillator failure trap has occurred0 = Oscillator failure trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	 1 = Stack error trap has occurred 0 = Stack error trap has not occurred

REGISTER 8-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—			_			_	HLVDIE		
bit 15	•	•	•		•	•	bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0		
—	—		—	—	U2ERIE ⁽¹⁾	U1ERIE	—		
bit 7							bit 0		
Legend:									
R = Readabl	R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	= Bit is cleared x = Bit is unknown				
bit 15-9	Unimplemen	ted: Read as '	כי						
bit 8	HLVDIE: High	n/Low-Voltage [Detect Interrup	t Enable bit					
	1 = Interrupt r	equest is enab	led nabled						
bit 7-3	Unimplemen	ted: Read as ')'						
bit 2	U2ERIE: UAF	RT2 Error Interr	- upt Enable bit	(1)					
	1 = Interrupt request is enabled								
	0 = Interrupt r	equest is not e	nabled						
bit 1	U1ERIE: UAF	RT1 Error Interr	upt Enable bit						
	1 = Interrupt r	equest is enab	led						
	0 = Interrupt r	equest is not e	nabled						
bit 0	Unimplemen	ted: Read as 'o	כ'						

Note 1: This bit is unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						
bit 15-1	Unimplemen	ted: Read as 'd)'				

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable Bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC oscillator. OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit SO = Settable Only bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)

Note 1: Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). Note that the PIC24F16KL402 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the Data Latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers, that are not valid for a particular device, will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless, regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED I/O PORT STRUCTURE

NOTES:

REGISTER 17-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplement	ed: Read as '0'					
bit 7	WCOL: Write	Collision Detect	bit				
	In Master Tran	<u>ismit mode:</u> o tho SSByBLII	E rogistor was	attompted wh	ile the l^2 C cou	nditions word r	not valid for a
	transmiss	ion to be started	d (must be clea	red in software)		nultions were i	iot valid ioi a
	0 = No collisio	on	(,			
	In Slave Trans	<u>smit mode:</u>					
	1 = The SSPx	BUF register is v	vritten while it is	still transmitting	the previous wo	rd (must be clea	red in software)
	In Receive mo	ode (Master or S	lave modes).				
	This is a "don"	t care" bit.	<u>lave modeoj.</u>				
bit 6	SSPOV: MSS	Px Receive Ove	erflow Indicator	bit			
	In Receive mo	ode:					
	1 = A byte is re	eceived while the	SSPxBUF regi	ister is still holding	g the previous by	/te (must be clea	red in software)
		wc.					
	This is a "don"	t care" bit in Tra	nsmit mode.				
bit 5	SSPEN: MSS	Px Enable bit ⁽¹⁾					
	1 = Enables th 0 = Disables tl	ne serial port and he serial port an	d configures th d configures th	e SDAx and SC nese pins as I/O	Lx pins as the s port pins	serial port pins	
bit 4	CKP: SCLx R	elease Control b	bit				
	In Slave mode	<u>):</u>					
	1 = Releases	clock		una data anti	un time e		
	0 = Holds cloc	K IOW (CIOCK SITE	etch); used to e	ensure data setu	ip ume		
	Unused in this	mode.					
bit 3-0	SSPM<3:0>: [MSSPx Mode S	elect bits ⁽²⁾				
	1111 = I ² C SI	ave mode, 10-b	it address with	Start and Stop I	bit interrupts is e	enabled	
	$1110 = I^2 C SIa$	ave mode, 7-bit	address with S	Start and Stop bi	t interrupts is er	nabled	
	$1011 = I^2 C Fin$	rmware Controll	ed Master mod	de (Slave Idle)	4 \\ (3)		
	$1000 = I^{-}C Ma$ $0111 = I^{2}C Sla$	aster mode, Clo ave mode, 10-bi	uk = ⊏0SC/(2 ^ it address	([SSPXADD] +	1))**		
	$0110 = I^2 C SI_1$	ave mode, 7-bit	address				
Note 1-	Whon anabled	the SDAy and		ot ha configured	Lao innuto		
Note 1: 2:	Bit combination	ns not specifical	ly listed here a	ire either reserve	ed or implemen	ted in SPI mode	e only.

SSPxADD values of 0, 1 or 2 are not supported when the Baud Rate Generator is used with I²C mode.

	11.0				11.0		
	0-0		K/VV-U		0-0		
bit 15	N	USIDE		R I SIVID	_	UEINI	UEINU hit 2
bit 10							bit 0
R/C-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	- I			1			bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable b	it	
R = Reada	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		DTy Enchlo hit					
DIL 15	1 = UARTx is	s enabled: all U	ARTx nins are	controlled by I	IARTx as defin	ned by UEN<1.0)>
	0 = UARTx is minimal	s disabled; all U	IARTx pins ar	e controlled by	port latches, l	JARTx power c	onsumption is
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit				
	1 = Discontin 0 = Continue	ues module op s module opera	eration when o tion in Idle mo	device enters lo ode	lle mode		
bit 12	IREN: IrDA [®]	Encoder and De	ecoder Enable	e bit ⁽¹⁾			
	1 = IrDA ence0 = IrDA ence	oder and decod oder and decod	er are enable er are disable	d d			
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
	$1 = \frac{\text{UxRTS}}{\text{UxRTS}} p$ 0 = UxRTS p	in is in Simplex in is in Flow Co	mode ntrol mode				
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	UEN<1:0>: ∪	ARTx Enable b	its ⁽²⁾				
	11 = UxTX, 10 = UxTX, 01 = UxTX, 00 = UxTX a port late	UxRX and UxB(UxRX, UxCTS a UxRX and UxR and UxRX pins a ches	CLK <u>pins are</u> e and UxRTS pin TS pins are er are enabled ar	enabled and us ns are enabled nabled and use nd used; UxCTS	ed; UxCTS pin an <u>d used</u> d; UxCTS pin i and UxRTS/U	is controlled by s controlled by p JxBCLK pins are	v port latches port latches e controlled by
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	1 = UARTx v cleared in 0 = No wake	vill continue to n hardware on t -up is enabled	sample the U he following ri	IxRX pin; interr sing edge	upt is generat	ed on the fallin	ig edge, bit is
bit 6	LPBACK: UA	RTx Loopback	Mode Select I	bit			
	1 = Enables 0 = Loopbacl	Loopback mode k mode is disab	e led				
bit 5	ABAUD: Auto	o-Baud Enable I	oit				
	1 = Enables cleared in 0 = Baud rate	baud rate meas n hardware upo e measurement	urement on th n completion is disabled or	ne next charactor completed	er – requires re	eception of a Sy	nc field (55h);
bit 4	RXINV: Rece	ive Polarity Inve	ersion bit				
	1 = UxRX IdI 0 = UxRX IdI	e state is '0' e state is '1'					
Note 1:	This feature is is a	only available fo	or the 16x BR	G mode (BRGH	= 0).		
2:	Bit availability der	pends on pin av	ailability.		•,.		

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend: HC = Hardware Clearable bit			
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14	UTXINV:	IrDA [®] Encoder	Transmit	Polarity	Inversion	bit
--------	---------	---------------------------	----------	----------	-----------	-----

Dit i i	
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits; followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx
	0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on the RSR transfer, making the receive buffer full (i.e., has 2 data characters) 10 = Reserved 01 = Reserved

00 = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters

TABLE 26-27: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic		Мах	Units	Conditions
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	20	_	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time		25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)		25	ns	
	FSCK	SCKx Frequency	_	10	MHz	

TABLE 26-29: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	, \overline{SSx} ↓ to SCKx ↓ or SCKx ↑ Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge		40		ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		_	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz	
			MSSP module	1.5	—	Тсү		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μS	Must operate at a minimum of 10 MHz	
			MSSP module	1.5	—	Тсү		
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first clock	
			400 kHz mode	0.6	—	μS	pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μs		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μs		
			400 kHz mode	0.6	—	μs		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free before	
			400 kHz mode	1.3		μS	a new transmission can start	
D102	Св	Bus Capacitive Loading		—	400	pF		

TABLE 26-32: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimensior	MIN	NOM	MAX	
Number of Pins	28			
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

 Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

20-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5 mm Body [QFN] With 0.40mm Contact Length

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			3.35
Optional Center Pad Length	T2			3.35
Contact Pad Spacing	C1		4.50	
Contact Pad Spacing	C2		4.50	
Contact Pad Width (X20)	X1			0.40
Contact Pad Length (X20)	Y1			0.55
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2139A