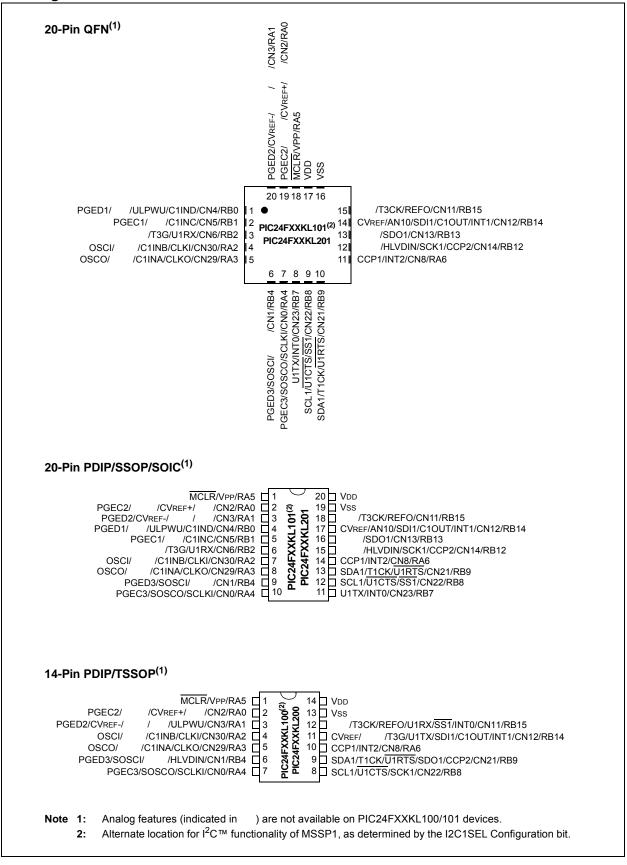
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16kl401t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams: PIC24FXXKL10X/20X

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS

		Pin Numbe	r			
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
AN0	2	19	2	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL10X
AN1	3	20	3	Ι	ANA	family devices.
AN2	4	1	—	Ι	ANA	
AN3	5	2	_	I	ANA	
AN4	6	3	_	I	ANA	
AN9	18	15	12	I	ANA	
AN10	17	14	11	I	ANA	
AN11	16	13	_	I	ANA	
AN12	15	12	_	I	ANA	
AN13	7	4	4	I	ANA	7
AN14	8	5	5	I	ANA	1
AN15	9	6	6	I	ANA	1
AVdd	20	17	14	I	ANA	Positive Supply for Analog modules
AVss	19	16	13	I	ANA	Ground Reference for Analog modules
CCP1	14	11	10	I/O	ST	CCP1 Capture Input/Compare and PWM Output
CCP2	15	12	9	I/O	ST	CCP2 Capture Input/Compare and PWM Output
C1INA	8	5	5	I	ANA	Comparator 1 Input A (+)
C1INB	7	4	4	I	ANA	Comparator 1 Input B (-)
C1INC	5	2	_	I	ANA	Comparator 1 Input C (+)
C1IND	4	1	_	I	ANA	Comparator 1 Input D (-)
C1OUT	17	14	11	0	_	Comparator 1 Output
CLK I	7	4	9	I	ANA	Main Clock Input
CLKO	8	5	10	0	_	System Clock Output
CN0	10	7	7	I	ST	Interrupt-on-Change Inputs
CN1	9	6	6	I	ST	
CN2	2	19	2	I	ST	
CN3	3	20	3	I	ST	7
CN4	4	1	_	I	ST	7
CN5	5	2	_	Ι	ST]
CN6	6	3	_	I	ST	7
CN8	14	11	10	I	ST	7
CN9	_	_	—	I	ST	7
CN11	18	15	12	I	ST	7
CN12	17	14	11	I	ST	7
CN13	16	13	—	I	ST	7
CN14	15	12	_	Ι	ST	7
CN21	13	10	9	I	ST	1
CN22	12	9	8	I	ST	1
CN23	11	8	—	I	ST	1
CN29	8	5	5	I	ST	1
CN30	7	4	4	1	ST	1

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24F16KL402 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

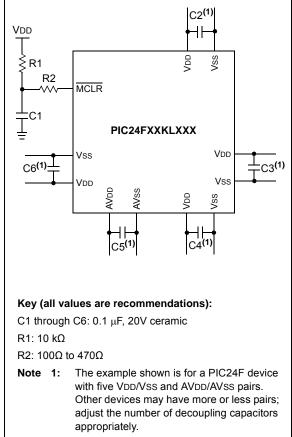
The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVSS pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_	_	_	_	_	_	DC
bit 15		I I					bit
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	C
bit 7		20			0.	_	bit
Legend: R = Readabl	e hit	W = Writable b	it	II = I Inimplem	nented bit, read	d as 'O'	
-n = Value at		'1' = Bit is set	iii iii	'0' = Bit is clea		x = Bit is unkr	NOWD
bit 15-9	Unimplemen	ted: Read as '0	,				
bit 8	-	f Carry/Borrow b					
		-		(for byte-sized da	ata) or 8 th Iow-	order bit (for wo	ord-sized dat
	of the res	sult occurred					
	•			rder bit of the res		ed	
bit 7-5	IPL<2:0>: CF	PU Interrupt Prio	rity Level (IP	L) Status bits ^{(1,2}	2)		
				5); user interrupt	s disabled		
		nterrupt Priority I					
		nterrupt Priority I					
		nterrupt Priority I nterrupt Priority I	•	,			
		nterrupt Priority I					
		nterrupt Priority I					
		nterrupt Priority I					
bit 4	RA: REPEAT	Loop Active bit					
		oop in progress					
		oop not in progr	ess				
bit 3	N: ALU Nega						
	1 = Result wa	0	(4:			
		as non-negative	(zero or posi	tive)			
bit 2	OV: ALU Ove						
		occurred for sig		plement) arithm	etic in this arith	imetic operation	n
bit 1	Z: ALU Zero						
			te the 7 hit 4	nas set it at some	e time in the n	aet	
				cts the Z bit, has			sult)
bit 0	C: ALU Carry		,	,,		,	-7
~			Significant b	oit (MSb) of the r	esult occurred		
				bit (MSb) of the			
Note 1: Th	ne IPI. Status hi	ts are read-only	when NSTD	IS (INTCON1<1	5>) = 1		
				IPL3 bit (CORC		m the CPU I Into	rrunt Priority
2 .							in april nonty

2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-16: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	—	—	_	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	-	HLSIDL	_	—	_	_	_	VDIR	BGVST	IRVST	-	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by type of Reset.

TABLE 4-17: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY		_	_		—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	-	-	—	—		_					NVM Key	/ Register				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	_	ULPSIDL		—	_		ULPSINK		_		_	_		_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	T4MD	T3MD	T2MD	T1MD	_	_		SSP1MD	U2MD	U1MD		—	_		ADC1MD	0000
PMD2	0772	_	—	—	_	—	—	_	-	_	_	—	_	—	CCP3MD	CCP2MD	CCP1MD	0000
PMD3	0774	_	_	_			CMPMD	_	-	—	_	_		—	_	SSP2MD	—	0000
PMD4	0776		—	_	_	_	—	-	—	ULPWUMD		_	EEMD	REFOMD	—	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

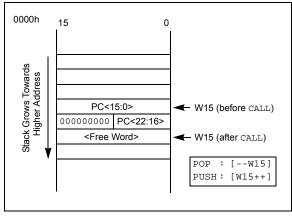
DS30001037C-page 42

4.2.5 SOFTWARE STACK

In addition to its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.


The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6, in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-20 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.

	D 4 4 4 6	D 444 A	D 4 4 4 4				
R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY			—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit	U = Unimpler	mented bit, rea	ad as '0'	
R = Readable	bit	W = Writable b	it	SO = Settabl	e Only bit		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	WR: Write Co	ontrol bit (progra	m or erase)				
		a data EEPROM		cvcle (can be s	et but not clea	red in software	e)
		le is complete (•			- /
bit 14	WREN: Write	Enable bit (eras	e or program)				
	1 = Enables a	in erase or prog	ram operation				
	0 = No operat	tion allowed (dev	vice clears this t	oit on completion	on of the write/	erase operatio	on)
bit 13	WRERR: Flas	sh Error Flag bit					
	1 = A write o	operation is pre	maturely termir	nated (any MC	LR or WDT	Reset during	programming
	operation	/					
		operation comp		ліу			
bit 12		Program Only En			<i>.</i>		
		eration is execute c erase-before-v				tically by an a	rade of torget
	address(e		ville, wille oper	ations are pred		lucally by all e	lase of larger
bit 11-7	•	ted: Read as '0'					
bit 6	-	e Operation Sel					
Sit o		an erase opera		s set			
		a write operatio					
bit 5-0	NVMOP<5:0>	. Programming	Operation Com	mand Byte bits	₃ (1)		
	Erase Operati	ions (when ERA	<u>SE bit is '1'):</u>	-			
	011010 = Era	ases 8 words					
	011001 = Era						
	011000 = Era						
		ases entire data		• 'o')•			
	001xxx = Wr	Operations (wh ites 1 word	EILERASE DIL IS	<u> </u>			

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

Note 1: These NVMOP configurations are unimplemented on PIC24F04KL10X and PIC24F08KL20X devices.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
ULPEN		ULPSIDL	_	—	_		ULPSINK
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—		—		
bit 7							bit 0
l							1
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ULPEN: ULP	WU Module En	able bit				
	1 = Module is						
	0 = Module is	disabled					
bit 14	Unimplemen	ted: Read as '	כ'				
bit 13	ULPSIDL: UL	PWU Stop in I	dle Select bit				
				ne device enters	s Idle mode		
	0 = Continues	s module opera	tion in Idle mo	de			
bit 12-9	Unimplemen	ted: Read as '	כ'				
bit 8	ULPSINK: UL	_PWU Current	Sink Enable bi	t			
	1 = Current si	ink is enabled					
	0 = Current si	ink is disabled					
bit 7-0	Unimplemen	ted: Read as '	כ'				

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

REGISTER 16-6: CCPTMRS0: CCP TIMER SELECT CONTROL REGISTER 0⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	_	—	—
bit 15							bit 8
U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
_	C3TSEL0	—	—	C2TSEL0	_	—	C1TSEL0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	known
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6	C3TSEL0: CO	CP3 Timer Sele	ction bit				
		es TMR3/TMR4					
		es TMR3/TMR2					
bit 5-4	•	ted: Read as '0					
bit 3	C2TSEL0: CO	CP2 Timer Sele	ction bit				
		es TMR3/TMR4					
	0 = CCP2 use	es TMR3/TMR2					
	1.1	ted: Read as '0)'				
bit 2-1	Unimplemen	teu. Reau as c					
bit 2-1 bit 0	-	CP1/ECCP1 Tir		t			
	C1TSEL0: CO		ner Selection bi	t			

Note 1: This register is unimplemented on PIC24FXXKL20X/10X devices; maintain as '0'.

U-0	U-0	U-0	U-0	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾
_	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0
							
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-4	Unimplement	ted: Read as 'd)'				
bit 3-1	BSS<2:0>: Bo	oot Segment P	rogram Flash (Code Protection	n bits ⁽¹⁾		
				ory space is Ge rts at 0200h, er		t	
				rts at 0200h, er			
	100 = Reserv	0.0					
	011 = Reserv	0	ament starts a	t 0200h, ends a			
				t 0200h, ends a			
	000 = Reserv		0				
bit 0	BWRP: Boot	Segment Progr	am Flash Write	e Protection bit	(1)		
	•	ment may be w					
	0 = Boot Segr	ment is write-pr	otected				

REGISTER 23-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

- **Note 1:** Code protection bits can only be programmed by clearing them. They can be reset to their default factory state ('1'), but only by performing a bulk erase and reprogramming the entire device.
 - **2:** This selection is available only on PIC24F16KL40X devices.

REGISTER 23-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1 ⁽¹⁾	R/C-1 ⁽¹⁾
—	—	—	—	—	_	GSS0	GWRP
bit 7							bit 0
Logond							

Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'	

bit 1 **GSS0:** General Segment Code Flash Code Protection bit⁽¹⁾

- 1 = No protection
- 0 = Standard security is enabled
- bit 0 **GWRP:** General Segment Code Flash Write Protection bit⁽¹⁾
 - 1 = General Segment may be written
 - 0 = General Segment is write-protected

Note 1: Code protection bits can only be programmed by clearing them. They can be reset to their default factory state ('1'), but only by performing a bulk erase and reprogramming the entire device.

REGISTER 23-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	P = Programm	able bit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown		
bit 7,5		0>: Watchdog T	imer Enable h	nite					
5117,5		enabled in hard		10					
		controlled with t		bit setting					
		enabled only wh				ep, SWDTEN b	it is disabled		
		disabled in hard			d				
bit 6		dowed Watchdo	•						
	1 = Standard WDT is selected; windowed WDT is disabled								
	0 = Windowed WDT is enabled; note that executing a CLRWDT instruction while the WDT is disabled in hardware and software (FWDTEN<1:0> = 00 and SWDTEN (RCON<5> = 0) will not cause a								
	device R		e (i weiter)						
bit 4	FWPSA: WD	T Prescaler bit							
	1 = WDT pre	scaler ratio of 1:	128						
	0 = WDT pre	scaler ratio of 1:	32						
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits								
	1111 = 1:32,768								
	1110 = 1:16,								
	1101 = 1:8,1 1100 = 1:4,0								
	1011 = 1:2,0								
	1011 = 1.2,040 1010 = 1:1,024								
	1001 = 1:512								
	1000 = 1:256								
	0111 = 1:128 0110 = 1:64	5							
	0101 = 1:32								
	0100 = 1:16								
	0011 = 1:8								
	0010 = 1:4								
	0001 = 1:2								

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1 1 1 1 1 1 1 1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f			C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV,
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV,
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV,
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV,
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBB			$WREG = f - WREG - (\overline{C})$	1	1	
	SUBB	f,WREG				C, DC, N, OV, 2
	SUBB	#lit10,Wn	Wn = Wn – lit10 – (C)	1	1	C, DC, N, OV,
	SUBB	Wb,Ws,Wd	Wd = Wb - Ws - (C)	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	Wd = Wb - lit5 - (C)	1	1	C, DC, N, OV,
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV,
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV,
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV,
	SUBR	Wb,#lit5,Wd	Wd = lit5 - Wb	1	1	C, DC, N, OV,
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV,
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV,
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV,
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	ТJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θ.	IA	W

TABLE 26-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	-	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 14-Pin PDIP	θJA	62.4	-	°C/W	1
Package Thermal Resistance, 14-Pin TSSOP	θJA	108	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	ARACTER	$ \begin{array}{ll} \mbox{Standard Operating Conditions: } 1.8V \ to \ 3.6V \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \\ \end{array} $					
Para m No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
	Vbg	Band Gap Voltage Reference	1.14	1.2	1.26	V	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

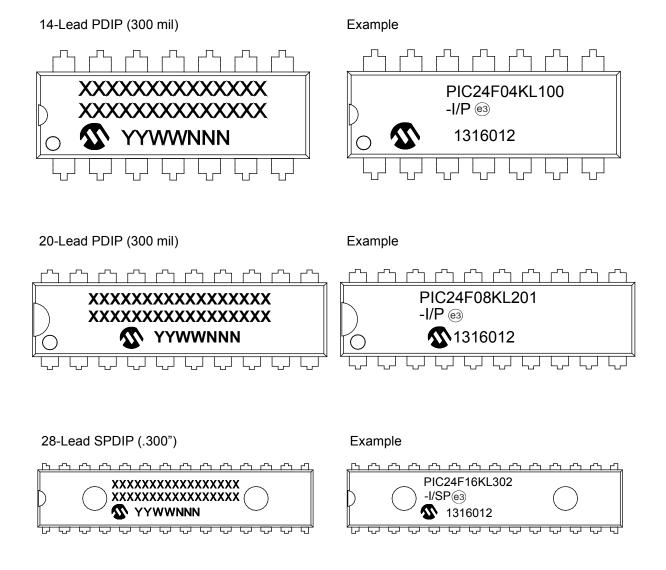
2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CH	ARACT	ERISTICS	Standard O Operating te		e -40°C <u>s</u>	\leq TA \leq +8	o 3.6V 5°C for Industrial 25°C for Extended
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ^(4,5)					
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
DI31	IPU	Maximum Load Current		—	30	μA	VDD = 2.0V
		for Digital High Detection w/Internal Pull-up	—	—	1000	μA	VDD = 3.3V
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.050	±0.100	μA	Vss ≤ VPiN ≤ VDD, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	_	0.300	±0.500	μA	$VSS \le VPIN \le VDD$, Pin at high-impedance

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

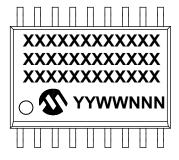
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

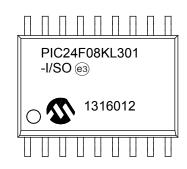

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

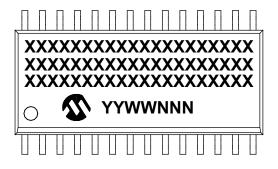
5: VIH requirements are met when the internal pull-ups are enabled.

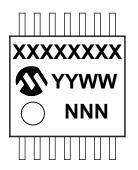
27.0 PACKAGING INFORMATION

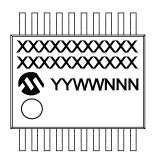

27.1 Package Marking Information

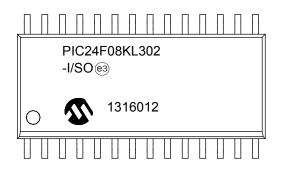

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	will be	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.

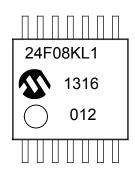
© 2011-2013 Microchip Technology Inc.


20-Lead SOIC (7.50 mm)


Example

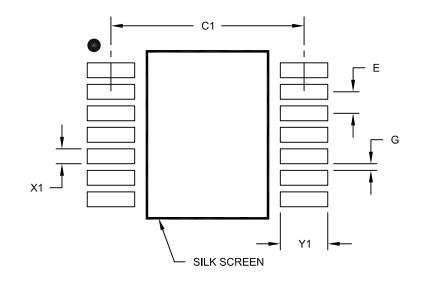

28-Lead SOIC (7.50 mm)


14-Lead TSSOP (4.4 mm)


20-Lead SSOP (5.30 mm)

Example

Example



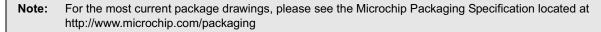
Example

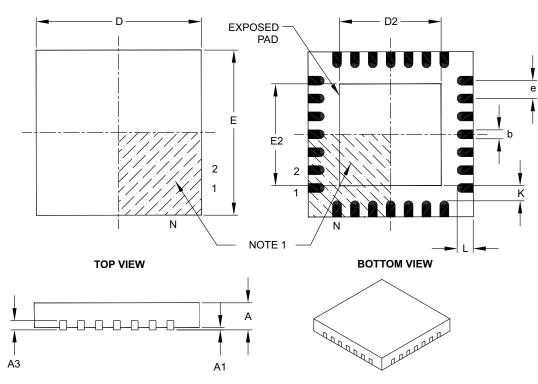
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	C1		5.90		
Contact Pad Width (X14)	X1			0.45	
Contact Pad Length (X14)	Y1			1.45	
Distance Between Pads	G	0.20			


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

DC Characteristics	
BOR Trip Points	
Comparator	
Comparator Voltage Reference	
Data EEPROM Memory	
High/Low-Voltage Detect	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Demo/Development Boards, Evaluation and	
Starter Kits	190
Development Support	
Third-Party Tools	
Device Features for PIC24F16KL20X/10X	
Devices (Summary)	
Device Features for PIC24F16KL40X/30X	
Devices (Summary)	11

Е

Electrical Characteristics	
Absolute Maximum Ratings	199
Thermal Operating Conditions	201
Thermal Packaging Characteristics	201
V/F Graph, Extended	200
V/F Graph, Industrial	200
Enhanced CCP	125
Equations	
A/D Conversion Clock Period	164
UARTx Baud Rate with BRGH = 0	150
UARTx Baud Rate with BRGH = 1	150
Errata	7
Examples	
Baud Rate Error Calculation (BRGH = 0)	150

F

Flash Program Memory	
Control Registers	
Enhanced ICSP Operation	
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	

G

Inter-Integrated Circuit. See I ² C.	
Internet Address	257
Interrupt Sources	
TMR3 Overflow	119
TMR4 to PR4 Match (PWM)	123
Interrupts	
Alternate Interrupt Vector Table (AIVT)	65
Control and Status Registers	68
Implemented Vectors	67
Interrupt Vector Table (IVT)	65
Reset Sequence	65
Setup Procedures	
Trap Vectors	67
Vector Table	66

Μ

Master Synchronous Serial Port (MSSP) 13	
I/O Pin Configuration for SPI1	35
Microchip Internet Web Site	57
MPLAB Assembler, Linker, Librarian	88
MPLAB ICD 3 In-Circuit Debugger 18	89
MPLAB PM3 Device Programmer18	89
MPLAB REAL ICE In-Circuit Emulator System 18	89
MPLAB X Integrated Development	
Environment Software1	87
MPLAB X SIM Software Simulator 18	89
MPLIB Object Librarian 18	88
MPLINK Object Linker 18	88

Ν

Near Data	Space	34

0

101
101
102
119

Ρ

Packaging	
Details	228
Marking	225
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Descriptions	
PIC24F16KL20X/10X Devices	18
PIC24F16KL40X/30X Devices	14
Power-Saving	109
Power-Saving Features	105
Clock Frequency, Clock Switching	105
Coincident Interrupts	106
Instruction-Based Modes	105
Idle	106
Sleep	106
Selective Peripheral Control	109
Ultra Low-Power Wake-up (ULPWU)	107
Product Identification System	259
Program and Data Memory	
Access Using Table Instructions	45
Program Space Visibility	46
Program and Data Memory Spaces	
Addressing	43
Interfacing	43

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group – Pin Count —— Tape and Reel FI Temperature Rar Package ———		 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	