E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16kl401-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:

- 10-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Dual Rail-to-Rail Analog Comparators with Programmable Input/Output Configuration
- On-Chip Voltage Reference

Special Microcontroller Features:

- Operating Voltage Range of 1.8V to 3.6V
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 40 Years Minimum
- Self-Programmable under Software Control
- Programmable Reference Clock Output

- Fail-Safe Clock Monitor (FSCM) Operation:
 - Detects clock failure and switches to on-chip, Low-Power RC (LPRC) oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT):
 - Uses its own Low-Power RC oscillator
 - Windowed operating modes
 - Programmable period of 2 ms to 131s
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via 2 Pins
- Programmable High/Low-Voltage Detect (HLVD)
- Programmable Brown-out Reset (BOR):
 - Configurable for software controlled operation and shutdown in Sleep mode
 - Selectable trip points (1.8V, 2.7V and 3.0V)
 - Low-power 2.0V POR re-arm

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Mis-aligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a mis-aligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24F16KL402 family devices, the entire implemented data memory lies in Near Data Space.

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region, where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-18.

	SFR Space Address												
	xx00	xx00 xx20		xx40	xx60	хх	xx80		xxA0		C0	xx	E0
000h	Core		ICN	N Interrupts				_	_				
100h	Timers	—	TMR	—	_	_	CC	CP	—		_	_	-
200h	MSSP	UAI	RT	—	_	-	_	-	_	1/	0	_	-
300h	A	/D		_	_			_	_	_	_	-	
400h	—	_	-	—	_	_	_	-	_	_	AN	SEL	
500h	_	_	-		_	_	_			_		_	_
600h		CMP					_	_					_
700h		_	-	System	NVM/PMD	_	_	-	_	_	_	_	_

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE

	Reset – GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 	000002h 000004h 0000014h 000007Ch 00007Ch	
	Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	000014h 00007Ch	
	Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
x	Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Reserved Interrupt Vector 0 Interrupt Vector 1 — — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Interrupt Vector 1 — — — Interrupt Vector 52 Interrupt Vector 53	00007Ch	
	Interrupt Vector 52		
	Interrupt Vector 53		· · · · · · · · · · · · · · · · ·
		00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 54 —		
	_	000080h	
	_		
	—		
	Interrupt Vector 116	0000FCh	
	Interrupt Vector 117	0000FEh	
	Reserved	000100h	
	Reserved	000102h	
	Reserved		
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	000114h	
	Interrupt Vector 1		
	—		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
			, ,
	_		
	Interrupt Vector 52	00017Ch	
	Interrupt Vector 53	00017Eh	
	Interrupt Vector 54	000180h	
	—		
	—		
¥	—		
	Interrupt Vector 116		
	Interrupt Vector 117	0001FEh	
	Start of Code	000200h	
		-	

8.3 Interrupt Control and Status Registers

Depending on the particular device, the PIC24F16KL402 family of devices implements up to 28 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC7, ICP9, IPC12, ICP16, ICP18 and IPC20
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIV table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU priority level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All interrupt registers are described in Register 8-3 through Register 8-30, in the following sections.

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15	—	—	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	T3GIF	—				—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	T3GIF: Timer3 External Gate Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 4-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	—	—	—	—	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2 BCL2IF: MSSP2 I²C[™] Bus Collision Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SSP2IF: MSSP2 SPI/I²C Event Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 Unimplemented: Bood os ⁽⁰⁾
- bit 0 Unimplemented: Read as '0'
- Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC oscillator. OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	SC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = 8 MHz FRC Oscillator (FRC)

