
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl03z8vfg4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 LVD and POR operating requirements Table 7. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	-
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	• Level 1 falling (LVWV = 00)	2.62	2.70	2.78	v	
V_{LVW2H}	• Level 2 falling (LVWV = 01)	2.72	2.80	2.88	v	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	v	
$V_{\rm LVW4H}$	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	-
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	v	
V_{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	v	
V_{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	-	mV	-
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 8. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET)				1, 2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -2.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — High drive pad (except RESET)				1, 2
		V _{DD} – 0.5	—	V	
		V _{DD} – 0.5	—	V	

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C					
	• at 105 °C					
DD_VLPRCO	Very-low-power run While(1) loop in flash in compute operation mode— 2 MHz LIRC mode, 2 MHz core/0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	500	750	μA	
DD_VLPRCO	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	188	217	μA	_
IDD_VLPRCO	Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	82	123	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	503	754	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	60	90	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	516	774	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	209	350	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	229	370	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	93	140	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V	_	31	81	μΑ	_

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V		265	373		_
	• at 25 °C and below					
	• at 50 °C	—	467	512.9	nA	
	• at 85 °C	—	1920	2256		
	• at 105 °C	—	4540	5395		
IDD_VLLS0	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					4
	= 1) at 3 V • at 25 °C and below	—	77	350		
	• at 50 °C	—	255	465.70	nA	
	● at 85 °C	—	1640	1994		
	• at 105 °C	—	4080	4956		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 4. No brownout

Table 11. KL03 WLCSP package power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.49	5.71	mA	
	• at 85 °C	_	5.59	5.81		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.16	5.37	mA	
	• at 85 °C	_	5.24	5.45		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 85 °C	_	6.13	6.38		

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V				_	3
	• at 25 °C	—	3.71	3.86	mA	
	• at 85 °C	—	3.78	3.93		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.47	2.57	mA	3
	• at 85 °C	—	2.55	2.65		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	6.43 6.53	6.69 6.79	mA	3
			0.55	0.79		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		5.71 5.79	5.94 6.02	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		3.3 3.37	3.43 3.50	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	2.28 2.35	2.37 2.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		6.1 6.19	6.34 6.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, $V_{DD} = 3.0$ V	_	3.14 3.24	3.23 3.33	mA	_

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C					
	• at 85 °C					
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0					_
	V		3.54	3.63	mA	
	• at 25 °C	_	3.64	3.73		
	• at 85 °C					
DD_VLPRCO	compute operation mode— 2 MHz LIRC mode, 2 MHz core/0.5 MHz flash, V _{DD} = 3.0 V		500	750		
1	• at 25 °C		500	750	μA	
DD_VLPRCO	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	188	217	μΑ	
DD_VLPRCO					P** ' `	
UD_VLPRCO	compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	82	123	μA	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz				P	
'DD_VLPR	LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	503	754	μA	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	60	90	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	516	774	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	209	350	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	229	370	μA	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all					—

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 50 °C	_	13.9	18.25	μA	
	• at 85 °C					
IDD_VLPS	Very-low-power stop mode current at 1.8 V					_
	• at 25 °C and below	_	2.2	2.674		
	• at 50 °C	_	3.8	6.44		
	• at 85 °C	_	13.2	17.37	μA	
DD_VLLS3	Very-low-leakage stop mode 3 current, all					_
	peripheral disable, at 3.0 V • at 25 °C and below	_	1.08	1.17	μA	
	• at 50 °C	_	1.4	1.52		
	• at 85 °C	_	3.45	3.96		
DD_VLLS3	Very-low-leakage stop mode 3 current with					_
_	RTC current, at 3.0 V • at 25 °C and below	_	1.47	1.56	μA	
	• at 50 °C	_	1.82	1.94		
	• at 85 °C	_	3.93	4.44		
DD_VLLS3	Very-low-leakage stop mode 3 current with RTC current, at 1.8 V				μA	-
	• at 25 °C and below	_	1.33	1.42	Port	
	• at 50 °C	_	1.65	1.77		
	• at 85 °C	_	3.56	4.07		
IDD_VLLS1	Very-low-leakage stop mode 1 current all					
	peripheral disabled at 3.0 V • at 25 °C and below	_	566	690		
		_	788	839		
	 at 50°C at 85°C 	_	2270	2600	nA	
DD_VLLS1	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V					-
	• at 25 °C and below	_	969	1059		
	• at 50°C	_	1200	1251		
	• at 85°C	_	2740	3070	nA	
IDD_VLLS1	Very-low-leakage stop mode 1 current RTC					
50_1101	enabled at 1.8 V	_	826	916		
	• at 25 °C and below	_	1040	1091		
	• at 50°C	_	2400	2730	nA	
	• at 85°C		2,00			
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled					_
	Loenoneral disabled	1	1	1	1	1

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

General

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

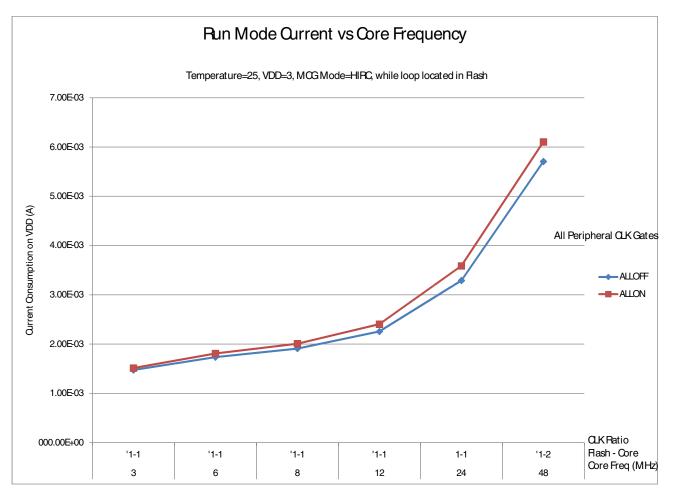


Figure 3. Run mode supply current vs. core frequency (loop located in flash)

2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design"

2.2.8 Capacitance attributes

Table 14. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 15. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode		•	
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹		•	•
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz
f _{ERCLK}	External reference clock	_	32.768	kHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock	_	8	MHz

Board type	Symbol	Description	16 QFN	20 WLCSP	24 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	64.2	69.8	60.7	°C/W	1,2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53.3	57.5	48.5	°C/W	1,2,3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	55.4	62.03	51.0	°C/W	1,3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	48.9	54.3	43.6	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	33.5	51.64	30.4	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	20.9	0.73	9.8	°C/W	5
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	0.2	0.2	°C/W	6
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	22.4	_	21.8	°C/W	7

2.4.2 Thermal attributes

Table 19. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode	—	0.6		V	—

Table 23. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 24. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode	32	—	40	kHz	_
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	—
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode		750		ms	1, 2

1. Proper PC board layout procedures must be followed to achieve specifications.

2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description		Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

Table 25. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 26. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	0.5	ms	_
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	—	61	500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 27. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 28. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
	Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	—		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	—		
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2		

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
DNL	Differential non- linearity	12-bit modes	_	±0.9	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.4	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.5	–2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	5	—	LSB ⁴	V _{ADIN} =
		• <12-bit modes	—	2	3		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	_	_	±0.5	LSB ⁴	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 30. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. ADC conversion clock < 3 MHz

Table 31.	12-bit ADC characteristics	(V _{REFH} =	V_{REFO} ,	$V_{REFL} =$	V _{SSA})
-----------	----------------------------	----------------------	--------------	--------------	--------------------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	 ADLPC = 1, ADHSC = 1 	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		 ADLPC = 0, ADHSC = 0 	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	Sample Time	See Reference Manual chapter for	sample tim	nes			
TUE	Total	12-bit modes	—	±4	±6.8	LSB ⁴	5
	unadjusted error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.2	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.5	–0.7 to +0.5		
E_{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴ V _{ADIN}	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	—	_	±0.5	LSB ⁴	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 31. 12-bit ADC characteristics ($V_{REFH} = V_{REFO}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{REFO}

 Typical values assume V_{REFO} = 1.2 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

4. 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

6. ADC conversion clock < 3 MHz

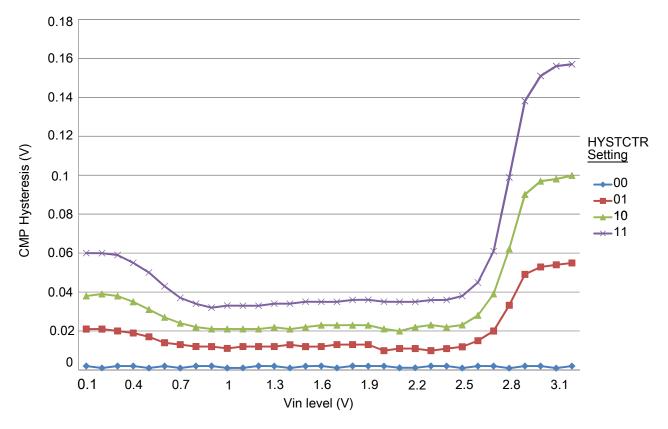


Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 Voltage reference electrical specifications

Symbol	Description	Min. Max.		Unit	Notes
V _{DDA}	Supply voltage	1.71 3.6		V	—
T _A	Temperature	Operating t range of t		°C	—
CL	Output load capacitance	1(00	nF	1, 2

Table 33. VREF full-range operating requirements

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 34 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)	—	_	50	mV	1
Ac	Aging coefficient	_	_	400	uV/yr	
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{lp}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	2	—	mV	1

 Table 34.
 VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 35. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	—

Table 36. VREF limited-range operating behaviors

Symbol	mbol Description		Max.	Unit	Notes
V _{out} Voltage reference output with factory trim		1.173	1.225	V	

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	
4	t _{Lag}	Enable lag time	1	_	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30		ns	—
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 40. SPI slave mode timing on slew rate enabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2.
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state

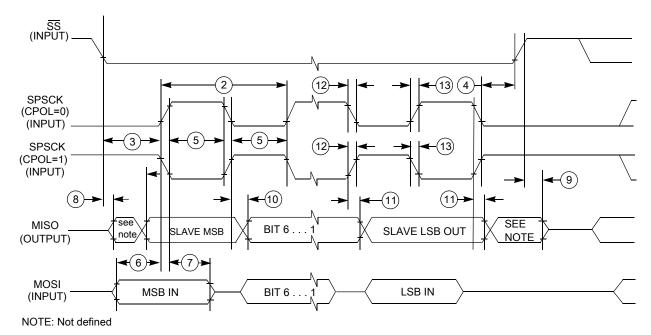


Figure 14. SPI slave mode timing (CPHA = 0)

24 QFN	20 WLC SP	16 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5
17	A1	11	PTB3/ IRQ_10	DISABLED		PTB3/ IRQ_10	I2C0_SCL	LPUART0_TX		
18	B2	12	PTB4/ IRQ_11	DISABLED		PTB4/ IRQ_11	I2C0_SDA	LPUART0_RX		
19	A2	13	PTB5/ IRQ_12	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_12	TPM1_CH1	NMI_b		
20	B3	-	PTA12/ IRQ_13/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_13/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0		CLKOUT
21	A3	_	PTB13/ CLKOUT32K	DISABLED		PTB13/ CLKOUT32K	TPM1_CH1	RTC_CLKOUT		
22	A4	14	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE15/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK		
23	B4	15	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b		PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b		
24	A5	16	PTA2	SWD_DIO		PTA2	CMP0_OUT	SWD_DIO		

5.2 KL03 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL03 signal multiplexing and pin assignments.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Rev. No.	Date	Substantial Changes
5	07/2017	 Added new part of MKL03Z32CBF4R and its package information. Updated the Resource and its footnote to the Chip Errata in the front page Updated the descriptions to the VLPW to be very low power wait mode in the Power consumption operating behaviors Added a note to the T_A in the Thermal operating requirements Updated the foot note to the Typ. of the Table 31 to be VREFO = 1.2 V Added I2C 1 Mbit/s timing specifications in Inter-Integrated Circuit Interface (I2C) timing Updated the 20-pin WLCSP package (AF) size in Fields
5.1	08/2017	Updated the Max. of MSL for WLCSP packages to 1 in the Moisture handling ratings

Table 45. Revision history (continued)

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2017 NXP B.V.

Document Number KL03P24M48SF0 Revision 5.1 08/2017

