E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl03z32vfg4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information1

Part Number	Me	Maximum number of I\O's	
	Flash (KB)	SRAM (KB)	
MKL03Z8VFG4(R)	8	2	14
MKL03Z16VFG4(R)	16	2	14
MKL03Z32VFG4(R)	32	2	14
MKL03Z32CAF4R	32	2	18
MKL03Z32CBF4R	32	2	18
MKL03Z8VFK4(R)	8	2	22
MKL03Z16VFK4(R)	16	2	22
MKL03Z32VFK4(R)	32	2	22

1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.

Туре	Description	Resource
Selector Guide	The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KL03PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL03P24M48SF0RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL03P24M48SF0 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KL03Z_xN86K ²
Package	Package dimensions are provided in package drawings.	QFN 16-pin: 98ASA00525D ¹
drawing		QFN 24-pin: 98ASA00602D ¹
		WLCSP 20-pin: 98ASA00676D ¹
		WLCSP 20-pin (ultra thin): 98ASA00964D ¹

Related Resources

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

Figure 1. Functional block diagram

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OH}} = -20 \text{ mA}$				
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -10 \text{ mA}$				
I _{OHT}	Output high current total for all ports	—	100	mA	—
V _{OL}	Output low voltage — Normal drive pad				1
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OL}} = 5 \text{ mA}$	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 2.5 \text{ mA}$	_	0.5	v	
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_	0.5	v	
I _{OLT}	Output low current total for all ports	—	100	mA	—
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μΑ	3
I _{IN}	Input leakage current (per pin) at 25 °C	—	0.025	μA	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	41	μΑ	3
I _{oz}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	_
R _{PU}	Internal pullup resistors	20	50	kΩ	4

Table 8. Voltage and current operating behaviors (continued)

1. I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.

3. Measured at $V_{DD} = 3.6 V$

4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

VLLSx \rightarrow RUN recovery uses LIRC clock mode at the default CPU and system frequency of 8 MHz, and a bus and flash clock frequency of 4 MHz.

Symbol	Description	Min.	Тур.	Max.	Unit	Note
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	 VLLS0 → RUN 	_	152	166	μs	—
	• VLLS1 → RUN	_	152	166	μs	_
	• VLLS3 → RUN		93	104	μs	_
	• VLPS → RUN	_	7.5	8	μs	_
	• STOP → RUN		7.5	8	μs	_

Table 9. Power mode transition operating behaviors

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

 Table 10.
 KL03 QFN packages power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V_{DD} = 3.0 V					3
	• at 25 °C	_	5.49	5.71	mA	
	• at 105 °C	—	5.62	5.84		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C		5.16	5.37	mA	
	• at 105 °C	—	5.27	5.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 105 °C	—	6.16	6.41		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					3

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	93	140	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, $V_{DD} = 3.0 V$ • at 25 °C		31	81	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, $V_{DD} = 3.0 \text{ V}$ • at 25 °C		103	154	μΑ	_
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.4	1.94	mA	_
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V		1.02	1.24	mA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 V$	_	121	181	μΑ	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	59	97	μΑ	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	28	42	μA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, $V_{DD} = 3.0 V$					_
		_	1.53	2.03	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 V$					
			0.881	1.18	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	158	175.7		_
	• at 50 °C	_	164	179.48		
	• at 85 °C	_	187	199.54	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below	_	2.2	2.71		
		_	3.9	6.63		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

General

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	 at 25 °C and below 	—	467	512.9		
	• at 50 °C	_	1920	2256	nA	
	• at 85 °C					
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all					4
	(SMC_STOPCTRL[PORPO] = 1) at 3 V • at 25 °C and below	_	77	350		
	• at 50 °C	-	255	465.70	nA	
	• at 85 °C	_	1640	1994		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.

4. No brownout

Table 12. Low power mode peripheral adders — typical value

Symbol	Description		-	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105 ¹	
I _{LIRC8MHz}	8 MHz internal reference clock (LIRC) adder. Measured by entering STOP or VLPS mode with 8 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	68	68	68	68	68	68	μA
I _{LIRC2MHz}	2 MHz internal reference clock (LIRC) adder. Measured by entering STOP mode with the 2 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	27	27	27	27	27	27	μΑ
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal							
	enabled. • VLLS1	340	410	460	470	480	600	
	VLLS3	340	410	460	490	530	600	
	VLPS STOP	340	420	480	570	610	850	
		340	420	480	570	610	850	nA
ILPTMR	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	nA
		- 30	- 50	- 50	05	100	200	

2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design"

2.2.8 Capacitance attributes

Table 14. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 15. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	—	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	—	24	MHz
	VLPR and VLPS modes ¹	•	•	
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²	—	24	MHz
f _{ERCLK}	External reference clock	—	16	MHz
f _{ERCLK}	External reference clock	—	32.768	kHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{TPM}	TPM asynchronous clock	—	8	MHz
f _{UART0}	UART0 asynchronous clock	—	8	MHz

Peripheral operating requirements and behaviors

- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 8. ADC input impedance equivalency diagram

3.6.1.2 12-bit ADC electrical characteristics

Fable 30.	12-bit ADC	characteristics	(V _{REFH} =	V _{DDA} ,	V _{REFL}	$= V_{SS}$	ы)
-----------	------------	-----------------	----------------------	--------------------	-------------------	------------	----

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for	sample time	es			
TUE	Total	12-bit modes	—	±6	—	LSB ⁴	5
	unadjusted error	<12-bit modes	_	±3	±6		

Figure 9. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	—	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs

Table 32. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = $V_{reference}/64$

Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to $20\% V_{DD}$ and $80\% V_{DD}$ thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	22	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output]			

 Table 37. SPI master mode timing on slew rate disabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Table 38. SPI master mode timing on slew rate enabled pa	ds
--	----

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	_

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	
	t _{FO}	Fall time output]			

Table 38. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0, f_{periph} is the bus clock (f_{BUS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 12. SPI master mode timing (CPHA = 0)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 40. SPI slave mode timing on slew rate enabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2.
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state

Figure 14. SPI slave mode timing (CPHA = 0)

Figure 15. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 41. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100 ¹	0	400 ²	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6		μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ³	3.45 ⁴	0 ⁵	0.9 ³	μs
Data set-up time	t _{SU} ; DAT	250 ⁶	—	100 ⁴ , ⁷	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁸	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁷	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The PTB3 and PTB4 pins can support only the Standard mode.

2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the normal drive pins and VDD ≥ 2.7 V.

Peripheral operating requirements and behaviors

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 5. Input signal Slew = 10 ns and Output Load = 50 pF
- 6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 7. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 8. C_b = total capacitance of the one bus line in pF.

To achieve 1MHz I2C clock rates, consider the following recommendations:

- To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate.
- Use high drive pad and DSE bit should be set in PORTx_PCRn register.
- Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching.
- Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26		μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26		μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26		μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	—	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 42. I²C 1Mbit/s timing

1. The maximum SCL clock frequency of 1 Mbit/s can support 200 pF bus loading when using the normal drive pins and VDD \ge 2.7 V.

2. C_b = total capacitance of the one bus line in pF.

5 Pinout

5.1 KL03 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

PTB3 and PTB4 are true open drain pins. The external pullup resistor must be added to make them output correct values in using I2C, GPIO, and LPUART0.

24	20	16 05N	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
QFN	SP	QFN								
1	-	-	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED		PTB6/ IRQ_2/ LPTMR0_ALT3	TPM1_CH1	TPM_CLKIN1		
2	—	-	PTB7/ IRQ_3	DISABLED		PTB7/ IRQ_3	TPM1_CH0			
3	B5	1	VDD	VDD	VDD					
4	C5	2	VSS	VSS	VSS					
5	C4	3	PTA3	EXTAL0	EXTAL0	PTA3	I2C0_SCL	I2C0_SDA	LPUART0_TX	
6	C3	4	PTA4	XTAL0	XTAL0	PTA4	I2C0_SDA	I2C0_SCL	LPUART0_RX	CLKOUT
7	D3	5	PTA5/ RTC_CLK_IN	DISABLED		PTA5/ RTC_CLK_IN	TPM0_CH1	SPI0_SS_b		
8	D5	6	PTA6	DISABLED		PTA6	TPM0_CH0	SPI0_MISO		
9	—	—	PTB10	DISABLED		PTB10	TPM0_CH1	SPI0_SS_b		
10	-	-	PTB11	DISABLED		PTB11	TPM0_CH0	SPI0_MISO		
11	D4	7	PTA7/ IRQ_4	DISABLED		PTA7/ IRQ_4	SPI0_MISO	SPI0_MOSI		
12	C1	8	PTB0/ IRQ_5/ LLWU_P4	ADC0_SE9	ADC0_SE9	PTB0/ IRQ_5/ LLWU_P4	EXTRG_IN	SPI0_SCK	I2C0_SCL	
13	D1	9	PTB1/ IRQ_6	ADC0_SE8/ CMP0_IN3	ADC0_SE8/ CMP0_IN3	PTB1/ IRQ_6	LPUART0_TX	LPUART0_RX	I2C0_SDA	
14	B1	10	PTB2/ IRQ_7	VREF_OUT/ CMP0_IN5	VREF_OUT/ CMP0_IN5	PTB2/ IRQ_7	LPUART0_RX	LPUART0_TX		
15	D2	—	PTA8	ADC0_SE3	ADC0_SE3	PTA8	I2C0_SCL	SPI0_MOSI		
16	C2	—	PTA9	ADC0_SE2	ADC0_SE2	PTA9	I2C0_SDA	SPI0_SCK		

Figure 19. KL03 16-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search.

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow(full reels for WLCSP) P = Prequalification K = Fully qualified, general market flow, 100 pieces reels (WLCSP only)
KL##	Kinetis family	• KL03
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 8 = 8 KB 16 = 16 KB 32 = 32 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FG = 16 QFN (3 mm x 3 mm) AF = 20 WLCSP (2 mm x 1.61 mm x 0.56 mm) BF = 20 WLCSP (2 mm x 1.61 mm x 0.32 mm) FK = 24 QFN (4 mm x 4 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

Table 43. Part number fields description

7.4 Example

This is an example part number:

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μA

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Table 44. Typical value conditions

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V _{DD}	3.3 V supply voltage	3.3	V

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3.1	07/2014	Initial public release.
4	08/2014	Changed pinout signal names ADC0_SE5, ADC0_SE6, and ADC0_SE12 to ADC0_SE8, ADC0_SE9 and ADC0_SE15 respectively.

Table 45. Revision history