

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90347espmc-gs-309e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin No.		l/O Dia nome		Eurotion		
QFP100* ¹	LQFP100* ²	Pin name	Circuit type ^{*3}	Function		
				General purpose I/O pin. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or when the hold function is disabled.		
9	7	HRQ	G	Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.		
		OUT4		Waveform output pin for output compare.		
		P35		General purpose I/O pin. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or when the hold function is disabled.		
10	8	HAK	G	Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.		
		OUT5		Waveform output pin for output compare.		
		P36	_	General purpose I/O pin. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or when the external ready function is disabled.		
11	9	RDY	G	External ready input pin. This function is enabled when both the external bus and the external ready function are enabled.		
		OUT6		Waveform output pin for output compare.		
	P37			General purpose I/O pin. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or when the clock output is disabled.		
12	10	G	G	Clock output pin. This function is enabled when both the external bus and clock output are enabled.		
		OUT7		Waveform output pin for output compare		
10 14	11 12	P40, P41	F	General purpose I/O pins. (devices with an S suffix in the part number and or MB90V340E-101)		
13, 14	11, 12	X0A, X1A	в	Oscillation pins for sub clock (devices without an S suffix in the part number and or MB90V340E-102)		
15	13	V _{CC}	—	Power (3.5 V to 5.5 V) input pin		
16	14	V _{SS}		GND pin		
17	15	С	к	This is the power supply stabilization capacitor This pin should be connected to a ceramic capacitor with a capacitance greater than or equal to 0.1 μ F.		
		P42		General purpose I/O pin.		
		IN6]_	Trigger input pin for input capture.		
18	16	RX1	F	RX input pin for CAN1 Interface (MB90341E/342E/F342E/F345E only)		
		INT9R		External interrupt request input pin		

Pin No.		I/O					
QFP100* ¹	LQFP100* ²	Pin name	Circuit type* ³	Function			
33	31	AVRH	L	Reference voltage input pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AV_{CC} .			
34	32	AVRL	К	Lower reference voltage input pin for the A/D Converter			
35	33	AV _{SS}	К	Analog GND pin for the A/D Converter			
		P60 to P67		General purpose I/O pins.			
36 to 43	34 to 41	AN0 to AN7	1	Analog input pins for the A/D converter			
		PPG0, 2, 4, 6, 8, A, C, E		Output pins for PPGs			
44	42	V _{SS}		GND pin			
		P70 to P75		General purpose I/O pins.			
45 to 50	43 to 48	AN16 to AN21	1	Analog input pins for the A/D converter (devices with a C suffix in the part number)			
		INT0 to INT5		External interrupt request input pins			
51	49	MD2	D	Input pin for specifying the operating mode.			
52, 53	50, 51	MD1, MD0	С	Input pins for specifying the operating mode.			
54	52	RST	E	Reset input pin			
		P76, P77		General purpose I/O pins.			
55, 56 53, 54		AN22, AN23	1	Analog input pins for the A/D converter (devices with a C suffix in the part number)			
		INT6, INT7		External interrupt request input pins			
		P80		General purpose I/O pin.			
F7		TIN0	F	Event input pin for the reload timer			
57	55	ADTG		Trigger input pin for the A/D converter			
		INT12R		External interrupt request input pin			
		P81		General purpose I/O pin.			
50	50	ТОТО	F	Output pin for the reload timer			
58	56	СКОТ		Output pin for the clock monitor			
		INT13R		External interrupt request input pin			
		P82		General purpose I/O pin.			
50	F 7	SIN0		Serial data input pin for UART0			
59 57 T		TIN2	M	Event input pin for the reload timer			
	INT14R		1	External interrupt request input pin			
		P83	1	General purpose I/O pin.			
60	58	SOT0	F	Serial data output pin for UART0			
		TOT2		Output pin for the reload timer			

Туре	Circuit	Remarks
F	P-ch Pout N-ch Nout R 7/7 CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)
G	P-ch P-ch Pout P-ch P-ch Pout P-ch Pout R R R CMOS hysteresis input Automotive input TTL input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby) TTL input (with function to disconnect input during standby) Programmable pull-up resistor: 50 kΩ approx.
н	P-ch Pout P-ch Pout N-ch Nout R 777 CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 3 mA, I_{OH} = -3 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)

5. Handling Devices

1. Preventing latch-up

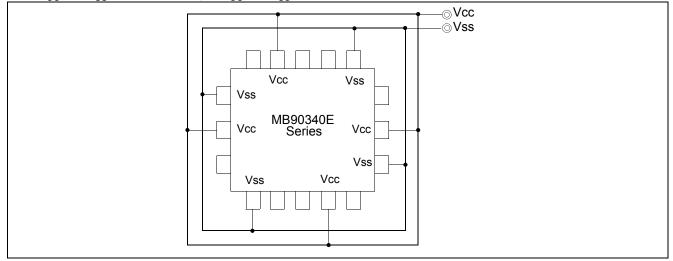
CMOS IC may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins

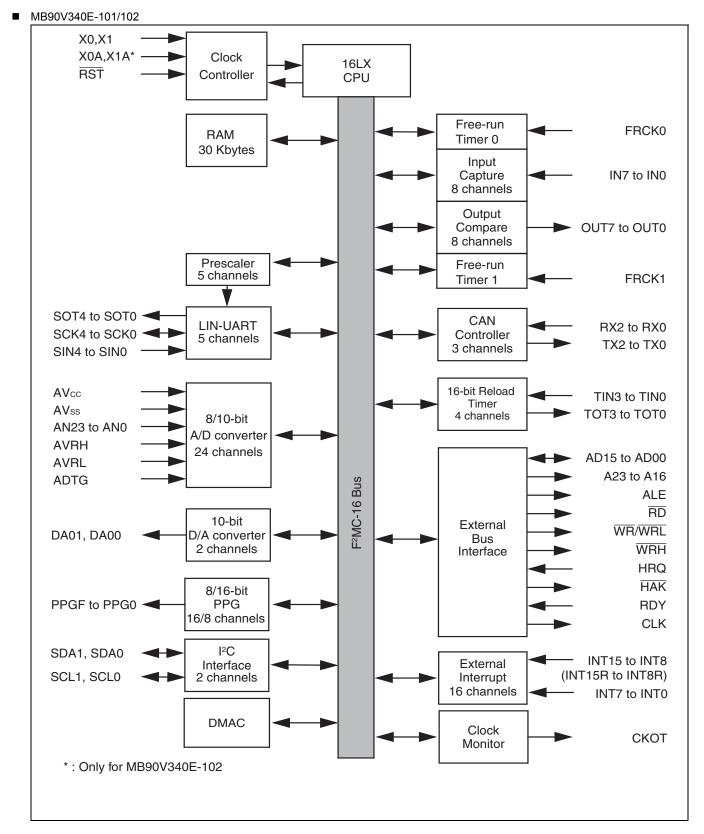

Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 k Ω or more.

3.Power supply pins (V_{CC}/V_{SS})

■ If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance.

As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device.



4.Mode Pins (MD0 to MD2)

Connect the mode pins directly to V_{CC} or V_{SS} pins. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{CC} or V_{SS} pins and to provide a low-impedance connection.

6. Block Diagrams

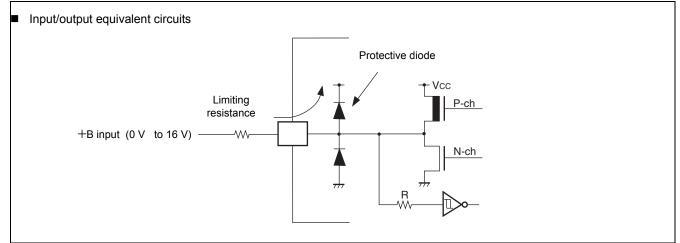
Address	Register	Abbreviation	Access	Resource name	Initial value
000040 _H	PPG 8 Operation Mode Control Register	PPGC8	W,R/W		0X000XX1 _B
000041 _H	PPG 9 Operation Mode Control Register	PPGC9	W,R/W	16-bit PPG 8/9	0X000001 _B
000042 _H	PPG 8/PPG 9 Count Clock Control Register	PPG89	R/W		000000X0 _B
000043 _H	Reserved			•	
000044 _H	PPG A Operation Mode Control Register	PPGCA	W,R/W		0X000XX1 _B
000045 _H	PPG B Operation Mode Control Register	PPGCB	W,R/W	16-bit PPG A/B	0X000001 _B
000046 _H	PPG A/PPG B Count Clock Select Register	PPGAB	R/W		000000X0 _B
000047 _H	Reserved	·			·
000048 _H	PPG C Operation Mode Control Register	PPGCC	W,R/W		0X000XX1 _B
000049 _H	PPG D Operation Mode Control Register	PPGCD	W,R/W	16-bit PPG C/D	0X000001 _B
00004A _H	PPG C/PPG D Count Clock Select Register	PPGCD	R/W		000000X0 _B
00004B _H	Reserved	·		·	
00004C _H	PPG E Operation Mode Control Register	PPGCE	W,R/W		0X000XX1 _B
00004D _H	PPG F Operation Mode Control Register	PPGCF	W,R/W	16-bit PPG E/F	0X000001 _B
00004E _H	PPG E/PPG F Count Clock Select Register	PPGEF	R/W		000000X0 _B
00004F _H	Reserved	·			
000050 _H	Input Capture Control Status 0/1	ICS01	R/W	Input Conturo 0/1	00000000 _B
000051 _H	Input Capture Edge 0/1	ICE01	R/W, R	Input Capture 0/1	XXX0X0XX _B
000052 _H	Input Capture Control Status 2/3	ICS23	R/W	Input Conturo 2/2	00000000 _B
000053 _H	Input Capture Edge 2/3	ICE23	R	Input Capture 2/3	XXXXXXXX _B
000054 _H	Input Capture Control Status 4/5	ICS45	R/W	Input Capture 4/5	00000000 _B
000055 _H	Input Capture Edge 4/5	ICE45	R	Input Capture 4/5	XXXXXXXAB
000056 _H	Input Capture Control Status 6/7	ICS67	R/W	Input Capture 6/7	00000000 _B
000057 _H	Input Capture Edge 6/7	ICE67	R/W, R		XXX000XX _B
000058 _H	Output Compare Control Status 0	OCS0	R/W	Output Compare 0/1	0000XX00 _B
000059 _H	Output Compare Control Status 1	OCS1	R/W	Output Compare of I	0XX00000 _B
00005A _H	Output Compare Control Status 2	OCS2	R/W	Output Compare 2/3	0000XX00 _B
00005B _H	Output Compare Control Status 3	OCS3	R/W		0XX00000 _B
00005C _H	Output Compare Control Status 4	OCS4	R/W	Output Compare 4/5	0000XX00 _B
00005D _H	Output Compare Control Status 5	OCS5	R/W		0XX00000 _B
00005E _H	Output Compare Control Status 6	OCS6	R/W	Output Compare 6/7	0000XX00 _B
00005F _H	Output Compare Control Status 7	OCS7	R/W		0XX00000 _B

Address	Register	Abbreviation	Access	Resource name	Initial value
0000C4 _H , 0000C5 _H	Reserved		•		
0000C6 _H	External Interrupt Enable 0	ENIR0	R/W		00000000 _B
0000C7 _H	External Interrupt Source 0	EIRR0	R/W		XXXXXXXAB
0000C8 _H	External Interrupt Level Setting 0	ELVR0	R/W	External Interrupt 0	00000000 _B
0000C9 _H	External Interrupt Level Setting 0	ELVR0	R/W		00000000 _B
0000CA _H	External Interrupt Enable 1	ENIR1	R/W		00000000 _B
0000CB _H	External Interrupt Source 1		XXXXXXXX _B		
0000CC _H	External Interrupt Level Setting 1	ELVR1	R/W	External Interrupt 1	00000000 _B
0000CD _H	External Interrupt Level Setting 1	ELVR1	R/W		00000000 _B
0000CE _H	External Interrupt Source Select	EISSR	R/W		00000000 _B
0000CF _H	PLL/Sub clock Control Register	PSCCR	W	PLL	XXXX0000 _B
0000D0 _H	DMA Buffer Address Pointer L Register	BAPL	R/W		XXXXXXXAB
0000D1 _H	DMA Buffer Address Pointer M Register	BAPM	R/W		XXXXXXX _B
0000D2 _H	DMA Buffer Address Pointer H Register	BAPH	R/W		XXXXXXXAB
0000D3 _H	DMA Control Register	DMACS	R/W		XXXXXXX _B
0000D4 _H	I/O Register Address Pointer L Register	IOAL	R/W	DMA	XXXXXXXX _B
0000D5 _H	I/O Register Address Pointer H Register	IOAH	R/W		XXXXXXXXB
0000D6 _H	Data Counter L Register	DCTL	R/W		XXXXXXX _B
0000D7 _H	Data Counter H Register	DCTH	R/W		XXXXXXX _B
0000D8 _H	Serial Mode Register 2	SMR2	W,R/W		00000000 _B
0000D9 _H	Serial Control Register 2	SCR2	W,R/W		00000000 _B
0000DA _H	Reception/Transmission Data Register 2	RDR2/TDR2	R/W		00000000 _B
0000DB _H	Serial Status Register 2	SSR2	R,R/W		00001000 _B
0000DC _H	Extended Communication Control Register 2	ECCR2	R,W, R/W	UART2	000000XX _B
0000DD _H	Extended Status Control Register 2	ESCR2	R/W		00000100 _B
0000DE _H	Baud Rate Generator Register 20	BGR20	R/W		00000000 _B
0000DF _H	Baud Rate Generator Register 21	BGR21	R/W	1	00000000 _B
0000E0 _H to 0000EF _H	Reserved for CAN Controller 2. Refer to "CAN	I Controllers"	•	·	
0000F0 _H to 0000FF _H	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
007924 _H	Input Capture 2	IPCP2	R		XXXXXXXXB
007925 _H	Input Capture 2	IPCP2	R	Innut Conturo 2/2	XXXXXXXX _B
007926 _H	Input Capture 3	IPCP3	R	Input Capture 2/3	XXXXXXXXB
007927 _H	Input Capture 3	IPCP3	R		XXXXXXXXB
007928 _H	Input Capture 4	IPCP4	R		XXXXXXXXB
007929 _H	Input Capture 4	IPCP4	R	Input Capture 4/5	XXXXXXXXB
00792A _H	Input Capture 5	IPCP5	R	Input Capture 4/5	XXXXXXXXB
00792B _H	Input Capture 5	IPCP5	R		XXXXXXXX _B
00792C _H	Input Capture 6	IPCP6	R		XXXXXXXXB
00792D _H	Input Capture 6	IPCP6	R	Input Conturo 6/7	XXXXXXXXB
00792E _H	Input Capture 7	IPCP7	R	Input Capture 6/7	XXXXXXXX _B
00792F _H	Input Capture 7	IPCP7	R		XXXXXXXXB
007930 _H	Output Compare 0	OCCP0	R/W		XXXXXXXXB
007931 _H	Output Compare 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXX _B
007932 _H	Output Compare 1	OCCP1	R/W		XXXXXXXXB
007933 _H	Output Compare 1	OCCP1	R/W		XXXXXXXXB
007934 _H	Output Compare 2	OCCP2	R/W		XXXXXXXX _B
007935 _H	Output Compare 2	OCCP2	R/W	Output Compare 2/3	XXXXXXXXB
007936 _H	Output Compare 3	OCCP3	R/W		XXXXXXXXB
007937 _H	Output Compare 3	OCCP3	R/W		XXXXXXXX _B
007938 _H	Output Compare 4	OCCP4	R/W		XXXXXXXXB
007939 _H	Output Compare 4	OCCP4	R/W	Output Compare 4/5	XXXXXXXX _B
00793A _H	Output Compare 5	OCCP5	R/W		XXXXXXXX _B
00793B _H	Output Compare 5	OCCP5	R/W		XXXXXXXX _B
00793C _H	Output Compare 6	OCCP6	R/W		XXXXXXXX _B
00793D _H	Output Compare 6	OCCP6	R/W	Output Compare 6/7	XXXXXXXX _B
00793E _H	Output Compare 7	OCCP7	R/W		XXXXXXXX _B
00793F _H	Output Compare 7	OCCP7	R/W		XXXXXXXX _B
007940 _H	Timer Data 0	TCDT0	R/W		00000000 _B
007941 _H	Timer Data 0	TCDT0	R/W	Eroo run Timor 0	00000000 _B
007942 _H	Timer Control Status 0	TCCSL0	R/W	Free-run Timer 0	00000000 _B
007943 _H	Timer Control Status 0	TCCSH0	R/W		0XXXXXXAB
007944 _H	Timer Data 1	TCDT1	R/W		00000000 _B
007945 _H	Timer Data 1	TCDT1	R/W	Eroo run Timor 1	00000000 _B
007946 _H	Timer Control Status 1	TCCSL1	R/W	Free-run Timer 1	00000000 _B
007947 _H	Timer Control Status 1	TCCSH1	R/W		0XXXXXXAB

List of Control	Registers (2)
-----------------	---------------

Address		Pagiotor	Abbreviation	A	Initial Value
CAN0	CAN1	Register	Appreviation	Access	
007B00 _H	007D00 _H	Control Status	CSR	R/W, W	0XXXX0X1 _B
007B01 _H	007D01 _H	Register	CSR	R/W, R	00XXX000 _B
007B02 _H	007D02 _H	Last Event	LEIR	R/W	000X0000 _B XXXXXXX _B
007B03 _H	007D03 _H	Indicator Register		r./ v v	XXXXXXXXX
007B04 _H	007D04 _H	Receive And Transmit	RTEC	R	00000000 _B
007B05 _H	007D05 _H	Error Counter	KILO	n.	00000000B
007B06 _H	007D06 _H	Bit Timing	BTR	R/W	11111111 _B
007B07 _H	007D07 _H	Register	DIK		X1111111 _B
007B08 _H	007D08 _H	IDE Register	IDER	R/W	XXXXXXXX _B
007B09 _H	007D09 _H		IDER		XXXXXXXXB
007B0A _H	007D0A _H	Transmit RTR	TRTRR	R/W	00000000 _B
007B0B _H	007D0B _H	Register			00000000B
007B0C _H	007D0C _H	Remote Frame	RFWTR	R/W	XXXXXXXX
007B0D _H	007D0D _H	Receive Waiting Register	REVIR		XXXXXXXXB
007B0E _H	007D0E _H	Transmit Interrupt	TIER	R/W	00000000 _B
007B0F _H	007D0F _H	Enable Register			00000000B
007B10 _H	007D10 _H				XXXXXXXXB
007B11 _H	007D11 _H	Acceptance Mask	AMSR	R/W	XXXXXXXXB
007B12 _H	007D12 _H	Select Register			XXXXXXXXB
007B13 _H	007D13 _H				XXXXXXXXB
007B14 _H	007D14 _H				XXXXXXXXB
007B15 _H	007D15 _H	Acceptance Mask	AMR0	R/W	XXXXXXXXB
007B16 _H	007D16 _H	Register 0			XXXXXXXXB
007B17 _H	007D17 _H				XXXXXXXX _B
007B18 _H	007D18 _H				XXXXXXXXB
007B19 _H	007D19 _H	Acceptance Mask	AMR1	R/W	XXXXXXXXB
007B1A _H	007D1A _H	Register 1			XXXXXXXXB
007B1B _H	007D1B _H				XXXXXXXXB



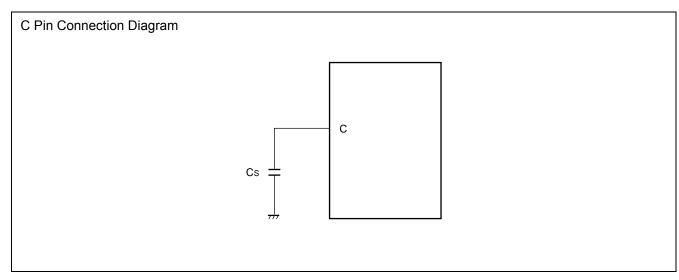
Address		Pagiotor	Abbreviation	A	Initial Value
CAN0	CAN1	Register	Appreviation	Access	
007A00 _H to 007A1F _H	007C00 _H to 007C1F _H	General- Purpose RAM	_	R/W	XXXXXXXXB to XXXXXXXXB
007A20 _H	007C20 _H				XXXXXXXX _B
007A21 _H	007C21 _H	ID De sister 0			XXXXXXXAB
007A22 _H	007C22 _H	ID Register 0	IDR0	R/W	XXXXXXXX _B
007A23 _H	007C23 _H				XXXXXXXAB
007A24 _H	007C24 _H				XXXXXXXXB
007A25 _H	007C25 _H	ID De sister 1			XXXXXXXXB
007A26 _H	007C26 _H	ID Register 1	IDR1	R/W	XXXXXXXX _B
007A27 _H	007C27 _H				XXXXXXXB
007A28 _H	007C28 _H				XXXXXXXXB
007A29 _H	007C29 _H	ID Desister 2			XXXXXXXXB
007A2A _H	007C2A _H	ID Register 2	IDR2	R/W	XXXXXXXX _B
007A2B _H	007C2B _H				XXXXXXXXB
007A2C _H	007C2C _H				XXXXXXXX _B
007A2D _H	007C2D _H	ID Degister 2	IDR3	R/W	XXXXXXXXB
007A2E _H	007C2E _H	ID Register 3			XXXXXXXX _B
007A2F _H	007C2F _H				XXXXXXXXB
007A30 _H	007C30 _H				XXXXXXXXR
007A31 _H	007C31 _H	ID Pagistar 4	IDR4	R/W	XXXXXXXXB XXXXXXXXB
007A32 _H	007C32 _H	ID Register 4	IDR4		XXXXXXXX _B
007A33 _H	007C33 _H				XXXXXXXXB
007A34 _H	007C34 _H				XXXXXXXXB
007A35 _H	007C35 _H	ID Register 5	IDR5	R/W	XXXXXXXX
007A36 _H	007C36 _H		IDKJ		XXXXXXXXB
007A37 _H	007C37 _H				XXXXXXXXB
007A38 _H	007C38 _H				XXXXXXXAB
007A39 _H	007C39 _H	ID Register 6	IDR6	DAA/	XXXXXXXXB
007A3A _H	007C3A _H			R/W	XXXXXXXAB
007A3B _H	007C3B _H				XXXXXXXXB
007A3C _H	007C3C _H				XXXXXXXXB
007A3D _H	007C3D _H	ID Register 7	IDR7	R/W	XXXXXXXXB
007A3E _H	007C3E _H	INEGISIEI I			XXXXXXXX _B
007A3F _H	007C3F _H				XXXXXXXXB

- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the
 resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits:

*6: The maximum output current is defined as the peak value of the current of any one of the corresponding pins.

*7: The average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins.

*8: The average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

11.2 Recommended Operating Conditions

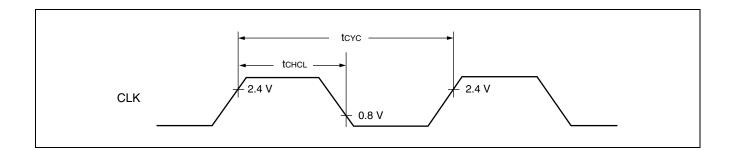
 $(V_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol	Value			Unit	Remarks
Falameter	Symbol	Min	Тур	Мах	Onit	Reliaiks
		4.0	5.0	5.5	V	Under normal operation
Power supply voltage	V _{CC} , AV _{CC}	3.5	5.0	5.5	v	Under normal operation, when not using the A/D converter and not Flash programming.
		4.5	5.0	5.5	V	When External bus is used.
		3.0	—	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor	C _S	0.1		1.0	μF	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the V_{CC} should be greater than this capacitor.
Operating temperature	T _A	-40		+105	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

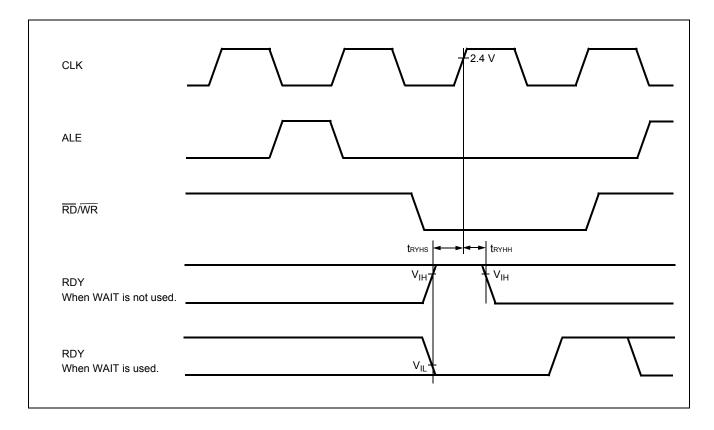
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



11.3 DC Characteristics

Deveration	Symb	Dia	Condition	Value			11	Bemerke			
Parameter	ol	Pin	Condition	Min	Min Typ Max		Unit	Remarks			
	V _{IHS}			0.8 V _{CC}		V _{CC} + 0.3	v	Port inputs if CMOS hysteresis input levels are selected (except P12, P44, P45, P46, P47, P50, P82, P85)			
	V _{IHA}			0.8 V _{CC}		$V_{CC} + 0.3$	V	Port inputs if Automotive input levels are selected			
Input H	V _{IHT}			2.0		$V_{CC} + 0.3$	V	Port inputs if TTL input levels are selected			
voltage (At V _{CC} = 5 V ± 10%)	V _{IHS}			0.7 V _{CC}		$V_{CC} + 0.3$	v	P12, P50, P82, P85 inputs if CMOS input levels are selected			
	V _{IHI}			0.7 V _{CC}		V _{CC} + 0.3	v	P44, P45, P46, P47 inputs if CMOS hysteresis input levels are selected			
	V _{IHR}			0.8 V _{CC}		$V_{CC} + 0.3$	V	RST input pin (CMOS hysteresis)			
	V _{IHM}			$V_{\rm CC} - 0.3$		$V_{CC} + 0.3$	V	MD input pin			
Input L voltage (At V _{CC} = 5 V ± 10%)	V _{ILS}			V _{SS} – 0.3		0.2 V _{CC}	v	Port inputs if CMOS hysteresis input levels are selected (except P12, P44, P45, P46, P47, P50, P82, P85)			
	V _{ILA}			$V_{\rm SS} - 0.3$		0.5 V _{CC}	V	Port inputs if Automotive input levels are selected			
	V _{ILT}			$V_{\rm SS} - 0.3$		0.8	V	Port inputs if TTL input levels are selected			
	V _{ILS}			V _{SS} - 0.3		0.3 V _{CC}	v	P12, P50, P82, P85 inputs if CMOS input levels are selected			
	V _{ILI}			V _{SS} - 0.3		0.3 V _{CC}	v	P44, P45, P46, P47 inputs if CMOS hysteresis input levels are selected			
	V _{ILR}			$V_{\rm SS} - 0.3$		0.2 V _{CC}	V	RST input pin (CMOS hysteresis)			
	V _{ILM}			$V_{\rm SS} - 0.3$		$V_{SS} + 0.3$	V	MD input pin			
Output H voltage	V _{OH}	Normal outputs	$V_{CC} = 4.5 V,$ $I_{OH} = -4.0 mA$	V _{CC} - 0.5			V				
Output H voltage	V _{OHI}	I ² C current outputs	$V_{CC} = 4.5 V,$ $I_{OH} = -3.0 mA$	V _{CC} - 0.5			v				
Output L voltage	V _{OL}	Normal outputs	$V_{CC} = 4.5 V,$ $I_{OL} = 4.0 mA$			0.4	v				
Output L voltage	V _{OLI}	I ² C current outputs	$V_{CC} = 4.5 V,$ $I_{OL} = 3.0 mA$			0.4	V				

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)

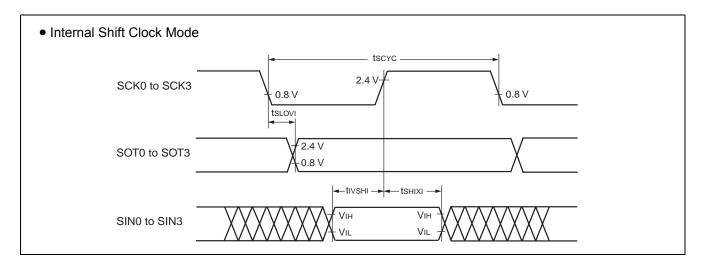


11.4.7 Ready Input Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, V_{SS} = 0.0 V, f_{CP} {\leq} 24 MHz)

Parameter	Symbol	Pin	Test	Rated	Value	Unit	Remarks	
Falameter			Condition	Min	Max	Unit		
RDY setup time	t _{RYHS}	RDY		45		ns	$f_{CP} = 16 \text{ MHz}$	
RDT setup time				32	—	ns	$f_{CP} = 24 \text{ MHz}$	
RDY hold time	t _{RYHH}	RDY		0		ns		

Note: : If the RDY setup time is insufficient, use the auto-ready function.


11.4.9 LIN-UART0/1/2/3 ■ Bit setting: ESCR:SCES = 0, ECCR:SCDE = 0

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

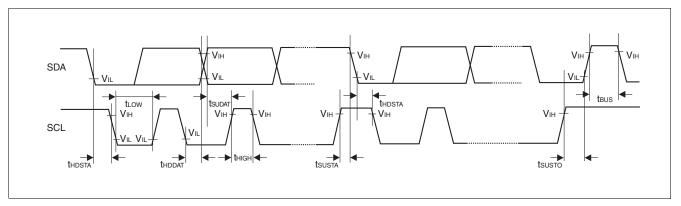
Baramatar	Symbol	Pin	Condition	Va	Unit	
Parameter	Symbol	Pin	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK0 to SCK3		5 t _{CP}	—	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHI}	SCK0 to SCK3, SIN0 to SIN3	mode output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	t _{CP} + 80		ns
$SCK\!\uparrow\!\to\!ValidSINholdtime$	t _{SHIXI}	SCK0 to SCK3, SIN0 to SIN3		0		ns
Serial clock "L" pulse width	t _{SHSL}	SCK0 to SCK3		3 t _{CP} - t _R		ns
Serial clock "H" pulse width	t _{SLSH}	SCK0 to SCK3		t _{CP} + 10		ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCK0 to SCK3, SOT0 to SOT3			2 t _{CP} + 60	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHE}	SCK0 to SCK3, SIN0 to SIN3	External shift clock mode output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	30		ns
$\text{SCK} \uparrow \rightarrow \text{Valid SIN hold time}$ t_{SHIXE}		SCK0, SCK1, SIN0 to SIN3		t _{CP} + 30		ns
SCK fall time t _F		SCK0 to SCK3			10	ns
SCK rise time	t _R	SCK0 to SCK3			10	ns

Note: • AC characteristic in CLK synchronized mode.

C_L is load capacity value of pins when testing.
t_{CP} is internal operating clock cycle time (machine clock). Refer to " (1) Clock Timing".

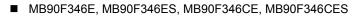
11.4.13 I²C Timing

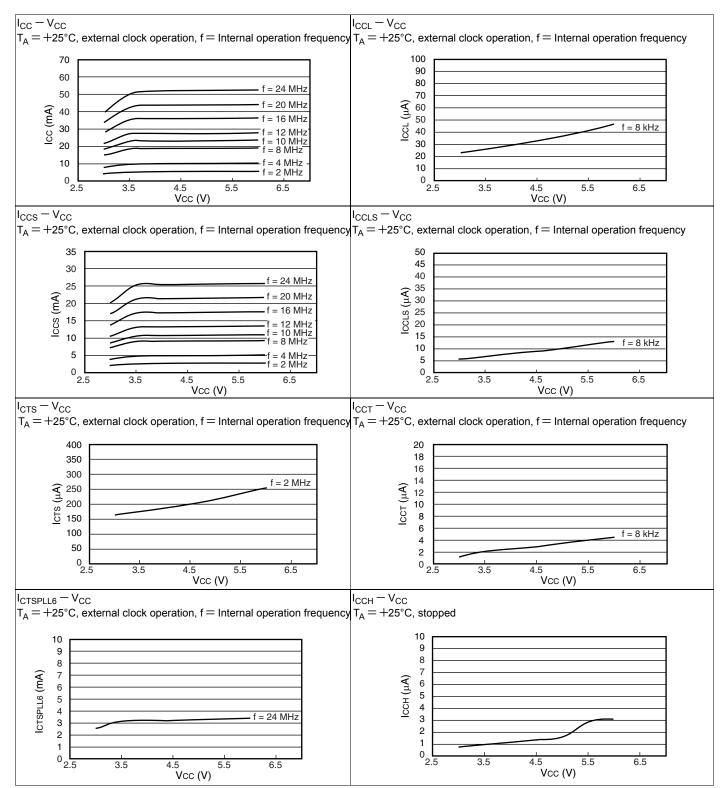
$(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5.0 \text{ V}$	$/ \pm 10\%$, V _{SS} = 0.0 V)
---	---

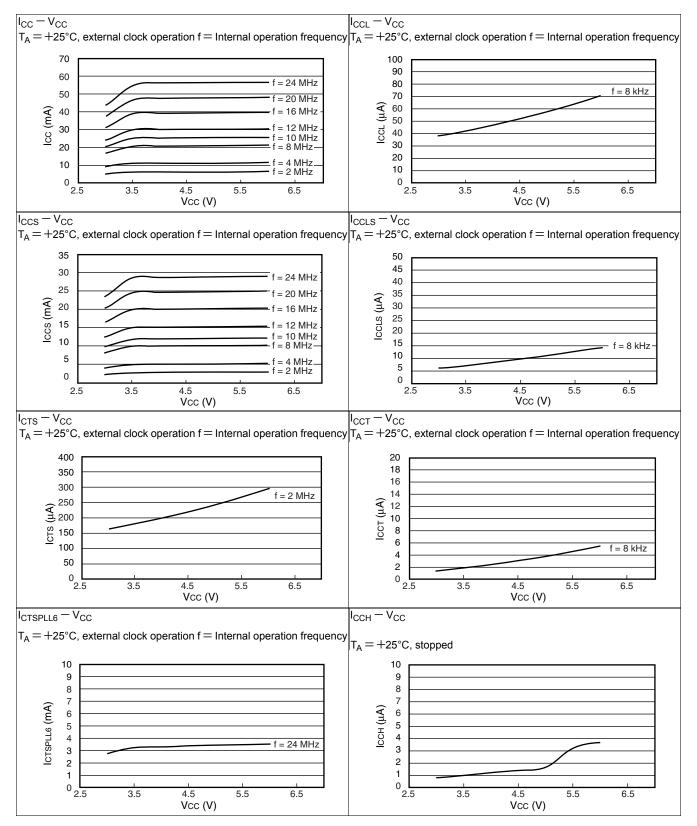

Parameter	Symbol	Condition	Standard-mode		Fast-mode* ¹		Unit
Parameter	Symbol	Condition	Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0		0.6		μs
"L" width of the SCL clock	t _{LOW}		4.7	—	1.3	—	μs
"H" width of the SCL clock	t _{HIGH}		4.0	—	0.6	—	μs
Set-up time (repeated) START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SUSTA}	$R = 1.7 k\Omega$ $C = 50 pF^{*2}$	4.7		0.6		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HDDAT}	$C = 50 \text{ pc}^{-2}$	0	3.45* ³	0	0.9* ⁴	μs
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t _{SUDAT}		250		100		ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susтo}		4.0		0.6		μs
Bus free time between a STOP and START condition	t _{BUS}		4.7		1.3	—	μs

*1:For use at over 100 kHz, set the machine clock to at least 6 MHz.

*2:R,C: Pull-up resistor and load capacitor of the SCL and SDA lines.


*3:The maximum t_{HDDAT} meets the requirement that it does not extend the "L" width (t_{LOW}) of the SCL signal.


*4:A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met.


12. Example Characteristics

■ MB90F349E, MB90F349ES, MB90F349CE, MB90F349CES

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm				
Automotive	cypress.com/automotive				
Clocks & Buffers	cypress.com/clocks				
Interface	cypress.com/interface				
Lighting & Power Control	cypress.com/powerpsoc				
Memory	cypress.com/memory				
PSoC	cypress.com/psoc				
Touch Sensing	cypress.com/touch				
USB Controllers	cypress.com/usb				
Wireless/RF	cypress.com/wireless				

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.