

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16kl401t-i-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24F04KL100
 PIC24F04KL101
- PIC24F08KL200
- PIC24F08KL201PIC24F08KL302
- PIC24F08KL301
 PIC24F08KL401
- PIC24F16KL401
- PIC24F08KL402 PIC24F16KL402

The PIC24F16KL402 family adds an entire range of economical, low pin count and low-power devices to Microchip's portfolio of 16-bit microcontrollers. Aimed at applications that require low-power consumption but more computational ability than an 8-bit platform can provide, these devices offer a range of tailored peripheral sets that allow the designer to optimize both price point and features with no sacrifice of functionality.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24F16KL402 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source, or the internal, Low-Power RC (LPRC) oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24F16KL402 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs): One with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the External Oscillator modes and the 8 MHz FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate Internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow, from the relatively simple, to the powerful and complex.

TABLE 1-3:	DEVICE FEATURES FOR THE PIC24F16KL20X/10X DEVICES
-	

Features	PIC24F08KL20		PIC24F08KL200	PIC24F04KL100	
Operating Frequency		DC – 3	2 MHz		
Program Memory (bytes)	8K	4K	8K	4K	
Program Memory (instructions)	2816	1408	2816	1408	
Data Memory (bytes)	512	512	512	512	
Data EEPROM Memory (bytes)	—		—	—	
Interrupt Sources (soft vectors/NMI traps)	27 (23/4)	26 (22/4)	27 (23/4)	26 (22/4)	
I/O Ports	PORTA<6:0> PORTB<15:12,9:7,4,2:0>		PORTA<5:0> PORTB<15:14,9:8,4,0>		
Total I/O Pins	1	7	12		
Timers (8/16-bit)	1/2	1/2	1/2	1/2	
Capture/Compare/PWM modules:					
Total	2	2	2	2	
Enhanced CCP	0	0	0	0	
Input Change Notification Interrupt	17	17	11	11	
Serial Communications:					
UART	1	1	1	1	
MSSP	1	1	1	1	
10-Bit Analog-to-Digital Module (input channels)	12		7	_	
Analog Comparators	1	1	1	1	
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)				
Instruction Set	76 Base	Instructions, Multiple	Addressing Mode \	/ariations	
Packages	20-Pin PDIP/SS	SOP/SOIC/QFN	14-Pin PD	IP/TSSOP	

6.0 DATA EEPROM MEMORY

Note:	This data sheet summarizes the features of							
	this group of PIC24F devices. It is not							
	intended to be a comprehensive reference							
	source. For more information on Data							
	EEPROM, refer to the "dsPIC33/PIC24							
	Family Reference Manual", "Data							
	EEPROM" (DS39720).							

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFFFh. For PIC24FXXKL4XX devices, the size of the data EEPROM is 256 words (7FFE00h to 7FFFFh). For PIC24FXXKL3XX devices, the size of the data EEPROM is 128 words (7FFF0h to 7FFFFh). The data EEPROM is not implemented in PIC24F08KL20X or PIC24F04KL10X devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

<pre>//Disable Interrupts For 5 instru asm volatile("disi #5"); //Issue Unlock Sequence</pre>	actions
asm volatile ("mov #0x55, W0	\n"
"mov W0, NVMKEY	\n"
"mov #0xAA, W1	\n"
"mov W1, NVMKEY	\n");
// Perform Write/Erase operations	3
asm volatile ("bset NVMCON, #WR	\n"
"nop	\n"
"nop	\n");

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the Table Read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location followed by a TBLRDL instruction.

A typical read sequence using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and Table Read (builtin_tblrdl) procedures from the C30 compiler library is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

<pre>intattribute ((space(eedata))) eeData = 0x1234; int data; unsigned int offset;</pre>	// Global variable located in EEPROM // Data read from EEPROM
<pre>// Set up a pointer to the EEPROM location to be e TBLPAG =builtin_tblpage(&eeData); offset =builtin_tbloffset(&eeData); data =builtin_tblrdl(offset);</pre>	erased // Initialize EE Data page pointer // Initizlize lower word of address // Write EEPROM data to write latch

R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0		
U2TXIF ⁽	¹⁾ U2RXIF ⁽¹⁾	INT2IF	—	T4IF ⁽¹⁾	—	CCP3IF ⁽¹⁾			
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INT1IF	CNIF	CMIF	BCL1IF	SSP1IF		
bit 7							bit 0		
Lenend									
Legena:	bla bit	M - Mritabla	~i+		controd hit roa	d oo 'O'			
		vv = vvritable i	JIL	0' = 0	nenteu bit, rea	u as u v = Bit is unkny	own		
	alFOR				areu		JW11		
bit 15		T2 Transmitter	Interrunt Elag	Status hit(1)					
bit 15	1 = Interrupt r	request has occ	urred	Status bit					
	0 = Interrupt r	equest has not	occurred						
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit ⁽¹⁾					
	1 = Interrupt r	equest has occ	urred						
	0 = Interrupt r	equest has not	occurred						
bit 13	INT2IF: Exter	nal Interrupt 2 I	-lag Status bit						
	1 = Interrupt r	equest has occ	urred						
h:+ 40		request has not	occurrea						
DIL 12 bit 11		ted: Read as () Status hit(1)						
	1 = Interrupt r	equest has occ							
	0 = Interrupt r	request has not	occurred						
bit 10	Unimplemen	ted: Read as '0)'						
bit 9	CCP3IF: Cap	ture/Compare/F	PWM3 Interrup	ot Flag Status b	it ⁽¹⁾				
	1 = Interrupt r	equest has occ	urred						
	0 = Interrupt r	equest has not	occurred						
bit 8-5	Unimplemen	ted: Read as '0)'						
bit 4	INT1IF: Exter	INT1IF: External Interrupt 1 Flag Status bit							
	1 = Interrupt r	request has occ	urred						
hit 3	CNIE: Input C	equest has not		lag Status bit					
DIL 3	1 = Interrupt r		urred	ay Status bit					
	0 = Interrupt r	request has not	occurred						
bit 2	CMIF: Compa	arator Interrupt	Flag Status bit	t					
	1 = Interrupt r	equest has occ	urred						
	0 = Interrupt r	request has not	occurred						
bit 1	BCL1IF: MSS	SP1 I ² C™ Bus (Collision Interr	upt Flag Status	bit				
	1 = Interrupt r	equest has occ	urred						
	0 = Interrupt r	request has not	occurred						
dit U	SSP1IF: MSS	SP1 SPI/IC Eve	ent Interrupt F	lag Status bit					
	\perp = interrupt r	equest has occ							
			Coouricu						
Note 1:	These bits are un	implemented or	n PIC24FXXK	L10X and PIC2	4FXXKL20X d	levices.			

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	T3GIF	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	T3GIF: Timer3 External Gate Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 4-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	—	—	—	—	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-3 Unimplemented: Read as '0'

- bit 2 BCL2IF: MSSP2 I²C[™] Bus Collision Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SSP2IF: MSSP2 SPI/I²C Event Interrupt Flag Status bit⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 Unimplemented: Bood os ⁽⁰⁾
- bit 0 Unimplemented: Read as '0'
- Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—			_			_	HLVDIE	
bit 15	•	•	•		•	•	bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	
—	—		—	—	U2ERIE ⁽¹⁾	U1ERIE	—	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-9	Unimplemen	ted: Read as '	כי					
bit 8	HLVDIE: High	n/Low-Voltage [Detect Interrup	t Enable bit				
	1 = Interrupt r	equest is enab	led nabled					
bit 7-3	Unimplemen	ted: Read as ')'					
bit 2	U2ERIE: UAF	RT2 Error Interr	- upt Enable bit	(1)				
	1 = Interrupt request is enabled							
	0 = Interrupt request is not enabled							
bit 1	U1ERIE: UAF	RT1 Error Interr	upt Enable bit					
	1 = Interrupt r	equest is enab	led					
	0 = Interrupt r	equest is not e	nabled					
bit 0	Unimplemen	ted: Read as 'o	כ'					

Note 1: This bit is unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	ULPWUIE			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown					
bit 15-1	bit 15-1 Unimplemented: Read as '0'									

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable Bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15 bit 8									
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0		
bit 7							bit 0		
Logond:									

Legenu.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •
- •

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and the type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	If FSCM is Enabled (FCKSM1 = <u>1</u>):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	1 = PLL module is in lock or the PLL module start-up timer is satisfied
	0 = PLL module is out of lock, the PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	1 = High-power SOSC circuit is selected
	0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables secondary oscillator
	0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC<2:0> Configuration bits.

- 2: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input rather than an external crystal (SOSCSRC = 0), this bit has no effect.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). Note that the PIC24F16KL402 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the Data Latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers, that are not valid for a particular device, will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless, regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED I/O PORT STRUCTURE

NOTES:

ΠU	11_0	11_0	11_0	11_0	11_0	11_0	LL_Ω
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
							hit
							Dit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
oit 7		•	•		•	•	bit
.egend:							
२ = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7 bit 6-4	ECCPASE: E 1 = A shutdow 0 = ECCP out ECCPAS<2:0 111 = VIL on 110 = VIL on 101 = VIL on 100 = VIL on	CCP1 Auto-Sh vn event has or tputs are opera : ECCP1 Auto FLT0 pin, or eit FLT0 pin or C2 FLT0 pin or C1 FLT0 pin	utdown Event ccurred; ECCP ting o-Shutdown So her C1OUT or OUT comparat OUT comparat	Status bit outputs are in ource Select bit C2OUT is high or output is hig or output is hig	a shutdown sta s h h	ate	
	011 = Either (010 = C2OUT 001 = C1OUT 000 = Auto-sh	C1OUT or C2C Γ comparator o Γ comparator o nutdown is disa	utput is high utput is high utput is high bled				
oit 3-2	PSSAC<1:0>: P1A and P1C Pins Shutdown State Control bits 1x = P1A and P1C pins tri-state 01 = Drive pins, P1A and P1C, to '1' 00 = Drive pins, P1A and P1C, to '0'						
oit 1-0	PSSBD<1:0> 1x = P1B and 01 = Drive pir 00 = Drive pir	: P1B and P1D I P1D pins tri-st ns, P1B and P1 ns, P1B and P1	Pins Shutdow ate D, to '1' D, to '0'	n State Control	bits		

Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.

2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.

3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

17.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note:	This data sheet summarizes the features						
	of this group of PIC24F devices. It is not						
	intended to be a comprehensive refer-						
	ence source. For more information on						
	MSSP, refer to the "dsPIC33/PIC24						
	Family Reference Manual".						

The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

The SPI interface supports these modes in hardware:

- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave operation

The I^2C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit And 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold and Interrupt Masking

17.1 I/O Pin Configuration for SPI

In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin, and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.

The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 17-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

REGISTER 17-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE) (CONTINUED)

- BF: Buffer Full Status bit
- In Transmit mode:

bit 0

- 1 = Transmit is in progress, SSPxBUF is full
- 0 = Transmit is complete, SSPxBUF is empty
- In Receive mode:
- 1 = SSPxBUF is full (does not include the \overline{ACK} and Stop bits)
- 0 = SSPxBUF is empty (does not include the \overline{ACK} and Stop bits)
- **Note 1:** This bit is cleared on RESET and when SSPEN is cleared.
 - 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.
 - 3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-0	R/P-1	R/P-1	
MCLRE	⁽¹⁾ BORV1 ⁽²⁾	BORV0 ⁽²⁾	I2C1SEL ⁽³⁾	PWRTEN	—	BOREN1	BOREN0	
bit 7							bit 0	
Legend:								
R = Read	able bit	P = Programr	nable bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 7	MCLRE: MCI	R Pin Enable	bit ⁽¹⁾					
	1 = MCLR pir	n is enabled; R	4 <u>5 input</u> pin is a	disabled				
	0 = RA5 input	t pin is enabled	; MCLR is disa	bled				
bit 6-5	BORV<1:0>:	Brown-out Res	set Enable bits ⁽	2)				
	11 = Brown-o	ut Reset is set	to the low trip	point				
	10 = Brown-o	out Reset is set	to the high trip	rip point				
	00 = Downsic	le protection or	POR is enable	ed (Low-Power	BOR is select	ed)		
bit 4	I2C1SEL: Alte	ernate MSSP1	I ² C™ Pin Map	ping bit ⁽³⁾				
	1 = Default lo	cation for SCL1/SDA1 pins (RB8 and RB9)						
	0 = Alternate	location for SCL1/SDA1 pins (ASCL1/RB6 and ASDA1/RB5)						
bit 3	PWRTEN: Po	ower-up Timer Enable bit						
	1 = PWRT is	enabled						
	0 = PWRT is	disabled						
bit 2	Unimplemen	ted: Read as	0'					
bit 1-0	BOREN<1:0>	Srown-out R	eset Enable bit	S				
	11 = BOR is (enabled in hard	lware; SBORE	N bit is disable	d Nad in Slaan: S		liaablad	
	10 = BOR IS 0 01 = BOR is 0	controlled with	the SBOREN h	oit setting	bied in Sleep, S	BOREN DILIS (lisableu	
	00 = BOR is (disabled in har	dware; SBORE	N bit is disable	d			
Note 1.	The MCI RE fue	can only be ch	anged when u	sing the Vpp_R	asod ICSD™ n	node entry This	e nrevente a	
14016 1.	user from accider	ntally locking ou	it the device from	om the low-volt	age test entry.	loce entry. The	provento a	
2:	Refer to Table 26	-5 for BOR trip	point voltages.		- ,			
3:	Implemented in 2	8-pin devices o	nly. This bit pos	sition must be p	orogrammed (=	1) in all other d	evices for I ² C	
	functionality to be	available.			-			

REGISTER 23-6: FPOR: RESET CONFIGURATION REGISTER

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in File register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	£	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT, Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 25-2:	INSTRUCTION SET	OVERVIEW

TABLE 26-28: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35		ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TdoF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	FSCK	SCKx Frequency	_	10	MHz	

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limit		MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	1.27 BSC			
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2