
NXP USA Inc. - MC908QC16CDRE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor HC08

Core Size 8-Bit

Speed 8MHz

Connectivity SCI, SPI

Peripherals LVD, POR, PWM

Number of I/O 24

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 10x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 28-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qc16cdre

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc908qc16cdre-4448802
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Table of Contents
8.7 I/O Signals . 89
8.7.1 KBI Input Pins (KBI7:KBI0) . 89
8.8 Registers . 89
8.8.1 Keyboard Status and Control Register (KBSCR). 89
8.8.2 Keyboard Interrupt Enable Register (KBIER). 90
8.8.3 Keyboard Interrupt Polarity Register (KBIPR) . 91

Chapter 9
Low-Voltage Inhibit (LVI)

9.1 Introduction . 93
9.2 Features. 93
9.3 Functional Description . 93
9.3.1 Polled LVI Operation . 94
9.3.2 Forced Reset Operation. 94
9.3.3 LVI Hysteresis . 94
9.3.4 LVI Trip Selection. 94
9.4 LVI Interrupts . 95
9.5 Low-Power Modes . 95
9.5.1 Wait Mode . 95
9.5.2 Stop Mode . 95
9.6 Registers . 95

Chapter 10
Oscillator Mode (OSC)

10.1 Introduction . 97
10.2 Features. 97
10.3 Functional Description . 97
10.3.1 Internal Signal Definitions . 97
10.3.1.1 Oscillator Enable Signal (SIMOSCEN). 97
10.3.1.2 XTAL Oscillator Clock (XTALCLK) . 99
10.3.1.3 RC Oscillator Clock (RCCLK). 99
10.3.1.4 Internal Oscillator Clock (INTCLK) . 99
10.3.1.5 Bus Clock Times 4 (BUSCLKX4) . 99
10.3.1.6 Bus Clock Times 2 (BUSCLKX2) . 99
10.3.2 Internal Oscillator . 99
10.3.2.1 Internal Oscillator Trimming . 99
10.3.2.2 Internal to External Clock Switching . 100
10.3.2.3 External to Internal Clock Switching . 100
10.3.3 External Oscillator . 100
10.3.4 XTAL Oscillator . 100
10.3.5 RC Oscillator . 101
10.4 Interrupts . 102
10.5 Low-Power Modes . 102
10.5.1 Wait Mode . 102
10.5.2 Stop Mode . 102
10.6 OSC During Break Interrupts . 102
10.7 I/O Signals . 103
10.7.1 Oscillator Input Pin (OSC1) . 103
10.7.2 Oscillator Output Pin (OSC2) . 103
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

10 Freescale Semiconductor

MCU Block Diagram
Features of the CPU08 include the following:

• Enhanced HC05 programming model

• Extensive loop control functions

• 16 addressing modes (eight more than the HC05)

• 16-bit index register and stack pointer

• Memory-to-memory data transfers

• Fast 8 × 8 multiply instruction

• Fast 16/8 divide instruction

• Binary-coded decimal (BCD) instructions

• Optimization for controller applications

• Efficient C language support

1.3 MCU Block Diagram

Figure 1-1 shows the structure of the MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4.

1.4 Pin Assignments

The MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4 are available in 16-pin, 20-pin, and
28-pin packages. Figure 1-2 shows the pin assignment for these packages.

1.5 Pin Functions

Table 1-2 provides a description of the pin functions.
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 19

Memory
$0242
TIM2 Counter Register Low

(T2CNTL)
See page 214.

Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

$0243
TIM2 Counter Modulo

Register High (T2MODH)
See page 215.

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: 1 1 1 1 1 1 1 1

$0244
TIM2 Counter Modulo

Register Low (T2MODL)
See page 215.

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 1 1 1 1 1 1 1 1

$0245
TIM2 Channel 0 Status and

Control Register (T2SC0)
See page 215.

Read: CH0F
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX

Write: 0

Reset: 0 0 0 0 0 0 0 0

$0246
TIM2 Channel 0 Register

High (T2CH0H)
See page 218.

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: Indeterminate after reset

$0247
TIM2 Channel 0 Register

Low (T2CH0L)
See page 218.

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$0248
TIM2 Channel 1 Status and

Control Register (T2SC1)
See page 215.

Read: CH1F
CH1IE

0
MS1A ELS1B ELS1A TOV1 CH1MAX

Write: 0

Reset: 0 0 0 0 0 0 0 0

$0249
TIM2 Channel 1 Register

High (T2CH1H)
See page 218.

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: Indeterminate after reset

$024A
TIM2 Channel 1 Register

Low (T2CH1L)
See page 218.

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$024B Reserved

$024C

Periodic Wakeup Status
and Control Register

(PWUSC)
See page 119.

Read: 0 0
PWUON

PWUCLK-
SEL

PWUF 0
PWUIE SMODE

Write: PWUACK

Reset: 0 0 0 0 0 0 0 0

$024D
Periodic Wakeup Prescaler

Register (PWUP)
See page 120.

Read: 0 0 0 0
PS3 PS2 PS1 PS0

Write:

Reset: 0 0 0 0 0 0 0 0

$024E
Periodic Wakeup Modulo

Register (PWUMOD)
See page 121.

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented R = Reserved U = Unaffected

Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

32 Freescale Semiconductor

Memory
Figure 2-6. FLASH Block Protect Start Address

2.6.7 EEPROM Memory Emulation Using FLASH Memory

In some applications, the user may want to repeatedly store and read a set of data from an area of
nonvolatile memory. This is easily implemented in EEPROM memory because single byte erase is
allowed in EEPROM.

When using FLASH memory, the minimum erase size is a page. However, the FLASH can be used as
EEPROM memory. This technique is called “EEPROM emulation”.

The basic concept of EEPROM emulation using FLASH is that a page is continuously programmed with
a new data set without erasing the previously programmed locations. Once the whole page is completely
programmed or the page does not have enough bytes to program a new data set, the user software
automatically erases the page and then programs a new data set in the erased page.

In EEPROM emulation when data is read from the page, the user software must find the latest data set
in the page since the previous data still remains in the same page. There are many ways to monitor the
page erase timing and the latest data set. One example is unprogrammed FLASH bytes are detected by
checking programmed bytes (non-$FF value) in a page. In this way, the end of the data set will contain
unprogrammed data ($FF value).

A couple of application notes, describing how to emulate EEPROM using FLASH, are available on our
web site. Titles and order numbers for these application notes are given at the end of this subsection.

Table 2-2. Examples of Protect Start Address

BPR[7:0] Start of Address of Protect Range(1)

1. The end address of the protected range is always $FFFF.

$00(2)

2. $BE00–$BFFF is always protected unless the entire FLASH memory is un-
protected, BPR[7:0] = $FF.

The entire FLASH memory is protected.

$01 (0000 0001) $C040 (1100 0000 0100 0000)

$02 (0000 0010) $C080 (1100 0000 1000 0000)

$03 (0000 0011) $C0C0 (1100 0000 1100 0000)

and so on...

$FD (1111 1101) $FF40 (1111 1111 0100 0000)

$FE (1111 1110) $FF80 (1111 1111 1000 0000)

$FF The entire FLASH memory is not protected.

0000011 FLBPR VALUESTART ADDRESS OF

16-BIT MEMORY ADDRESS

 FLASH BLOCK PROTECT
0

MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

42 Freescale Semiconductor

Analog-to-Digital Converter (ADC10) Module
Figure 3-1. Block Diagram Highlighting ADC10 Block and Pins

All port pins can be configured with internal pullup
PTC not available on 16-pin devices (see note in 11.1 Introduction)
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)

PTA0/T1CH0/AD0/KBI0

PTA1/T1CH1/AD1/KBI1

PTA2/IRQ/KBI2/T1CLK

PTA3/RST/KBI3

PTA4/OSC2/AD2/KBI4

PTA5/OSC1/AD3/KBI5

4-CHANNEL 16-BIT
TIMER MODULE

KEYBOARD INTERRUPT
MODULE

SINGLE INTERRUPT
MODULE

PERIODIC WAKEUP

LOW-VOLTAGE
INHIBIT

COP
MODULE

10-CHANNEL
10-BIT ADC

ENHANCED SERIAL

PTB0/SPSCK/AD4
PT

B

D
D

R
B

M68HC08 CPU

PT
A

D
D

R
A

PTB1/MOSI/T2CH1/AD5
PTB2/MISO/T2CH0/AD6

PTB3/SS/T2CLK/AD7
PTB4/RxD/T2CH0/AD8
PTB5/TxD/T2CH1/AD9

PTB6/T1CH2
PTB7/T1CH3

POWER SUPPLY

VDD

VSS

CLOCK
GENERATOR

COMMUNICATIONS
INTERFACE MODULE

MODULE

SERIAL PERIPHERAL
INTERFACE

16,384 BYTES
MC68HC908QC16

8192 BYTES
MC68HC908QC8

512 BYTES
MC68HC908QC16

384 BYTES
MC68HC908QC8

BREAK
MODULE

MONITOR ROM

2-CHANNEL 16-BIT
TIMER MODULE

PTC0

PTC1

PTC2

PTC3

PT
C

D
D

R
C

PTD0

PT
D

D
D

R
D

PTD1
PTD2
PTD3
PTD4
PTD5
PTD6
PTD7

MC68HC908QC4

USER RAM

USER FLASH

4096 BYTES

384 BYTES
MC68HC908QC4
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

46 Freescale Semiconductor

Analog-to-Digital Converter (ADC10) Module
3.3.4 Sources of Error

Several sources of error exist for ADC conversions. These are discussed in the following sections.

3.3.4.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given
the maximum input resistance of approximately 15 kΩ and input capacitance of approximately 10 pF,
sampling to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5
cycles / 2 MHz maximum ADCK frequency) provided the resistance of the external analog source (RAS)
is kept below 10 kΩ. Higher source resistances or higher-accuracy sampling is possible by setting
ADLSMP (to increase the sample window to 23.5 cycles) or decreasing ADCK frequency to increase
sample time.

3.3.4.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.
If this error cannot be tolerated by the application, keep RAS lower than VADVIN / (4096*ILeak) for less than
1/4LSB leakage error (at 10-bit resolution).

3.3.4.3 Noise-Induced Errors

System noise which occurs during the sample or conversion process can affect the accuracy of the
conversion. The ADC10 accuracy numbers are guaranteed as specified only if the following conditions
are met:

• There is a 0.1µF low-ESR capacitor from VREFH to VREFL (if available).

• There is a 0.1µF low-ESR capacitor from VDDA to VSSA (if available).

• If inductive isolation is used from the primary supply, an additional 1µF capacitor is placed from
VDDA to VSSA (if available).

• VSSA and VREFL (if available) is connected to VSS at a quiet point in the ground plane.

• The MCU is placed in wait mode immediately after initiating the conversion (next instruction after
write to ADSCR).

• There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions
or excessive VDD noise is coupled into the ADC10. In these cases, or when the MCU cannot be placed
in wait or I/O activity cannot be halted, the following recommendations may reduce the effect of noise on
the accuracy:

• Place a 0.01 µF capacitor on the selected input channel to VREFL or VSSA (if available). This will
improve noise issues but will affect sample rate based on the external analog source resistance.

• Operate the ADC10 in stop mode by setting ACLKEN, selecting the channel in ADSCR, and
executing a STOP instruction. This will reduce VDD noise but will increase effective conversion time
due to stop recovery.

• Average the input by converting the output many times in succession and dividing the sum of the
results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ACLKEN=1) and
averaging. Noise that is synchronous to the ADCK cannot be averaged out.
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

50 Freescale Semiconductor

Chapter 5
Computer Operating Properly (COP)

5.1 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the
configuration 1 (CONFIG1) register.

5.2 Functional Description

Figure 5-1. COP Block Diagram

1. See Chapter 14 System Integration Module (SIM) for more details.

COPCTL WRITE

BUSCLKX4

STOP INSTRUCTION

SIM RESET CIRCUIT

RESET STATUS REGISTER

INTERNAL RESET SOURCES(1)

SIM MODULE

CL
EA

R
ST

AG
ES

 5
–1

2

12-BIT SIM COUNTER

CL
EA

R
AL

L
ST

AG
ES

COPD (FROM CONFIG1)

RESET

COPCTL WRITE

CLEAR

COP MODULE

COPEN (FROM SIM)

COP CLOCK

CO
P

TI
M

EO
UT

COP RATE SELECT
 (COPRS FROM CONFIG1)

6-BIT COP COUNTER

COP COUNTER
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 63

CPU Registers
6.3.3 Stack Pointer

The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data
is pushed onto the stack and increments as data is pulled from the stack.

In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine
the conditional address of the operand.

NOTE
The location of the stack is arbitrary and may be relocated anywhere in
random-access memory (RAM). Moving the SP out of page 0 ($0000 to
$00FF) frees direct address (page 0) space. For correct operation, the
stack pointer must point only to RAM locations.

6.3.4 Program Counter

The program counter is a 16-bit register that contains the address of the next instruction or operand to be
fetched.

Normally, the program counter automatically increments to the next sequential memory location every
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program
counter with an address other than that of the next sequential location.

During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.
The vector address is the address of the first instruction to be executed after exiting the reset state.

Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit
0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 6-4. Stack Pointer (SP)

Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit
0

Read:

Write:

Reset: Loaded with vector from $FFFE and $FFFF

Figure 6-5. Program Counter (PC)
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 69

Instruction Set Summary
BHS rel Branch if Higher or Same
(Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3

BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3

BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3

BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP

Bit Test (A) & (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2

A5
B5
C5
D5
E5
F5

9EE5
9ED5

ii
dd
hh ll
ee ff
ff

ff
ee ff

2
3
4
4
3
2
4
5

BLE opr Branch if Less Than or Equal To
(Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL 93 rr 3

BLO rel Branch if Lower (Same as BCS) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3

BLS rel Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3

BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3

BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3

BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3

BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3

BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3

BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3

BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3

BRCLR n,opr,rel Branch if Bit n in M Clear PC ← (PC) + 3 + rel ? (Mn) = 0 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never PC ← (PC) + 2 – – – – – – REL 21 rr 3

BRSET n,opr,rel Branch if Bit n in M Set PC ← (PC) + 3 + rel ? (Mn) = 1 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr Set Bit n in M Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

4
4
4
4
4
4
4
4

BSR rel Branch to Subroutine

PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)

SP ← (SP) – 1
PC ← (PC) + rel

– – – – – – REL AD rr 4

CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
CBEQ opr,X+,rel
CBEQ X+,rel
CBEQ opr,SP,rel

Compare and Branch if Equal

PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 3 + rel ? (X) – (M) = $00
PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 2 + rel ? (A) – (M) = $00
PC ← (PC) + 4 + rel ? (A) – (M) = $00

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
4
6

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask I ← 0 – – 0 – – – INH 9A 2

Table 6-1. Instruction Set Summary (Sheet 2 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 73

Functional Description
When set, the IMASK bit in INTSCR masks the IRQ interrupt request. A latched interrupt request is not
presented to the interrupt priority logic unless IMASK is clear.

NOTE
The interrupt mask (I) in the condition code register (CCR) masks all
interrupt requests, including the IRQ interrupt request.

A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. An IRQ vector fetch,
software clear, or reset clears the IRQ latch.

Figure 7-2. IRQ Module Block Diagram

7.3.1 MODE = 1

If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set,
both of the following actions must occur to clear the IRQ interrupt request:

• Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.
• IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal

to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK
in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear
the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious
interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling
edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK,
is clear, the CPU loads the program counter with the IRQ vector address.

The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and
the MODE control bit, thereby clearing the interrupt even if the pin stays low.

Use the BIH or BIL instruction to read the logic level on the IRQ pin.

IMASK

D Q

CK

CLR
IRQ

HIGH

INTERRUPT

TO MODE
SELECT
LOGIC

REQUEST

VDD

MODE

VOLTAGE
DETECT

IRQF

TO CPU FOR
BIL/BIH
INSTRUCTIONS

IN
TE

R
N

AL
 A

D
D

R
ES

S
BU

S

RESET

VDD

INTERNAL
PULLUP
DEVICE

ACK

IRQ
SYNCHRONIZER

IRQ VECTOR
FETCH

DECODER

IRQ LATCH
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 81

Oscillator Mode (OSC)
from $FFC0 into OSCTRIM if needed. The factory trim value provides the accuracy required for
communication using force monitor mode. Trimming the device in the user application board will provide
the most accurate trim value. See Oscillator Characteristics in the Electrical Chapter of this data book for
additional information on factory trim.

10.3.2.2 Internal to External Clock Switching

When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following
steps:

1. For external crystal circuits only, configure OSCOPT[1:0] to external crystal. To help precharge an
external crystal oscillator, momentarily configure OSC2 as an output and drive it high for several
cycles. This can help the crystal circuit start more robustly.

2. Configure OSCOPT[1:0] and ECFS[1:0] according to 10.8.1 Oscillator Status and Control
Register. The oscillator module control logic will then enable OSC1 as an external clock input and,
if the external crystal option is selected, OSC2 will also be enabled as the clock output. If RC
oscillator option is selected, enabling the OSC2 output may change the bus frequency.

3. Create a software delay to provide the stabilization time required for the selected clock source
(crystal, resonator, RC). A good rule of thumb for crystal oscillators is to wait 4096 cycles of the
crystal frequency; i.e., for a 4-MHz crystal, wait approximately 1 ms.

4. After the stabilization delay has elapsed, set ECGON.

After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock
rising edges. The OSC module then switches to the external clock. Logic provides a coherent transition.
The OSC module first sets ECGST and then stops the internal oscillator.

10.3.2.3 External to Internal Clock Switching

After following the procedures to switch to an external clock source, it is possible to go back to the internal
source. By clearing the OSCOPT[1:0] bits and clearing the ECGON bit, the external circuit will be
disengaged. The bus clock will be derived from the selected internal clock source based on the ICFS[1:0]
bits.

10.3.3 External Oscillator

The external oscillator option is designed for use when a clock signal is available in the application to
provide a clock source to the MCU. The OSC1 pin is enabled as an input by the oscillator module. The
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.

In this configuration, the OSC2 pin cannot output BUSCLKX4. The OSC2EN bit will be forced clear to
enable alternative functions on the pin.

10.3.4 XTAL Oscillator

The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an
accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The
OSC2EN bit has no effect when this clock mode is selected.

In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown
in Figure 10-2. This figure shows only the logical representation of the internal components and may not
represent actual circuitry.
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

100 Freescale Semiconductor

Enhanced Serial Communications Interface (ESCI) Module
13.8.3 ESCI Control Register 3

ESCI control register 3 (SCC3):

• Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.

• Enables these interrupts:
– Receiver overrun
– Noise error
– Framing error
– Parity error

R8 — Received Bit 8
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received
character. R8 is received at the same time that the SCDR receives the other 8 bits.

When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7).

T8 — Transmitted Bit 8
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into
the transmit shift register.

ORIE — Receiver Overrun Interrupt Enable Bit
This read/write bit enables ESCI error interrupt requests generated by the receiver overrun bit, OR.

1 = ESCI error interrupt requests from OR bit enabled
0 = ESCI error interrupt requests from OR bit disabled

NEIE — Receiver Noise Error Interrupt Enable Bit
This read/write bit enables ESCI error interrupt requests generated by the noise error bit, NE.

1 = ESCI error interrupt requests from NE bit enabled
0 = ESCI error interrupt requests from NE bit disabled

FEIE — Receiver Framing Error Interrupt Enable Bit
This read/write bit enables ESCI error interrupt requests generated by the framing error bit, FE.

1 = ESCI error interrupt requests from FE bit enabled
0 = ESCI error interrupt requests from FE bit disabled

PEIE — Receiver Parity Error Interrupt Enable Bit
This read/write bit enables ESCI receiver interrupt requests generated by the parity error bit, PE.

1 = ESCI error interrupt requests from PE bit enabled
0 = ESCI error interrupt requests from PE bit disabled

Bit 7 6 5 4 3 2 1 Bit 0

Read: R8
T8 R R ORIE NEIE FEIE PEIE

Write:

Reset: U 0 0 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffected

Figure 13-11. ESCI Control Register 3 (SCC3)
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

140 Freescale Semiconductor

Reset and System Initialization
14.3.1 Bus Timing

In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.

14.3.2 Clock Start-Up from POR

When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive
and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The
IBUS clocks start upon completion of the time out.

14.3.3 Clocks in Stop Mode and Wait Mode

Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to clock the SIM counter.
The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is
selectable as 4096 or 32 BUSCLKX4 cycles. See 14.7.2 Stop Mode.

In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.
Some modules can be programmed to be active in wait mode.

14.4 Reset and System Initialization

The MCU has these reset sources:
• Power-on reset module (POR)
• External reset pin (RST)
• Computer operating properly module (COP)
• Low-voltage inhibit module (LVI)
• Illegal opcode
• Illegal address

All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all
modules to be returned to their reset states.

An internal reset clears the SIM counter (see 14.5 SIM Counter), but an external reset does not. Each of
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 14.8 SIM Registers.

14.4.1 External Pin Reset

The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at
least the minimum tRL time. Figure 14-3 shows the relative timing. The RST pin function is only available
if the RSTEN bit is set in the CONFIG2 register.

Figure 14-3. External Reset Timing

RST

ADDRESS BUS PC VECT H VECT L

BUSCLKX2
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 155

System Integration Module (SIM)
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop
recovery. It is then used to time the recovery period. Figure 14-17 shows stop mode entry timing and
Figure 14-18 shows the stop mode recovery time from interrupt or break

NOTE
To minimize stop current, all pins configured as inputs should be driven to
a logic 1 or logic 0.

Figure 14-17. Stop Mode Entry Timing

Figure 14-18. Stop Mode Recovery from Interrupt

14.8 SIM Registers

The SIM has three memory mapped registers. Table 14-4 shows the mapping of these registers.

Table 14-4. SIM Registers

Address Register Access Mode

$FE00 BSR User

$FE01 SRSR User

$FE03 BFCR User

STOP ADDR + 1 SAME SAMEADDRESS BUS

DATA BUS PREVIOUS DATA NEXT OPCODE SAME

STOP ADDR

SAME

R/W

CPUSTOP

NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.

BUSCLKX4

INTERRUPT

ADDRESS BUS STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3STOP +1

STOP RECOVERY PERIOD
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

166 Freescale Semiconductor

Serial Peripheral Interface (SPI) Module
input (SS) is low, so that only the selected slave drives to the master. The SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as
general-purpose I/O not affecting the SPI. (See 15.3.6.2 Mode Fault Error.) When CPHA = 0, the first
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s
SS pin must be toggled back to high and then low again between each byte transmitted as shown in
Figure 15-5.

When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. After the
transmission begins, no new data is allowed into the shift register from the transmit data register.
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift
register after the current transmission.

Figure 15-4. Transmission Format (CPHA = 0)

Figure 15-5. CPHA/SS Timing

15.3.3.3 Transmission Format When CPHA = 1

Figure 15-6 shows an SPI transmission in which CPHA = 1. The figure should not be used as a
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing
diagram because the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI)
pins are directly connected between the master and the slave. The MISO signal is the output from the
slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave.
The slave SPI drives its MISO output only when its slave select input (SS) is low, so that only the selected
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSBMSB

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSBMSB

1 2 3 4 5 6 7 8SPSCK CYCLE #
FOR REFERENCE

SPSCK; CPOL = 0

SPSCK; CPOL =1

MOSI
FROM MASTER

MISO
FROM SLAVE

SS; TO SLAVE

CAPTURE STROBE

BYTE 1 BYTE 3MISO/MOSI BYTE 2

MASTER SS

SLAVE SS
CPHA = 0

SLAVE SS
CPHA = 1
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

174 Freescale Semiconductor

Functional Description
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR
are read.

In this case, an overflow can be missed easily. Because no more SPRF interrupts can be generated until
this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed.
To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of
the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future
transmissions can set the SPRF bit. Figure 15-10 illustrates this process. Generally, to avoid this second
SPSCR read, enable OVRF by setting the ERRIE bit.

Figure 15-9. Missed Read of Overflow Condition

Figure 15-10. Clearing SPRF When OVRF Interrupt Is Not Enabled

READ

READ

OVRF

SPRF

BYTE 1 BYTE 2 BYTE 3 BYTE 4

BYTE 1 SETS SPRF BIT.

READ SPSCR WITH SPRF BIT SET

READ BYTE 1 IN SPDR,

BYTE 2 SETS SPRF BIT.

READ SPSCR WITH SPRF BIT SET

BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.

READ BYTE 2 IN SPDR, CLEARING SPRF BIT,

BYTE 4 FAILS TO SET SPRF BIT BECAUSE

1

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

CLEARING SPRF BIT. BUT NOT OVRF BIT.

OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.

AND OVRF BIT CLEAR.

AND OVRF BIT CLEAR.

SPSCR

SPDR

READ

READ

OVRF

SPRF

BYTE 1 BYTE 2 BYTE 3 BYTE 4

1

BYTE 1 SETS SPRF BIT.

READ SPSCR WITH SPRF BIT SET

READ BYTE 1 IN SPDR,

READ SPSCR AGAIN TO CHECK OVRF BIT.

BYTE 2 SETS SPRF BIT.

READ SPSCR WITH SPRF BIT SET

BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.

READ BYTE 2 IN SPDR, CLEARING SPRF BIT.

READ SPSCR AGAIN TO CHECK OVRF BIT.

READ BYTE 2 SPDR, CLEARING OVRF BIT.

BYTE 4 SETS SPRF BIT.

READ SPSCR.

READ BYTE 4 IN SPDR, CLEARING SPRF BIT.

READ SPSCR AGAIN TO CHECK OVRF BIT.

1

2

3
CLEARING SPRF BIT.

4

5

6

7

8

9

10

11

12

13

14

2

3

4

5

6

7

8

9

10

11

12

13

14

SPI RECEIVE
COMPLETE

AND OVRF BIT CLEAR. AND OVRF BIT CLEAR.

SPSCR

SPDR
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 179

Timer Interface Module (TIM1)
16.8.5 TIM1 Channel Registers

These read/write registers contain the captured counter value of the input capture function or the output
compare value of the output compare function. The state of the TIM1 channel registers after reset is
unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM1 channel x registers
(T1CHxH) inhibits input captures until the low byte (T1CHxL) is read.

In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM1 channel x registers
(T1CHxH) inhibits output compares until the low byte (T1CHxL) is written.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: Indeterminate after reset

Figure 16-14. TIM1 Channel x Register High (T1CHxH)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

Figure 16-15. TIM1 Channel Register Low (T1CHxL)
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

204 Freescale Semiconductor

Monitor Module (MON)
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can
modify the stacked CPU registers to prepare to run the host program. The READSP command returns
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at
addresses SP + 5 and SP + 6.

Figure 18-17. Stack Pointer at Monitor Mode Entry

Table 18-7. READSP (Read Stack Pointer) Command

Description Reads stack pointer

Operand None

Data Returned
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte
order

Opcode $0C

Command Sequence

Table 18-8. RUN (Run User Program) Command

Description Executes PULH and RTI instructions

Operand None

Data Returned None

Opcode $28

Command Sequence

READSPREADSP

ECHO

FROM HOST

SP

RETURN

SP
HIGH LOW

RUNRUN

ECHO

FROM HOST

CONDITION CODE REGISTER

ACCUMULATOR

LOW BYTE OF INDEX REGISTER

HIGH BYTE OF PROGRAM COUNTER

LOW BYTE OF PROGRAM COUNTER

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP

SP + 6

HIGH BYTE OF INDEX REGISTER

SP + 7
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5

Freescale Semiconductor 233