Note 1: Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_		—		<u> </u>		—					
bit 15							bit 8					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	DCxB1	DCxB0	CCPxM3 ⁽¹⁾	CCPxM2 ⁽¹⁾							
bit 7							bit (
Legend:												
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown					
bit 15-6	Unimplement	ted: Read as '	0'									
bit 5-4	-			it 0 for CCPx Mo	odule bits							
		Compare mode										
		-										
	Unused.											
	Unused. <u>PWM mode:</u>											
	<u>PWM mode:</u> These bits are			its (bit 1 and bit			cle. The eigh					
	<u>PWM mode:</u> These bits are Most Significa	ant bits (DCxB<	<9:2>) of the d	uty cycle are fou			cle. The eigh					
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0>	ant bits (DCxB< :: CCPx Module	<9:2>) of the d	uty cycle are fou			cle. The eigh					
bit 3-0	<u>PWM mode:</u> These bits are Most Significa CCPxM<3:0> 1111 = Reser	ant bits (DCxB< :: CCPx Module rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset	ant bits (DCxB< :: CCPx Module rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved	<9:2>) of the d	uty cycle are fou			rcle. The eigh					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM	ant bits (DCxB< : CCPx Module rved rved rved mode	<9:2>) of the d	uty cycle are fou bits ⁽¹⁾	und in CCPRxL		-					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge	<9:2 ^{>}) of the d e Mode Select ecial Event Trig	uty cycle are fou	und in CCPRxL	 tch (CCPxIF bi	t is set)					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp	ant bits (DCxB : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is	t is set) set, CCPx pi					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time ire interrupt on co bin high; on con	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1110 = Reset 1101 = Reset 1100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is s	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are for bits ⁽¹⁾ gger; resets time re interrupt on c	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 1001 = Comp 1010 = Comp bit is 1000 = Comp set)	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Init set)	(9:2>) of the display of the disp	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1100 = Reset 1101 = Reset 1000 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0110 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever	(9:2>) of the die e Mode Select ecial Event Trig nerates softwa ializes CCPx pir alizes CCPx pir y 16th rising e y 4th rising ed	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia set) pare mode: Initia ure mode: Ever ure mode: Ever ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1001 = Reset 1001 = Comp 1010 = Comp 1011 = Comp 1001 = Comp 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0101 = Captu 0100 = Captu	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	 (9:2>) of the dial Mode Select ecial Event Trignerates softwatializes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes CCPx paralizes data prising edge 	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved rved mode pare mode: Spe pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Ever	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c oin high; on con n low; on compar dge ge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					
bit 3-0	PWM mode: These bits are Most Significa CCPxM<3:0> 1111 = Reset 1101 = Reset 1101 = Reset 100 = PWM 1011 = Comp 1010 = Comp reflect 1001 = Comp bit is a 1000 = Comp set) 0111 = Captu 0101 = Reset	ant bits (DCxB< : CCPx Module rved rved mode pare mode: Spe pare mode: Ge ts I/O state) pare mode: Initia ure mode: Ever ure mode: Tog	ecial Event Trig nerates softwa ializes CCPx pir y 16th rising ed y rising edge y falling edge	uty cycle are fou bits ⁽¹⁾ gger; resets time re interrupt on c bin high; on con n low; on compar dge	and in CCPRxL er on CCPx ma compare match npare match, for re match, forces	tch (CCPxIF bi (CCPxIF bit is prces CCPx pir	t is set) set, CCPx pi h low (CCPxI					

Note 1: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

REGISTER 16-6: CCPTMRS0: CCP TIMER SELECT CONTROL REGISTER 0⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	_	—	—		
bit 15							bit 8		
U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0		
_	C3TSEL0	—	—	C2TSEL0	_	—	C1TSEL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '0)'						
bit 6	C3TSEL0: CO	CP3 Timer Sele	ction bit						
		es TMR3/TMR4							
		es TMR3/TMR2							
bit 5-4	•	ted: Read as '0							
bit 3	C2TSEL0: CO	CP2 Timer Sele	ction bit						
		es TMR3/TMR4							
	0 = CCP2 use	es TMR3/TMR2							
	1.1	ted: Read as '0)'						
bit 2-1	Unimplemen	teu. Reau as c							
bit 2-1 bit 0	-	CP1/ECCP1 Tir		t					
	C1TSEL0: CO		ner Selection bi	t					

Note 1: This register is unimplemented on PIC24FXXKL20X/10X devices; maintain as '0'.

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	_	_	—	_	
bit 15							bit 8	
DAMO			DAMA	D 444 0	DAMA	DAMA	DAALO	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit			t is unknown	
bit 15-8	Unimpleme	nted: Read as 'd)'					
bit 7	CVREN: Co	mparator Voltage	e Reference E	Enable bit				
	1 = CVREF C	circuit is powered	lon					
	0 = CVREF c	circuit is powered	down					
bit 6	CVROE: Co	mparator VREF C	Output Enable	bit				
		voltage level is o						
		voltage level is d		•	pin			
bit 5		mparator VREF S						
		ator reference so ator reference so						
bit 4-0	CVR<4:0>: (Comparator VRE	F Value Selec	tion $0 \le CVR < 4$:0> ≤ 31 bits			
	When CVRS							
	•	EF-) + (CVR<4:0)>/32) • (VREF	*+ – VREF-)				
	$\frac{\text{When CVRS}}{\text{CVPER}} = (A)$		22) . (A)/pp</td <td></td> <td></td> <td></td> <td></td>					
	OVREF = (AV	′ss) + (CVR<4:0	2132) • (AVDD	-AVSS)				

25.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 25-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
-	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP	wa, wa	No Operation	1	1	None
1101	NOP		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
1.01	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wdo	Pop from Top-of-Stack (TOS) to Wdb	1	2	None
	POP.S	WILU	Pop Shadow Registers	1	1	All
סוופע		f	Push f to Top-of-Stack (TOS)	1	1	None
PUSH	PUSH		, ,			
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

Operating temperature ~40°C \leq TA \leq +85°C for industrial

 $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended

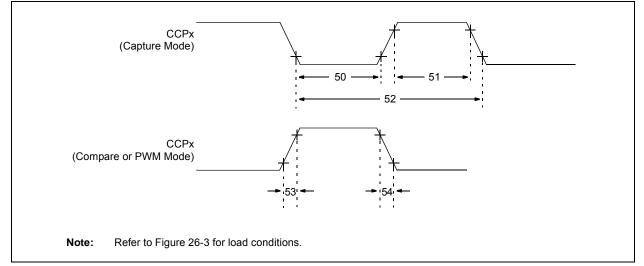

		$-40^{\circ}\mathrm{C} \le \mathrm{IA} \le +125$	5°C for Extended					
Param No.	Symbol	Charact	eristic	Min	Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0000	_	1.85	1.94	V	
		Transition	HLVDL<3:0> = 0001	1.81	1.90	2.00	V	
			HLVDL<3:0> = 0010	1.85	1.95	2.05	V	
			HLVDL<3:0> = 0011	1.90	2.00	2.10	V	
			HLVDL<3:0> = 0100	1.95	2.05	2.15	V	
			HLVDL<3:0> = 0101	2.06	2.17	2.28	V	
			HLVDL<3:0> = 0110	2.12	2.23	2.34	V	
			HLVDL<3:0> = 0111	2.24	2.36	2.48	V	
			HLVDL<3:0> = 1000	2.31	2.43	2.55	V	
			HLVDL<3:0> = 1001	2.47	2.60	2.73	V	
			HLVDL<3:0> = 1010	2.64	2.78	2.92	V	
			HLVDL<3:0> = 1011	2.74	2.88	3.02	V	
			HLVDL<3:0> = 1100	2.85	3.00	3.15	V	
			HLVDL<3:0> = 1101	2.96	3.12	3.28	V	
			HLVDL<3:0> = 1110	3.22	3.39	3.56	V	

TABLE 26-5: BOR TRIP POINTS

	Standard Operating Conditions: 1.8V to 3.6VOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol Characteristic Min Typ Max Units Conditions							Conditions
DC19		BOR Voltage on VDD	BORV = 00	1.85	2.0	2.15	V	Note 1
		Transition	BORV = 01	2.90	3.0	3.38	V	
	BORV = 10				2.7	3.07	V	
	BORV = 11 1.75 1.85 2.05 V							

Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

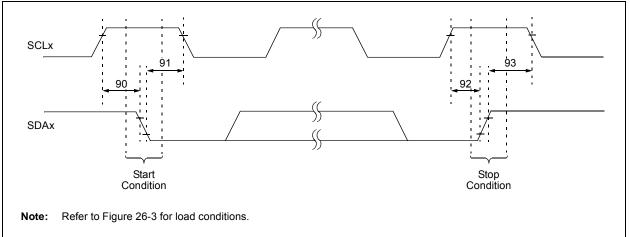

FIGURE 26-6: CAPTURE/COMPARE/PWM TIMINGS (ECCP1, ECCP2 MODULES)

TABLE 26-26: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP1, ECCP2 MODULES)

Param No.	Symbol	с	haracteristic	Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No Prescaler	0.5 Tcy + 20	_	ns	
	Time	With Prescaler	20	—	ns		
51	ТссН	CCPx Input	No Prescaler	0.5 Tcy + 20	_	ns	
		High Time	With Prescaler	20	-	ns	
52	TCCP	CCPx Input Perio	od	Greater of: 40 or <u>2 Tcy + 40</u> N	—	ns	N = prescale value (1, 4 or 16)
53	TCCR	CCPx Output Fall Time		—	25	ns	
54	TccF	CCPx Output Fa	II Time	—	25	ns	

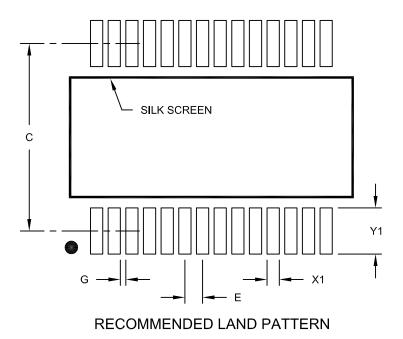


TABLE 26-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions	
90	Tsu:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

APPENDIX A: REVISION HISTORY

Revision A (September 2011)

Original data sheet for the PIC24F16KL402 family of devices.

Revision B (November 2011)

Updates DC Specifications in Tables 26-6 through 26-9 (all Typical and Maximum values).

Updates AC Specifications in Tables 26-7 through 26-30 (SPI Timing Requirements) with the addition of the FSCK specification.

Other minor typographic corrections throughout.

Revision C (October 2013)

Adds +125°C Extended Temperature information.

Updates several packaging drawings in **Section 27.0 "Packaging Information"**. Other minor typographic corrections throughout.

APPENDIX B: MIGRATING FROM PIC18/PIC24 TO PIC24F16KL402

The PIC24F16KL402 family combines traditional PIC18 peripherals with a faster PIC24 core to provide a low-cost, high-performance microcontroller with low-power consumption.

Code written for PIC18 devices can be migrated to the PIC24F16KL402 by using a C compiler that generates PIC24 machine level instructions. Assembly language code will need to be rewritten using PIC24 instructions. The PIC24 instruction set shares similarities to the PIC18 instruction set, which should ease porting of assembly code. Application code will require changes to support certain PIC24 peripherals.

Code written for PIC24 devices can be migrated to the PIC24F16KL402 without many code changes. Certain peripherals, however, will require application changes to support modules that were traditionally available only on PIC18 devices.

Refer to Table B-1 for a list of peripheral modules on the PIC24F16KL402 and where they originated from.

TABLE B-1: TABLE B-1: PIC24F16KL402 PERIPHERAL MODULE ORIGINATING ARCHITECTURE

Peripheral Module	PIC18	PIC24
ECCP/CCP	Х	—
MSSP (I ² C™/SPI)	X	—
Timer2/4 (8-bit)	X	—
Timer3 (16-bit)	X	—
Timer1 (16-bit)	—	Х
10-Bit A/D Converter	—	Х
Comparator	—	Х
Comparator Voltage Reference	—	х
UART	—	Х
HLVD	—	Х

INDEX

1	•
•	١

A/D	
10-Bit High-Speed A/D Converter	157
Conversion Timing Requirements	224
Module Specifications	223
A/D Converter	
Analog Input Model	164
Transfer Function	
AC Characteristics	
A/D Module	
Capacitive Loading Requirements on	
Output Pins	209
Internal RC Oscillator Accuracy	211
Internal RC Oscillator Specifications	211
Load Conditions and Requirements	209
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	158
16-Bit Timer1	115
Accessing Program Memory with	
Table Instructions	
CALL Stack Frame	
Capture Mode Operation	126
Comparator Module	
Comparator Voltage Reference Module	171
Compare Mode Operation	
CPU Programmer's Model	
Data Access From Program Space	
Address Generation	44
Data EEPROM Addressing with TBLPAG and	
NVM Registers	55
Enhanced PWM Mode	127
High/Low-Voltage Detect (HLVD) Module	173
Individual Comparator Configurations	168
MCLR Pin Connections Example	
MSSPx Module (I ² C Master Mode)	137
MSSPx Module (I ² C Mode)	
MSSPx Module (SPI Mode)	
PIC24F CPU Core	
PIC24F16KL402 Family (General)	13
PSV Operation	
PWM Operation (Simplified)	126
Recommended Minimum Connections	21
Reset System	
Serial Resistor	107
Shared I/O Port Structure	111
Simplified UARTx	149
SPI Master/Slave Connection	136
Suggested Placement of Oscillator Circuit	
System Clock	
Table Register Addressing	
Timer2	117
Timer3	119
Timer4	
Watchdog Timer (WDT)	184

С

C Compilers
MPLAB XC Compilers 188
Capture/Compare/PWM (CCP) 125
CCP/ECCP
CCP I/O Pins 125
Timer Selection 125
Code Examples
Data EEPROM Bulk Erase 57
Data EEPROM Unlock Sequence 53
Erasing a Program Memory Row,
Assembly Language 50
Erasing a Program Memory Row, C Language 51
I/O Port Write/Read (Assembly Language) 114
I/O Port Write/Read (C Language) 114
Initiating a Programming Sequence,
Assembly Language 52
Initiating a Programming Sequence, C Language 52
Loading the Write Buffers, Assembly Language 51
Loading the Write Buffers, C Language 52
PWRSAV Instruction Syntax 105
Reading Data EEPROM Using the
TBLRD Command58
Sequence for Clock Switching
Single-Word Erase
Single-Word Write to Data EEPROM 57
Ultra Low-Power Wake-up Initialization 107
Code Protection
Comparator
Comparator Voltage Reference
Configuring
Configuration Bits
Core Features
CPU
ALU
Control Registers
Core Registers
Programmer's Model
Customer Notification Service
Customer Support
D

Data EEPROM Memory	53
Erasing	56
Nonvolatile Memory Registers	
NVMCON	53
NVMKEY	53
NVMADR(U)	55
Operations	55
Programming	
Bulk Erase	57
Reading Data EEPROM	58
Single-Word Write	57
Data Memory	
Address Space	33
Memory Map	33
Near Data Space	34
Organization	34
SFR Space	34
Software Stack	43
Space Width	33

NOTES: