
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information1

Part Number	Mer	nory	Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MKL03Z8VFG4(R)	8	2	14
MKL03Z16VFG4(R)	16	2	14
MKL03Z32VFG4(R)	32	2	14
MKL03Z32CAF4R	32	2	18
MKL03Z32CBF4R	32	2	18
MKL03Z8VFK4(R)	8	2	22
MKL03Z16VFK4(R)	16	2	22
MKL03Z32VFK4(R)	32	2	22

1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.

Туре	Description	Resource
Selector Guide	The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KL03PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL03P24M48SF0RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL03P24M48SF0 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KL03Z_xN86K ²
Package	Package dimensions are provided in package drawings.	QFN 16-pin: 98ASA00525D ¹
drawing		QFN 24-pin: 98ASA00602D ¹
		WLCSP 20-pin: 98ASA00676D ¹
		WLCSP 20-pin (ultra thin): 98ASA00964D ¹

Related Resources

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

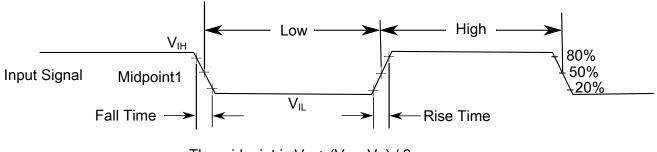
2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

General

- 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Bodv Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Voltage and current operating ratings 1.4


Table 5. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

General 2

AC electrical characteristics 2.1

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

• $C_L=30 \text{ pF loads}$

2.2.2 LVD and POR operating requirements Table 7. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	-
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	• Level 1 falling (LVWV = 00)	2.62	2.70	2.78	v	
V_{LVW2H}	• Level 2 falling (LVWV = 01)	2.72	2.80	2.88	v	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	v	
$V_{\rm LVW4H}$	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	—	±60	_	mV	_
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	-
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	v	
V_{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	v	
V_{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	-	mV	-
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 8. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET)				1, 2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -2.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — High drive pad (except RESET)				1, 2
		V _{DD} – 0.5	—	V	
		V _{DD} – 0.5	—	V	

Symbol	Description	Min.	Тур.	Max.	Unit	Note
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	152	166	μs	_
	VLLS1 → RUN		150	100		_
	VLLS3 → RUN		152	166	μs	
		—	93	104	μs	
	VLPS → RUN					_
			7.5	8	μs	
	 STOP → RUN 	_	7.5	8	μs	_

Table 9. Power mode transition operating behaviors

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

 Table 10.
 KL03 QFN packages power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current		—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.49	5.71	mA	
	• at 105 °C	_	5.62	5.84		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.16	5.37	mA	
	• at 105 °C	—	5.27	5.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C		6.03	6.27	mA	
	• at 105 °C	_	6.16	6.41		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					3

	· · · · ·					
Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C		3.71	3.86	mA	
	• at 105 °C	—	3.81	3.96		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, $V_{DD} = 3.0 V$					3
	• at 25 °C	—	2.47	2.57	mA	
	• at 105 °C	_	2.58	2.68		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	6.43	6.69	mA	
	• at 105 °C	_	6.56	6.82		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, $V_{DD} = 3.0$ V		5 71	5.04		_
	• at 25 °C	_	5.71	5.94	mA	
	• at 105 °C		5.82	6.05		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V		3.3	3.43	mA	_
	• at 25 °C	_			mA	
	• at 105 °C	—	3.4	3.54		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.28	2.37	mA	_
	• at 105 °C	_	2.38	2.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock		2.00	2.10		
	enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	6.1	6.34	mA	
	• at 105 °C	—	6.22	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.14	3.23	mA	
	• at 105 °C	—	3.27	3.36		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
		—	3.54	3.63	mA	
			3.67	3.76		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

General

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 85 °C		13.2	17.37	μA	
	• at 105 °C	_	27.8	35.54		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all					
	peripheral disable, at 3.0 V		1.08	1.17	μA	
	• at 25 °C and below	_	1.4	1.52		
	• at 50 °C	_	3.45	3.96		
	• at 85 °C		7.02	8.19		
	• at 105 °C		7.02	0.10		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					
	current, at 3.0 V • at 25 °C and below		1.47	1.56	μA	
	• at 50 °C		1.82	1.94		
		_	3.93	4.44		
	• at 85 °C		7.6	8.77		
	• at 105 °C					
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					
	current, at 1.8 V • at 25 °C and below	—	1.33	1.42	μA	
	• at 50 °C		1.65	1.77		
	• at 85 °C	_	3.56	4.07		
	• at 105 °C	_	6.92	8.09		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V					
	• at 25 °C and below		566	690		
	• at 50°C	—	788	839		
	• at 85°C	—	2270	2600	nA	
	• at 105 °C	—	4980	5820		
1						
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V		000	1050		
	• at 25 °C and below		969	1059		
	• at 50°C		1200	1251		
	• at 85°C	—	2740	3070	nA	
	• at 105 °C		5610	6450		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					
	enabled at 1.8 V	_	826	916		
	• at 25 °C and below	_	1040	1091		
	• at 50°C	_	2400	2730	nA	
	• at 85°C		4910	5750		
	• at 105 °C			0100		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V		265	373		_
	• at 25 °C and below					
	• at 50 °C	—	467	512.9	nA	
	• at 85 °C	—	1920	2256		
	• at 105 °C	—	4540	5395		
IDD_VLLS0	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					4
	= 1) at 3 V • at 25 °C and below	—	77	350		
	• at 50 °C	—	255	465.70	nA	
	● at 85 °C	—	1640	1994		
	• at 105 °C	—	4080	4956		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 4. No brownout

Table 11. KL03 WLCSP package power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.49	5.71	mA	
	• at 85 °C	_	5.59	5.81		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.16	5.37	mA	
	• at 85 °C	_	5.24	5.45		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 85 °C	_	6.13	6.38		

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	3.71	3.86	mA	
	• at 85 °C	—	3.78	3.93		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.47	2.57	mA	3
	• at 85 °C	—	2.55	2.65		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	6.43 6.53	6.69 6.79	mA	3
			0.55	0.79		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		5.71 5.79	5.94 6.02	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		3.3 3.37	3.43 3.50	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	2.28 2.35	2.37 2.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		6.1 6.19	6.34 6.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, $V_{DD} = 3.0$ V	_	3.14 3.24	3.23 3.33	mA	_

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
-	peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C		93	140	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	31	81	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	103	154	μΑ	_
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.4	1.94	mA	-
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.02	1.24	mA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 \text{ V}$	_	121	181	μA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	59	97	μA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	28	42	μA	_
DD_PSTOP2	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, $V_{DD} = 3.0 V$					-
			1.53	2.03	mA	
DD_PSTOP2	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 V$					-
		_	0.881	1.18	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	158	175.7		_
	• at 50 °C	_	164	179.48		
	• at 85 °C	_	187	199.54	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below	_	2.2	2.71		-
			3.9	6.63		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

General

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	 at 25 °C and below 	—	467	512.9		
	• at 50 °C	—	1920	2256	nA	
	• at 85 °C					
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled					4
	(SMC_STOPCTRL[PORPO] = 1) at 3 V • at 25 °C and below	_	77	350		
	• at 50 °C	—	255	465.70	nA	
	• at 85 °C	_	1640	1994		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.

4. No brownout

Table 12. Low power mode peripheral adders — typical value

Symbol	Description			Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105 ¹	
I _{LIRC8MHz}	8 MHz internal reference clock (LIRC) adder. Measured by entering STOP or VLPS mode with 8 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	68	68	68	68	68	68	μA
I _{LIRC2MHz}	2 MHz internal reference clock (LIRC) adder. Measured by entering STOP mode with the 2 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	27	27	27	27	27	27	μA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal							
	enabled. • VLLS1	340	410	460	470	480	600	
	VLLS3	340	410	460	490	530	600	
	VLPS STOP	340	420	480	570	610	850	
		340	420	480	570	610	850	nA
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.							nA
		30	30	30	85	100	200	

2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design"

2.2.8 Capacitance attributes

Table 14. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 15. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode		•	
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹		•	•
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz
f _{ERCLK}	External reference clock	_	32.768	kHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock	_	8	MHz

General

- The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	—	36	ns	3

Table 16. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 17. Thermal operating requirements of WLCSP package

Γ	Symbol	Description	Min.	Max.	Unit	Note
Γ	TJ	Die junction temperature	-40	95	°C	
	T _A	Ambient temperature	-40	85	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

Table 18. Thermal operating requirements of other packages

Symbol	Description	Min.	Max.	Unit	Note
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

3.1.1 SWD electricals

Table 20	SWD full	voltage	range	electricals
	SWD Iuli	vonaye	lange	electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
JЗ	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

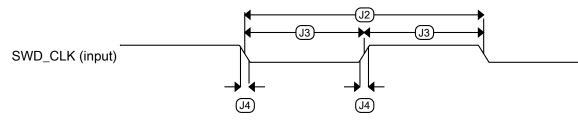


Figure 6. Serial wire clock input timing

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
$\Delta f_{irc48m_ol_hv}$	total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature					—
		—	± 0.5	±1.0	%f _{irc48m}	
J _{cyc_irc48m}	Period Jitter (RMS)	—	35	150	ps	—
t _{irc48mst}	Startup time		2	3	μs	1

Table 21. HIRC48M specification (continued)

1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by setting MCG_MC[HIRCEN] = 1. See reference manual for details.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.08	—	1.47	V	—
Т	Temperature range	-40	—	125	°C	—
I _{DD_2M}	Supply current in 2 MHz mode	—	14	17	μA	—
I _{DD_8M}	8M Supply current in 8 MHz mode		30	35	μA	—
f _{IRC_2M}	Output frequency	—	2	—	MHz	—
f _{IRC_8M}	Output frequency	—	8	_	MHz	—
f _{IRC_T_2M}	T_2M Output frequency range (trimmed)		—	±3	%f _{IRC}	V _{DD} ≥1.89 V
f _{IRC_T_8M}	Output frequency range (trimmed)	—	—	±3	%f _{IRC}	V _{DD} ≥1.89 V
T _{su_2M}	2M Startup time		—	12.5	μs	—
T _{su_8M}	Startup time	—	—	12.5	μs	—

Table 22. LIRC8M/2M specification

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 23. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	—
IDDOSC	Supply current — low-power mode					1
	• 32 kHz	_	500	_	nA	
C _x	EXTAL load capacitance	_	_	_		2, 3
Cy	XTAL load capacitance	—	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode				MΩ	2, 4
R_S	Series resistor — low-frequency, low-power mode				kΩ	

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 26. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	0.5	ms	_
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	—
t _{ersall}	Erase All Blocks execution time	_	61	500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 27. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 28. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	—
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	Sample Time	See Reference Manual chapter for	r sample tim	nes			
TUE	Total	12-bit modes	—	±4	±6.8	LSB ⁴	5
	unadjusted error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.2	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	–0.7 to +0.5		
E_{FS}	Full-scale error	12-bit modes		-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8	, V _{DDA}	V _{DDA} ⁵
EQ	Quantization error	12-bit modes	—		±0.5	LSB ⁴	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 31. 12-bit ADC characteristics ($V_{REFH} = V_{REFO}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{REFO}

 Typical values assume V_{REFO} = 1.2 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

4. 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

6. ADC conversion clock < 3 MHz

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to $20\% V_{DD}$ and $80\% V_{DD}$ thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	22	_	ns	
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	-	25	ns	_
	t _{FO}	Fall time output				

 Table 37. SPI master mode timing on slew rate disabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	—

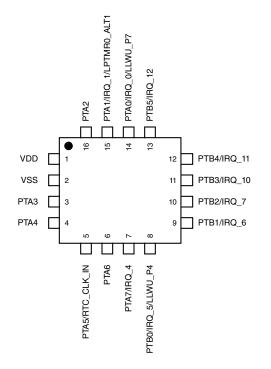
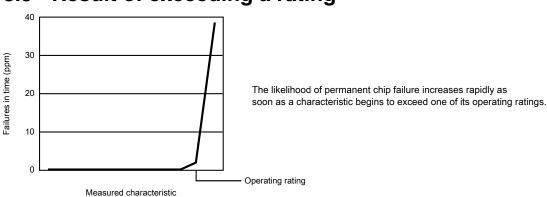


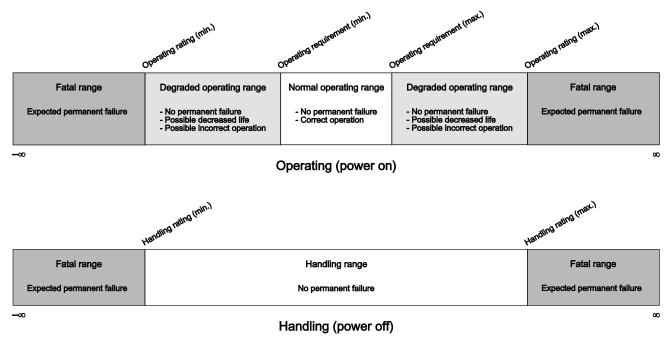
Figure 19. KL03 16-pin QFN pinout diagram

6 Ordering parts


6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search.

7 Part identification


7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

• Never exceed any of the chip's ratings.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions: