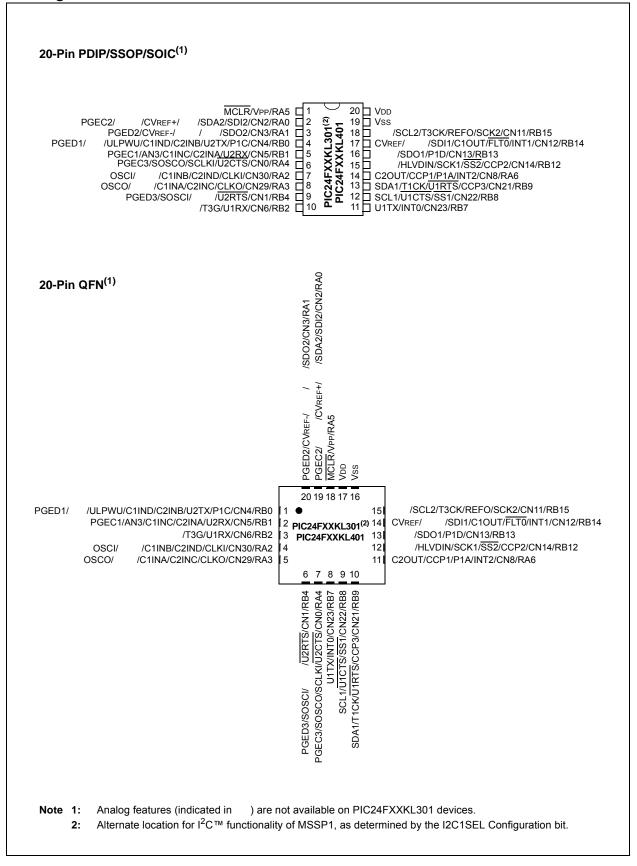


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08kl402t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL301/401

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and bussing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F16KL402 family is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24F16KL402 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24F16KL402 FAMILY DEVICES

	PIC24F04KLXXX	PIC24F08KL2XX	PIC24F08KL3XX		PIC24F08KL4XX	PIC24F16KLXXX	
	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash Program Memory (1408 instructions)	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash		GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table Flash	GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table	000000h 00002h 00004h 0000FEh 000100h 000104h 0001FEh 000200h
User Memory Space		Program Memory (2816 instructions)	 Program Memory (2816 instructions)	-	Program Memory (2816 instructions)	 Flash Program Memory (5632 instructions)	- 000AFEh
User Me	Unimplemented Read '0'	Unimplemented Read '0'	Unimplemented Read '0'		Unimplemented Read '0'	Unimplemented	002BFEh
			 Data EEPROM (256 bytes)	- 	Data EEPROM (512 bytes)	 Read '0' Data EEPROM (512 bytes)	 7FFE00h 7FFF00h 7FFFFFh 800000h
Ī	Reserved	Reserved	Reserved		Reserved	Reserved	800800h
ace	Unique ID	Unique ID	Unique ID		Unique ID	Unique ID	800802h 800808h
lory Sp	Reserved	Reserved	Reserved		Reserved	Reserved	80080Ah
Mem	Device Config Registers	Device Config Registers	Device Config Registers		Device Config Registers	Device Config Registers	F80000h F8000Eh
Configuration Memory Space	Reserved	Reserved	Reserved		Reserved	Reserved	F80010h FEFFFEh
	DEVID (2)	DEVID (2)	DEVID (2)		DEVID (2)	DEVID (2)	FF0000h FFFFFFh

Note: Memory areas are not displayed to scale.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

	чυ.			1 001														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	—	—	—	—	—	_	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	—	—	_	_	—	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	T3IF	T2IF	CCP2IF	_	_	T1IF	CCP1IF	_	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	_	T4IF ⁽¹⁾	_	CCP3IF ⁽¹⁾	_	_	_	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	8800		_	_	_		_	_	_	_	_	T3GIF	_	_	_	_	_	0000
IFS3	008A	—	_	_	—	—	_	_	—	_	_	—	_	_	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	—	0000
IFS4	008C	—	_	_	—	_	_	_	HLVDIF	_	_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	008E	—	_	_	—	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	_	_	T3IE	T2IE	CCP2IE	_	_	T1IE	CCP1IE	_	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	—	T4IE ⁽¹⁾	_	CCP3IE ⁽¹⁾	_	_	_	_	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	0098	_	_	-	—	_	_	_	_		_	T3GIE	_	_	_	_	-	0000
IEC3	009A	_	_		—	_	_	_	_		_	_	-	_	BCL2IE ⁽¹⁾	SSP2IE ⁽¹⁾		0000
IEC4	009C	_	_		—	_	_	_	HLVDIE		_	_	-	_	U2ERIE	U1ERIE		0000
IEC5	009E	_	_		—	_	_	_	_		_	_	-	_	_	_	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	_	_	_	_	_	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	CCP2IP2	CCP2IP1	CCP2IP0		_	_	-	_	_	_	-	4400
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	_	_	_		_	_	-	_	T3IP2	T3IP1	T3IP0	4004
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0		BCL1IP2	BCL1IP1	BCL1IP0	_	SSP1IP2	SSP1IP1	SS1IP0	4444
IPC5	00AE	_	_	-	—	_	_	_	_		_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	_	_	_	_		CCP3IP2(1)	CCP3IP1(1)	CCP3IP0(1)	_	—	—		4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0		INT2IP2	INT2IP1	INT2IP0	_	_	_		4440
IPC9	00B6	_	_	-	—	_	_	—	_		T3GIP2	T3GIP1	T3GIP0	_	_	_		0040
IPC12	00BC	_	_	_	—	_	BCL2IP2(1)	BCL2IP1(1)	BCL2IP0(1)		SSP2IP2(1)	SSP2IP1(1)	SSP2IP0(1)	_	_	_		0440
IPC16	00C4	_	_	_	_	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	—	_	0440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC20	00CC	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: Note 1:

Legend: — = unimplemented, read as '0', r = reserved. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-6	: т	IMER	REGIS	TER N	IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Reg	gister							0000
PR1	0102								Tir	mer1 Period	er1 Period Register					FFFF		
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000
PR2	0108	_	_	_	_	_	_	_	_	Timer2 Period Register					OOFF			
T2CON	010A	_	_	_	_	_	_	_	_	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Reg	gister							0000
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	_				Timer4 Perio	d Register				00FF
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	—	_	_	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	—	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	V1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_	Capture/Compare/PWM1 Register High Byte					0000			
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	—	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_	Capture/Compare/PWM2 Register High Byte 0					0000			
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	_	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_	Capture/Compare/PWM3 Register Low Byte 0					0000			
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

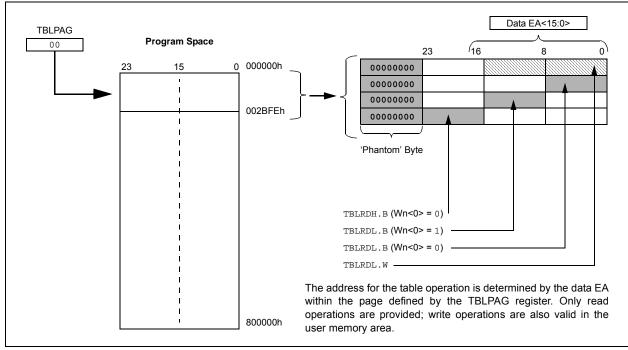
Note:	The TBLRDH and TBLWTH instructions are
	not used while accessing data EEPROM
	memory.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'.

 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.


In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with 15 bits of the EA functioning as the lower bits.

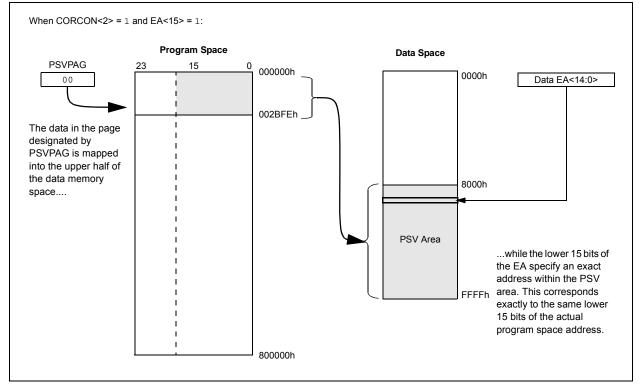
By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location, used as data, should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.


For operations that use PSV and are executed outside of a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle, in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles, in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

6.0 DATA EEPROM MEMORY

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Data
	EEPROM, refer to the "dsPIC33/PIC24
	Family Reference Manual", "Data
	EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFFFh. For PIC24FXXKL4XX devices, the size of the data EEPROM is 256 words (7FFE00h to 7FFFFh). For PIC24FXXKL3XX devices, the size of the data EEPROM is 128 words (7FFF0h to 7FFFFh). The data EEPROM is not implemented in PIC24F08KL20X or PIC24F04KL10X devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

//Disable Interrupts For 5 instr	uctions
asm volatile("disi #5");	
//Issue Unlock Sequence	
asm volatile ("mov #0x55, W0	\n"
"mov W0, NVMKEY	\n"
"mov #0xAA, W1	\n"
"mov W1, NVMKEY	\n");
// Perform Write/Erase operation	S
asm volatile ("bset NVMCON, #WR	\n"
"nop	\n"
"nop	\n");

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0
U2TXIF ⁽¹⁾	U2RXIF ⁽¹⁾	INT2IF		T4IF ⁽¹⁾		CCP3IF ⁽¹⁾	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF
bit 7							bit (
Legend:							
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
				- (1)			
bit 15		T2 Transmitter		Status bit ⁽¹⁾			
		equest has occ					
L:1 4 4		equest has not					
bit 14		RT2 Receiver Ir		atus bit			
		equest has occ equest has not					
bit 13	•	nal Interrupt 2					
bit 10		equest has occ	-				
		equest has not					
bit 12	-	ted: Read as '					
bit 11	-	Interrupt Flag S					
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 10	Unimplement	ted: Read as '	כי				
bit 9	CCP3IF: Capt	ture/Compare/I	PWM3 Interrup	ot Flag Status b	it ⁽¹⁾		
		equest has occ					
	-	equest has not					
bit 8-5	-	ted: Read as '					
bit 4		nal Interrupt 1	•				
		equest has occ equest has not					
bit 3	•	hange Notifica		lag Status bit			
DIT 3	-	equest has occ	-	lay Status bit			
		equest has oct					
bit 2	-	arator Interrupt					
		equest has occ	-				
		equest has not					
bit 1	BCL1IF: MSS	SP1 I ² C™ Bus	Collision Interr	upt Flag Status	bit		
	1 = Interrupt r	equest has occ	curred				
	-	equest has not					
bit 0		SP1 SPI/I ² C Ev		ag Status bit			
		equest has occ equest has not					
			acourred				

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15	—	—	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	T3GIF	—				—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	T3GIF: Timer3 External Gate Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 4-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	—	—	—	—	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2 BCL2IF: MSSP2 I²C[™] Bus Collision Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SSP2IF: MSSP2 SPI/I²C Event Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 Unimplemented: Bood os ⁽⁰⁾
- bit 0 Unimplemented: Read as '0'
- Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	U1RXIP2	U1RXIP1	U1RXIP0		_	_				
bit 15			L		l		bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	—	—	—	_	T3IP2	T3IP1	T3IP0			
bit 7			•				bit 0			
Legend:										
R = Readab	Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 14-12		>: UART1 Rece pt is Priority 7 (pt is Priority 1	•							
	000 = Interru	pt source is dis								
bit 11-3	•	ted: Read as '								
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits							
	111 = Interru • •	pt is Priority 7(highest priority	interrupt)						
	•									

REGISTER 8-25: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	T3GIP2	T3GIP1	T3GIP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-4	T3GIP<2:0>:	Timer3 Externa	al Gate Interru	pt Priority bits			
	111 = Interru	pt is Priority 7 (I	highest priority	y interrupt)			
	•						

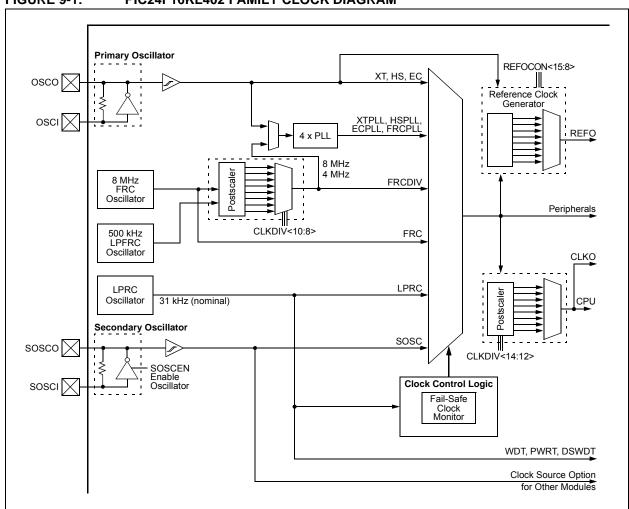
•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24F16KL402 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip, 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24F16KL402 FAMILY CLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—		—	_	—					
bit 15	•						bit				
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF				
bit 7							bit				
Legend:											
R = Readab		W = Writable		U = Unimplen							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-8	Unimplome	nted: Read as '	o'								
bit 7	-		0								
	SMP: Sample bit SPI Master mode:										
	1 = Input data is sampled at the end of data output time										
	0 = Input data is sampled at the middle of data output time										
	<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode.										
				Slave mode.							
bit 6		ock Select bit ⁽¹⁾									
				to active clock							
bit 5	D/A: Data/Ad	ddress bit									
	Used in I ² C [⊤]	[™] mode only.									
bit 4	P: Stop bit										
	Used in I ² C r	mode only. This	bit is cleared	when the MSSF	x module is d	isabled; SSPEN	is cleared.				
bit 3	S: Start bit										
	Used in I ² C r	mode only.									
bit 2	R/W: Read/V	Vrite Informatio	n bit								
	Used in I ² C r	mode only.									
bit 1	UA: Update Address bit										
	Used in I ² C r	-									
bit 0	BF: Buffer Fi										
		is complete, SS									
	0 = Receive	is not complete	, SSPxBUF is	empty							
Note 1: ⊺	he polarity of th	e clock state is	set by the CK	P bit (SSPxCON	V1<4>).						

REGISTER 17-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 18.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

18.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

18.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UART module is enabled; it can be used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾		
UARTEN		USIDL	IREN ⁽¹⁾	RTSMD		UEN1	UEN0		
bit 15							bit 8		
R/C-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7							bit 0		
1			L :4			L			
Legend:	bla bit	C = Clearable W = Writable t			re Clearable bit				
R = Readat			DIC	•	nented bit, read				
-n = Value a		'1' = Bit is set		'0' = Bit is clea	areo	x = Bit is unkn	own		
bit 15		ARTx Enable bit							
DIUTS		s enabled; all U/	NPTy nine are	controlled by I		ed by LIENZ1.0			
		s disabled; all U							
bit 14	-	ted: Read as '0	,						
bit 13	-	Tx Stop in Idle N							
		nues module op		device enters lo	lle mode				
		0 = Continues module operation in Idle mode							
bit 12		IREN: IrDA [®] Encoder and Decoder Enable bit ⁽¹⁾							
		1 = IrDA encoder and decoder are enabled							
bit 11		0 = IrDA encoder and decoder are disabled RTSMD: Mode Selection for $UxRTS$ Pin bit							
		oin is in Simplex		L					
		oin is in Flow Co							
bit 10	Unimplemen	ted: Read as '0	,						
bit 9-8	UEN<1:0>: L	JARTx Enable b	its ⁽²⁾						
	10 = UxTX, 01 = UxTX,	UxRX and UxB(UxRX, UxCTS a UxRX and UxR and UxRX pins a ches	and UxRTS pir TS pins are er	ns are enabled habled and use	an <u>d used</u> d; UxCTS pin is	controlled by	port latches		
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit				
	cleared i	will continue to n hardware on t			upt is generate	ed on the fallin	g edge, bit is		
bit 6		-up is enabled ARTx Loopback	Mode Select I	oit					
DILO		Loopback mode		JIL					
		k mode is disab							
bit 5	ABAUD: Aut	o-Baud Enable I	oit						
	cleared i	baud rate meas n hardware upo e measurement	n completion		er – requires re	ception of a Sy	nc field (55h);		
bit 4		eive Polarity Inve							
	1 = UxRX Id	-							
	0 = UxRX Id								
	This feature is is Bit availability de			G mode (BRGH	l = 0).				

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15	·	•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15 bit 14 bit 13	1 = A/D inten 0 = Clock der EXTSAM: Ext 1 = A/D is stil 0 = A/D is fin	onversion Cloc nal RC clock rived from syste tended Samplin Il sampling afte ished sampling parge Pump En	em clock ng Time bit r SAMP = 0				
	1 = Charge p	ump for switch	es is enabled				
bit 12-8	SAMC<4:0>: 11111 = 31 T • • • 00001 = 1 TA	Auto-Sample T AD	īme bits				
bit 7-6	Unimplemen	ted: Maintain a	s '0'				
bit 5-0	ADCS<5:0>: 11111 = 64 • 11110 = 63 • • • • • 00001 = 2 • T 00000 = Tcy	Тсү	n Clock Select	bits			

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

REGISTER 20-1: CMxCON: COMPARATOR x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0			
CON	COE	CPOL	CLPWR		_	CEVT	COUT			
bit 15			•		•		bit			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1	⁽¹⁾ EVPOL0 ⁽¹⁾		CREF			CCH1	CCH0			
bit 7							bit			
Legend:										
R = Reada	abla bit	W = Writable	hit		montod bit roo	d aa '0'				
					nented bit, rea					
-n = Value	atPOR	'1' = Bit is se	['0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	CON: Compa	arator Enable b	it							
	•	ator is enabled								
		ator is disabled								
bit 14	COE: Compa	arator Output E	nable bit							
			resent on the C	kOUT pin						
	-	ator output is in	-							
bit 13		•	Polarity Select b	bit						
		ator output is in ator output is ne								
bit 12	-	-	Power Mode Se	loct hit						
		•	Low-Power mo							
			perate in Low-Po							
bit 11-10	Unimplemer	Unimplemented: Read as '0'								
bit 9	CEVT: Comp	arator Event bi	t							
	1 = Compara	ator event defir	ned by EVPOL<	1:0> has occu	ırred; subsequ	ent triggers and	interrupts a			
		until the bit is o								
	-	ator event has								
bit 8		parator Output	bit							
	<u>When CPOL</u> 1 = VIN+ > V									
	0 = VIN + < V									
	When CPOL									
	1 = VIN+ < V									
	0 = VIN + > V									
bit 7-6			t/Interrupt Polar							
						ator output (whil				
						f the comparato of the comparato				
			t generation is o		Ign transition o		output			
bit 5		nted: Read as	•							
bit 4	-		ice Select bits (non-invertina ii	nput)					
			nects to the inte	-						
			nects to the CxI		J					
Note 1:	If EVPOL<1:0> is	s set to a value	other than '00'.	the first interr	upt generated	will occur on an	y transition c			
	COUT, regardles									
	bits setting.									

2: Unimplemented on 14-pin (PIC24FXXKL100/200) devices.

REGISTER 23-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-0	R/P-0	R/P-1
IESO	LPRCSEL	SOSCSRC		—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IESO: Internal External Switchover bit
	 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
bit 6	LPRCSEL: Internal LPRC Oscillator Power Select bit
	1 = High-Power/High-Accuracy mode 0 = Low-Power/Low-Accuracy mode
bit 5	SOSCSRC: Secondary Oscillator Clock Source Configuration bit
	 1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins 0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin
bit 4-3	Unimplemented: Read as '0'
bit 2-0	FNOSC<2:0>: Oscillator Selection bits
	111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)
	110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
	101 = Low-Power RC Oscillator (LPRC)
	100 = Secondary Oscillator (SOSC)
	011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = 8 MHz FRC Oscillator with Divide-by-N with PLL module (FRCDIV+PLL)

000 = 8 MHz FRC Oscillator (FRC)

NOTES: