

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16kl402-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	СРИ	
4.0	Memory Organization	31
5.0	Flash Program Memory	47
6.0	Data EEPROM Memory	53
7.0	Resets	59
8.0	Interrupt Controller	65
9.0	Oscillator Configuration	
10.0	Power-Saving Features	105
11.0	I/O Ports	111
12.0	Timer1	115
13.0	Timer2 Module	117
14.0	Timer3 Module	119
15.0		
16.0	Capture/Compare/PWM (CCP) and Enhanced CCP Modules	125
17.0	Master Synchronous Serial Port (MSSP)	135
18.0	Universal Asynchronous Receiver Transmitter (UART)	149
19.0	10-Bit High-Speed A/D Converter	157
20.0		
21.0	Comparator Voltage Reference	171
22.0	High/Low-Voltage Detect (HLVD)	173
23.0	Special Features	175
24.0	Development Support	187
25.0	Instruction Set Summary	191
26.0		
27.0	Packaging Information	225
Appe	endix A: Revision History	251
Appe	endix B: Migrating from PIC18/PIC24 to PIC24F16KL402	251
Index	x	253
The I	Microchip Web Site	257
Cust	omer Change Notification Service	
Cust	omer Support	257
Prod	uct Identification System	259

	Pin Number								
Function	20-Pin PDIP/ 20-Pin SSOP/ QFN SOIC		28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	I/O	Buffer	Description		
AN0	2	19	2	27	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL30X		
AN1	3	20	3	28	I	ANA	family devices.		
AN2	4	1	4	1	I	ANA			
AN3	5	2	5	2	I	ANA			
AN4	6	3	6	3	Ι	ANA			
AN5	_	_	7	4	Ι	ANA			
AN9	18	15	26	23	I	ANA			
AN10	17	14	25	22	Ι	ANA			
AN11	16	13	24	21	Ι	ANA			
AN12	15	12	23	20	Ι	ANA			
AN13	7	4	9	6	Ι	ANA			
AN14	8	5	10	7	I	ANA			
AN15	9	6	11	8	I	ANA			
ASCL1	_	_	15	12	I/O	I ² C™	Alternate MSSP1 I ² C Clock Input/Output		
ASDA1	_	_	14	11	I/O	l ² C	Alternate MSSP1 I ² C Data Input/Output		
AVdd	20	17	28	25	Ι	ANA	Positive Supply for Analog modules		
AVss	19	16	27	24	Ι	ANA	Ground Reference for Analog modules		
CCP1	14	11	20	17	I/O	ST	CCP1/ECCP1 Capture Input/Compare and PWM Output		
CCP2	15	12	23	20	I/O	ST	CCP2 Capture Input/Compare and PWM Output		
CCP3	13	10	19	16	I/O	ST	CCP3 Capture Input/Compare and PWM Output		
C1INA	8	5	7	4	I	ANA	Comparator 1 Input A (+)		
C1INB	7	4	6	3	I	ANA	Comparator 1 Input B (-)		
C1INC	5	2	5	2	I	ANA	Comparator 1 Input C (+)		
C1IND	4	1	4	1	I	ANA	Comparator 1 Input D (-)		
C1OUT	17	14	25	22	0	_	Comparator 1 Output		
C2INA	5	2	5	2	I	ANA	Comparator 2 Input A (+)		
C2INB	4	1	4	1	I	ANA	Comparator 2 Input B (-)		
C2INC	8	5	7	4	Ι	ANA	Comparator 2 Input C (+)		
C2IND	7	4	6	3	Ι	ANA	Comparator 2 Input D (-)		
C2OUT	14	11	20	17	0		Comparator 2 Output		
CLK I	7	4	9	6	Ι	ANA	Main Clock Input		
CLKO	8	5	10	7	0	_	System Clock Output		

TABLE 1-4: PIC24F16KL40X/30X FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

		Pin Number	•			Description		
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer			
CVREF	17	14	11	Ι	ANA	Comparator Voltage Reference Output		
CVREF+	2	19	2	I	ANA	Comparator Reference Positive Input Voltage		
CVREF-	3	20	3	I	ANA	Comparator Reference Negative Input Voltage		
HLVDIN	15	12	6	I	ST	High/Low-Voltage Detect Input		
INT0	11	8	12	I	ST	Interrupt 0 Input		
INT1	17	14	11	I	ST	Interrupt 1 Input		
INT2	14	11	10	I	ST	Interrupt 2 Input		
MCLR	1	18	1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.		
OSCI	7	4	4	I	ANA	Main Oscillator Input		
OSCO	8	5	5	0	ANA	Main Oscillator Output		
PGEC1	5	2	_	I/O	ST	ICSP™ Clock 1		
PCED1	4	1	_	I/O	ST	ICSP Data 1		
PGEC2	2	19	2	I/O	ST	ICSP Clock 2		
PGED2	3	20	3	I/O	ST	ICSP Data 2		
PGEC3	10	7	7	I/O	ST	ICSP Clock 3		
PGED3	9	6	6	I/O	ST	ICSP Data 3		
RA0	2	19	2	I/O	ST	PORTA Pins		
RA1	3	20	3	I/O	ST	7		
RA2	7	4	4	I/O	ST	7		
RA3	8	5	5	I/O	ST			
RA4	10	7	7	I/O	ST	7		
RA5	1	18	1	I	ST	7		
RA6	14	11	10	I/O	ST	7		
RB0	4	1		I/O	ST	PORTB Pins		
RB1	5	2		I/O	ST			
RB2	6	3		I/O	ST			
RB4	9	6	6	I/O	ST			
RB7	11	8	—	I/O	ST			
RB8	12	9	8	I/O	ST	1		
RB9	13	10	9	I/O	ST			
RB12	15	12	_	I/O	ST			
RB13	16	13	—	I/O	ST	1		
RB14	17	14	11	I/O	ST	1		
RB15	18	15	12	I/O	ST	1		
REFO	18	15	12	0	—	Reference Clock Output		

PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-5:**

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

	чυ.			1 001														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	—	—	—	—	—	_	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	—	—	_	_	—	—	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	T3IF	T2IF	CCP2IF	_	_	T1IF	CCP1IF	_	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	_	T4IF ⁽¹⁾	_	CCP3IF ⁽¹⁾	_	_	_	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	8800		_	_	_		_	_	_	_	_	T3GIF	_	_	_	_	_	0000
IFS3	008A	—	_	_	—	—	_	_	—	—	_	—	_	_	BCL2IF ⁽¹⁾	SSP2IF ⁽¹⁾	—	0000
IFS4	008C	—	_	_	—	_	_	_	HLVDIF	_	_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	008E	—	_	_	—	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	_	_	T3IE	T2IE	CCP2IE	_	_	T1IE	CCP1IE	_	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	—	T4IE ⁽¹⁾	_	CCP3IE ⁽¹⁾	_	_	_	_	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	0098	_	_	-	—	_	_	_	_		_	T3GIE	_	_	_	_	-	0000
IEC3	009A	_	_		—	_	_	_	_		_	_	-	_	BCL2IE ⁽¹⁾	SSP2IE ⁽¹⁾		0000
IEC4	009C	_	_		—	_	_	_	HLVDIE		_	_	-	_	U2ERIE	U1ERIE		0000
IEC5	009E	_	_		—	_	_	_	_		_	_	-	_	_	_	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	_	_	_	_	_	INT0IP2	INT0IP1	INT0IP0	4404
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	CCP2IP2	CCP2IP1	CCP2IP0		_	_	-	_	_	_	-	4400
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	_	_	_		_	_	-	_	T3IP2	T3IP1	T3IP0	4004
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	_		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0		BCL1IP2	BCL1IP1	BCL1IP0	_	SSP1IP2	SSP1IP1	SS1IP0	4444
IPC5	00AE	_	_	-	—	_	_	_	_		_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	_	_	_	_		CCP3IP2(1)	CCP3IP1(1)	CCP3IP0(1)	_	—	—		4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0		INT2IP2	INT2IP1	INT2IP0	_	_	_		4440
IPC9	00B6	_	_	_	—	_	_	—	_		T3GIP2	T3GIP1	T3GIP0	_	_	_		0040
IPC12	00BC	_	_	_	—	_	BCL2IP2(1)	BCL2IP1(1)	BCL2IP0(1)		SSP2IP2(1)	SSP2IP1(1)	SSP2IP0(1)	_	_	_		0440
IPC16	00C4	_	_	_	_	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	—	_	0440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC20	00CC	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: Note 1:

Legend: — = unimplemented, read as '0', r = reserved. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

A	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>						
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0								
TBLRD/TBLWT	User	TBI	_PAG<7:0>	Data EA<15:0>						
(Byte/Word Read/Write)		د0	xxx xxxx	XXXX XXXX XXXX XXXX						
	Configuration	TBLPAG<7:0>		Data EA<15:0>						
		12	xxx xxxx	XXXX XXXX XXXX XXXX						
Program Space Visibility	User	0	PSVPAG<7:	:0>(2) Data EA<14:0>(1)						
(Block Remap/Read)		0	XXXX XXX	xx xxx xxxx xxxx xxx						

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on PIC24F16KL402 family devices.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

; Set up	NVMCON for re	ow erase operation	
M	OV #0x405	8, WO ;	
M	OV WO, NVI	MCON ;	Initialize NVMCON
; Init po	inter to row	to be ERASED	
M	OV #tblpag	ge(PROG_ADDR), W0 ;	
M	OV WO, TB	LPAG ;	Initialize PM Page Boundary SFR
M	OV #tblof:	<pre>fset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TI	BLWTL WO, [W	0] ;	Set base address of erase block
D	ISI #5	;	Block all interrupts
			for next 5 instructions
MO	OV #0x55,	WO	
M	OV WO, NVI	MKEY ;	Write the 55 key
MO	OV #0xAA,	W1 ;	
MO	OV W1, NVI	MKEY ;	Write the AA key
B	SET NVMCON	, #WR ;	Start the erase sequence
NO	ЭР	;	Insert two NOPs after the erase
N	OP	;	command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = &progAddr; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
                                                            // Buffer of data to write
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                              // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
  offset = &progAddr & 0xFFFF;
                                                              // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                              // Write to upper byte
      offset = offset + 2i
                                                              // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

6.0 DATA EEPROM MEMORY

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Data
	EEPROM, refer to the "dsPIC33/PIC24
	Family Reference Manual", "Data
	EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFFFh. For PIC24FXXKL4XX devices, the size of the data EEPROM is 256 words (7FFE00h to 7FFFFh). For PIC24FXXKL3XX devices, the size of the data EEPROM is 128 words (7FFF0h to 7FFFFh). The data EEPROM is not implemented in PIC24F08KL20X or PIC24F04KL10X devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

//Disable Interrupts For 5 instr	uctions
asm volatile("disi #5");	
//Issue Unlock Sequence	
asm volatile ("mov #0x55, W0	\n"
"mov W0, NVMKEY	\n"
"mov #0xAA, W1	\n"
"mov W1, NVMKEY	\n");
// Perform Write/Erase operation	S
asm volatile ("bset NVMCON, #WR	\n"
"nop	\n"
"nop	\n");

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

REGISTER 8-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_		_	_	_
bit 15	•						bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	T3GIE	—	—	—	—	—
bit 7							bit 0

DIT	1

bit 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	T3GIF: Timer3 External Gate Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

Unimplemented: Read as '0' bit 4-0

REGISTER 8-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	—	—	—	—	BCL2IE ⁽¹⁾	SSP2IE ⁽¹⁾	—
bit 7							bit 0

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-3 Unimplemented: Read as '0'

BCL2IE: MSSP2 I²C[™] Bus Collision Interrupt Enable bit⁽¹⁾ bit 2

- 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
- SSP2IF: MSSP2 SPI/I²C Event Interrupt Enable bit⁽¹⁾
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'
- Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

10.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum, provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if any active module has selected the LPRC as its source, including the WDT, Timer1 and Timer3.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features, or peripherals, may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.5 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU. Instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_			—	_		
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1		
CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA		
oit 7						•	bit C		
_egend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	own		
oit 15-8	Unimplemen	ted: Read as '	0'						
oit 7-6	CMPL<1:0>:	Complementa	ry Mode Output	t Assignment S	teering bits				
	Steering 01 = P1A and 10 = P1A and 11 = P1A and	n mode d P1B are sele d P1C are sele d P1D are sele	it assignment cted as the com cted as the com cted as the com	nplementary ou nplementary ou	itput pair itput pair	bits are used			
oit 5	Unimplemen	ted: Read as '	0'						
oit 4		Steering Sync b							
			occurs on the r occurs at the b			le boundary			
oit 3	STRD: Steeri	ng Enable D b	it						
		has the PWM vis assigned to	waveform with p port pin	oolarity control	from CCP1M<	1:0>			
oit 2	STRC: Steering Enable C bit								
		has the PWM vis assigned to	waveform with p port pin	oolarity control	from CCP1M<	1:0>			
oit 1	STRB: Steering Enable B bit								
		has the PWM ، is assigned to إ	waveform with p port pin	olarity control	from CCP1M<	1:0>			
oit O	STRA: Steeri	ng Enable A bi	t						
	1 = P1A pin I	has the PWM v	waveform with r	olarity control	from CCP1M<	1.0>			

REGISTER 16-5: PSTR1CON: ECCP1 PULSE STEERING CONTROL REGISTER⁽¹⁾

Note 1: This register is only implemented on PIC24FXXKL40X/30X devices. In addition, PWM Steering mode is available only when CCP1M<3:2> = 11 and PM<1:0> = 00.

18.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTx BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

 $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note 1: Based on FCY = FOSC/2; Doze mode
and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

```
Desired Baud Rate
                    = FCY/(16 (UxBRG + 1))
Solving for UxBRG Value:
       UxBRG
                    = ((FCY/Desired Baud Rate)/16) - 1
       UxBRG
                   = ((400000/9600)/16) - 1
                    = 25
       UxBRG
Calculated Baud Rate = 400000/(16(25+1))
                    = 9615
Error
                    = (Calculated Baud Rate – Desired Baud Rate)
                       Desired Baud Rate
                    = (9615 - 9600)/9600
                    = 0.16\%
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
```

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$

 $TAD = TCY \bullet (ADCS + 1)$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

FIGURE 19-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

21.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 21-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in File register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

TABLE 26-18: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	_		—	See Parameter OS10 for Fosc value	
OS25	TCY	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		Clock F	Paramete	ers			-	
AD50	Tad	A/D Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 is in default state	
AD51	TRC	A/D Internal RC Oscillator Period	—	250	_	ns		
		Conve	rsion Ra	ite				
AD55	TCONV	Conversion Time	_	12		TAD		
AD56	FCNV	Throughput Rate	—	_	500	ksps	$AVDD \ge 2.7V$	
AD57	TSAMP	Sample Time	—	1	—	TAD		
AD58	TACQ	Acquisition Time	750			ns	(Note 2)	
AD59	Tswc	Switching Time from Convert to Sample	-	—	(Note 3)	_		
AD60	TDIS	Discharge Time	0.5			TAD		
	·	Clock F	aramete	ers			-	
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

TABLE 26-36: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimensior	Dimension Limits			MAX
Contact Pitch	1.27 BSC			
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group – Pin Count —— Tape and Reel FI Temperature Rar Package ———		 Examples: a) PIC24F16KL402-I/ML: General Purpose, 16-Kbyte Program Memory, 28-Pin, Industrial Temperature, QFN Package b) PIC24F04KL101T-I/SS: General Purpose, 4-Kbyte Program Memory, 20-Pin, Industrial Temperature, SSOP Package, Tape-and-Reel
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memory	
Product Group	KL4 = General purpose microcontrollers KL3 KL2 KL1	
Pin Count	00 = 14-pin 01 = 20-pin 02 = 28-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	$\begin{array}{rcl} SP & = & SPDIP \\ SO & = & SOIC \\ SS & = & SSOP \\ ST & = & TSSOP \\ ML, MQ & = & QFN \\ P & & = & PDIP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	