

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16kl402-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

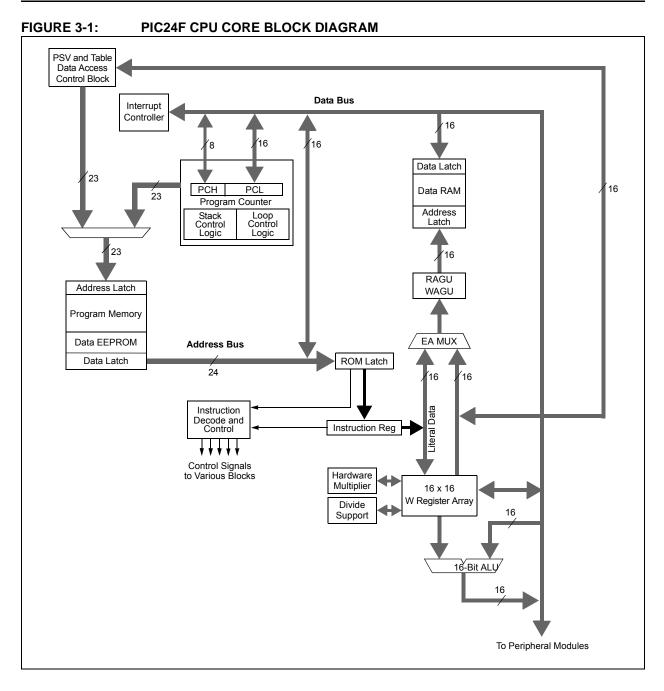
Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.


Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-5: PIC24F16KL20X/10X FAMILY PINOUT DESCRIPTIONS

		Pin Number	r			
Function	20-Pin PDIP/ SSOP/ SOIC	20-Pin QFN	14-Pin PDIP/ TSSOP	I/O	Buffer	Description
AN0	2	19	2	I	ANA	A/D Analog Inputs. Not available on PIC24F16KL10X
AN1	3	20	3	Ι	ANA	family devices.
AN2	4	1	—	Ι	ANA	
AN3	5	2	_	I	ANA	
AN4	6	3	_	I	ANA	
AN9	18	15	12	I	ANA	
AN10	17	14	11	I	ANA	
AN11	16	13	_	I	ANA	
AN12	15	12	_	I	ANA	
AN13	7	4	4	I	ANA	7
AN14	8	5	5	I	ANA	1
AN15	9	6	6	I	ANA	1
AVdd	20	17	14	I	ANA	Positive Supply for Analog modules
AVss	19	16	13	I	ANA	Ground Reference for Analog modules
CCP1	14	11	10	I/O	ST	CCP1 Capture Input/Compare and PWM Output
CCP2	15	12	9	I/O	ST	CCP2 Capture Input/Compare and PWM Output
C1INA	8	5	5	I	ANA	Comparator 1 Input A (+)
C1INB	7	4	4	I	ANA	Comparator 1 Input B (-)
C1INC	5	2	_	I	ANA	Comparator 1 Input C (+)
C1IND	4	1	_	I	ANA	Comparator 1 Input D (-)
C1OUT	17	14	11	0	_	Comparator 1 Output
CLK I	7	4	9	I	ANA	Main Clock Input
CLKO	8	5	10	0	_	System Clock Output
CN0	10	7	7	I	ST	Interrupt-on-Change Inputs
CN1	9	6	6	I	ST	
CN2	2	19	2	I	ST	
CN3	3	20	3	I	ST	7
CN4	4	1	_	I	ST	7
CN5	5	2	_	Ι	ST]
CN6	6	3	_	I	ST	7
CN8	14	11	10	I	ST	7
CN9	_		—	I	ST	7
CN11	18	15	12	I	ST	7
CN12	17	14	11	I	ST	7
CN13	16	13	—	I	ST	7
CN14	15	12	_	I	ST	7
CN21	13	10	9	I	ST	1
CN22	12	9	8	I	ST	1
CN23	11	8	—	I	ST	1
CN29	8	5	5	I	ST	1
CN30	7	4	4	1	ST	1

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C^{TM}/SMBus$ input buffer

TABLE 3-1: 0	CPU CORE REGISTERS
--------------	--------------------

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register

TABLE 4-6	: Т	IMER	REGIS	TER N	IAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100									Timer1 Reg	gister							0000
PR1	0102								Tir	mer1 Period	Register							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	T1ECS1	T1ECS0	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106	_	_	_	_	_	_	_	_				Timer2 R	egister				0000
PR2	0108	_	_	_	_	_	_	_	_				Timer2 Perio	d Register				OOFF
T2CON	010A	_	_	_	_	_	_	_	_	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	0000
TMR3	010C									Timer3 Reg	gister							0000
T3GCON	010E	-	—	—	—	—	—	—	—	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	0000
T3CON	0110	_	_	_	_	_	_	_	_	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	_	TMR3ON	0000
TMR4 ⁽¹⁾	0112	_	_	_	_	_	—	_	_		•	•	Timer4 R	egister				0000
PR4 ⁽¹⁾	0114	_	_	_	_	_	—	—	_				Timer4 Perio	d Register				00FF
T4CON ⁽¹⁾	0116	_	_	_	_	_	—	—	_	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	0000
CCPTMRS0 ⁽¹⁾	013C	-	_	_	_	—	_	—	_	—	C3TSEL0 ⁽¹⁾	_	-	C2TSEL0	-	_	C1TSEL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-7: CCP/ECCP REGISTER MAP

			-							1				1				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON	0190	_	_	—	_	_	—	—	_	PM1 ⁽¹⁾	PM0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000
CCPR1L	0192	-	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	V1 Register	Low Byte			0000
CCPR1H	0194	-	_	_	_	_	_	_	_			Capture/Co	mpare/PWN	/11 Register	High Byte			0000
ECCP1DEL ⁽¹⁾	0196	-	_	_	_	_	_	_	_	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000
ECCP1AS ⁽¹⁾	0198	-	_	_	_	_	_	_	_	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000
PSTR1CON(1)	019A	_	_	_	_	_	_	_	_	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	0001
CCP2CON	019C	_	_	_	_	_	_	_	_	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000
CCPR2L	019E	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	M2 Register	Low Byte			0000
CCPR2H	01A0	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	/12 Register	High Byte			0000
CCP3CON ⁽¹⁾	01A8	_	_	_	_	_	_	_	_	—	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000
CCPR3L ⁽¹⁾	01AA	_	_	_	_	_	_	_	_			Capture/Co	ompare/PWN	VI3 Register	Low Byte			0000
CCPR3H ⁽¹⁾	01AC	_		_	_	_	—	—	_			Capture/Co	ompare/PWN	/13 Register	High Byte			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits and/or registers are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

TABLE 4-10: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	—	—	_	_	_	_	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	00DF
PORTA	02C2		—						—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4		—						—	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	-	_	_	_	_	_	_	-	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices; read as '0'.

2: PORTA<5> is unavailable when MCLR functionality is enabled (MCLRE Configuration bit = 1).

TABLE 4-11: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7 ⁽¹⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These ports and their associated bits are unimplemented on 14-pin and 20-pin devices.

2: These ports and their associated bits are unimplemented in 14-pin devices.

TABLE 4-12: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	_	—	SDO2DIS ⁽¹⁾	SCK2DIS(1)	SDO1DIS	SCK1DIS	—	_	_	_	_	—	—	—	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X family devices; read as '0'.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing it is not recommended.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 5.5 "Programming Operations"**.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

	D 4 4 4 6	D 444 A	D 4 4 4 4				
R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY			—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit	U = Unimpler	mented bit, rea	ad as '0'	
R = Readable	bit	W = Writable b	it	SO = Settabl	e Only bit		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	WR: Write Co	ontrol bit (progra	m or erase)				
		a data EEPROM		cvcle (can be s	et but not clea	red in software	e)
		le is complete (•			- /
bit 14	WREN: Write	Enable bit (eras	e or program)				
	1 = Enables a	in erase or prog	ram operation				
	0 = No operat	tion allowed (dev	vice clears this t	oit on completion	on of the write/	erase operatio	on)
bit 13	WRERR: Flas	sh Error Flag bit					
	1 = A write o	operation is pre	maturely termir	nated (any MC	LR or WDT	Reset during	programming
	operation	/					
		operation comp		ліу			
bit 12		Program Only En			<i>.</i>		
		eration is execute c erase-before-v				tically by an a	rade of torget
	address(e		ville, wille oper	ations are pred		lucally by all e	lase of larger
bit 11-7	•	ted: Read as '0'					
bit 6	-	e Operation Sel					
Sit o		an erase opera		s set			
		a write operatio					
bit 5-0	NVMOP<5:0>	. Programming	Operation Com	mand Byte bits	₃ (1)		
	Erase Operati	ions (when ERA	<u>SE bit is '1'):</u>	-			
	011010 = Era	ases 8 words					
	011001 = Era						
	011000 = Era		EEDDOM				
		ases entire data		• 'o')•			
	001xxx = Wr	Operations (wh ites 1 word	EILERASE DIL IS	<u> </u>			

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

Note 1: These NVMOP configurations are unimplemented on PIC24F04KL10X and PIC24F08KL20X devices.

REGISTER 8-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	—	_		_
bit 15				· · · · ·			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CCP3IP2 ⁽¹⁾	CCP3IP1 ⁽¹⁾	CCP3IP0 ⁽¹⁾	—		—	—
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, re	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	T4IP<2:0>: ⊺i	mer4 Interrupt	Priority bits ⁽¹⁾				
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup						
	•	ot source is dis					
			.,				
bit 11-7	Unimplemen			(1)			
bit 11-7 bit 6-4	CCP3IP: Cap	ture/Compare/	PWM3 Interrup	ot Priority bits ⁽¹⁾			
	CCP3IP: Cap		PWM3 Interrup				
	CCP3IP: Cap	ture/Compare/	PWM3 Interrup				
	CCP3IP: Cap	ture/Compare/	PWM3 Interrup				
	CCP3IP: Cap 111 = Interrup • • • 001 = Interrup	ture/Compare/l ot is Priority 7(ot is Priority 1	PWM3 Interrup highest priority				
	CCP3IP: Cap 111 = Interrup • • 001 = Interrup 000 = Interrup	ture/Compare/l ot is Priority 7(PWM3 Interrup highest priority abled				

Note 1: These bits are unimplemented on PIC24FXXKL10X and PIC24FXXKL20X devices.

REGISTER 8-30: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15				•		·	bit 8
U-0		R-0					R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit (
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 14	0 = No interr	vhen the CPU p upt request is le aintain as '0'			errupt priority)		
bit 14	Reserved: M			0			
bit 13	VHOLD: Vect	tor Hold bit					
	1 = VECNUN current in 0 = VECNUN	//<6:0> will cor nterrupt //<6:0> will con	tain the value	e of the highe of the last Ac	rupt is Stored in st priority pend knowledged inte ther interrupts a	ling interrupt, i errupt (last inte	instead of the
bit 12	Unimplemen	ted: Read as ')'				
bit 11-8	1111 = CPU • • • 0001 = CPU	w CPU Interrup Interrupt Priorit Interrupt Priorit Interrupt Priorit	y Level is 15 y Level is 1	el bits			
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0	VECNUM<6:	0>: Vector Num	ber of Pendin	g Interrupt bits	5		
	0111111 = Ir • •	nterrupt vector p	pending is Nu	mber 135			
		nterrupt vector p nterrupt vector p					

17.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note:	This data sheet summarizes the features						
	of this group of PIC24F devices. It is not						
	intended to be a comprehensive refer-						
	ence source. For more information on						
	MSSP, refer to the "dsPIC33/PIC24						
	Family Reference Manual".						

The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

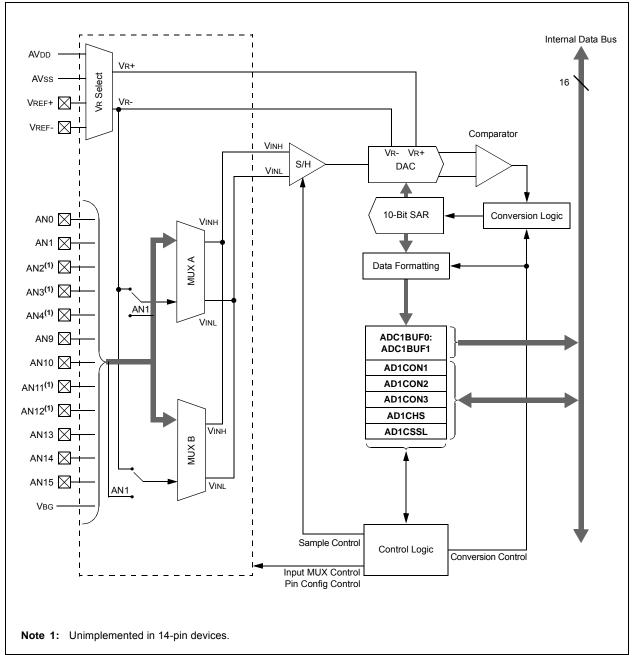
- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

The SPI interface supports these modes in hardware:

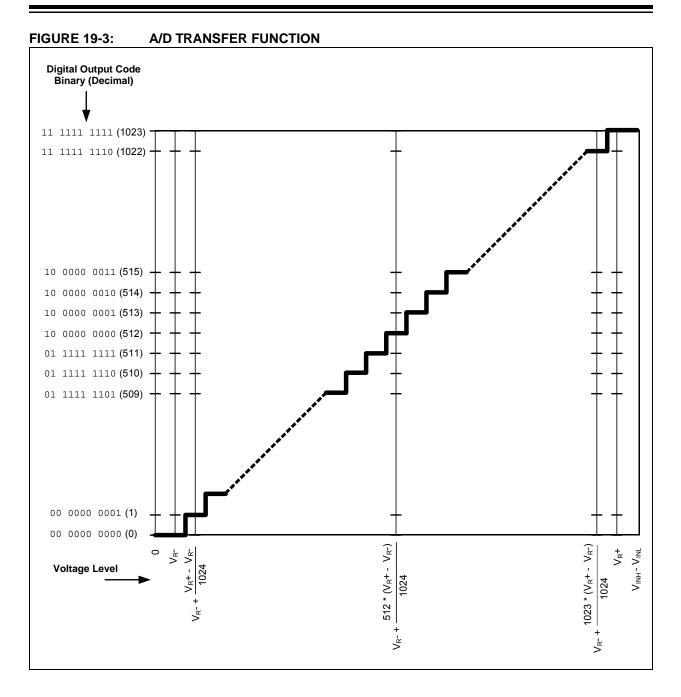
- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave operation

The I^2C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit And 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold and Interrupt Masking


17.1 I/O Pin Configuration for SPI

In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin, and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.


The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 17-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: This feature is is only available for the 16x BRG mode (BRGH = 0).
 - 2: Bit availability depends on pin availability.

FIGURE 19-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

23.5 Program Verification and Code Protection

For all devices in the PIC24F16KL402 family, code protection for the Boot Segment is controlled by the BSS<2:0> Configuration bits and the General Segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the Boot Segment and bit, GWRP, for the General Segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

23.6 In-Circuit Serial Programming

PIC24F16KL402 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

23.7 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

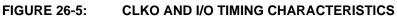
24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

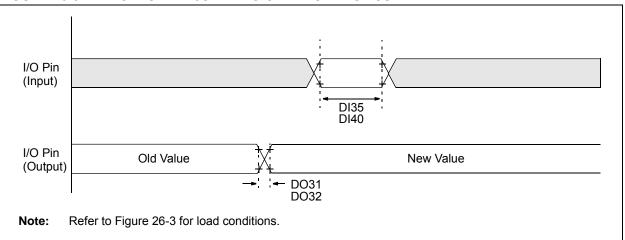
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

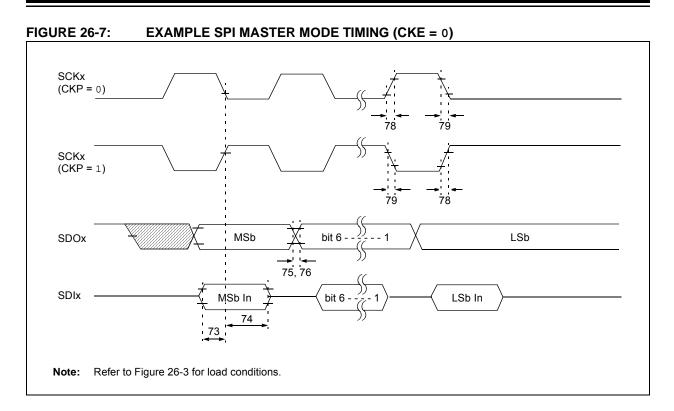


TABLE 26-22: CLKO AND I/O TIMING REQUIREMENTS

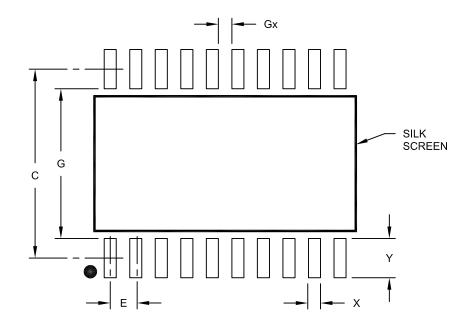
AC CHARACTERISTICS		Standard O Operating te	• •	onditions:	1.8V to 3.6V -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	—	10	25	ns	
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-27: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
	FSCK	SCKx Frequency	—	10	MHz	

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100 Tr	Тнідн	Clock High Time	100 kHz mode	4.0	_	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	_	Тсү	
101 TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			MSSP module	1.5	—	Тсү	
102 TR	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103 TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	0 Tsu:sta	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated
			400 kHz mode	0.6	—	μs	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μS	After this period, the first clock
			400 kHz mode	0.6	—	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		_	400	pF	


TABLE 26-32: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

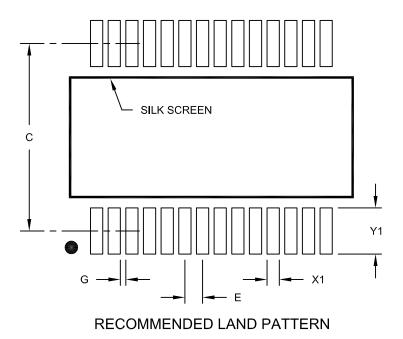
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch E		1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A