

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90347espmc-gs-411e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This pin assignment is for using MB90V340E-101/102 via probecable as MB90340E.

5. Handling Devices

1. Preventing latch-up

CMOS IC may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 k Ω or more.

3.Power supply pins (V_{CC}/V_{SS})

■ If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance.

As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device.

4.Mode Pins (MD0 to MD2)

Connect the mode pins directly to V_{CC} or V_{SS} pins. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{CC} or V_{SS} pins and to provide a low-impedance connection.

MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S), MB90F342E(S), MB90F342CE(S), MB90F345CE(S), MB90F345CE(S), MB90346E(S), MB90346CE(S), MB90F346E(S), MB90F346CE(S), MB90347CE(S), MB90347CE(S), MB90F347CE(S), MB907347CE(S), MB90348E(S), MB90348CE(S), MB90349E(S), MB90349CE(S), MB90F349E(S), MB90F349CE(S)

Address	Register	Abbreviation	Access	Resource name	Initial value
000040 _H	PPG 8 Operation Mode Control Register	PPGC8	W,R/W		0X000XX1 _B
000041 _H	PPG 9 Operation Mode Control Register	PPGC9	W,R/W	16-bit PPG 8/9	0X000001 _B
000042 _H	PPG 8/PPG 9 Count Clock Control Register	PPG89	R/W		000000X0 _B
000043 _H	Reserved	·			
000044 _H	PPG A Operation Mode Control Register	PPGCA	W,R/W		0X000XX1 _B
000045 _H	PPG B Operation Mode Control Register	PPGCB	W,R/W	16-bit PPG A/B	0X000001 _B
000046 _H	PPG A/PPG B Count Clock Select Register	PPGAB	R/W		000000X0 _B
000047 _H	Reserved				
000048 _H	PPG C Operation Mode Control Register	PPGCC	W,R/W		0X000XX1 _B
000049 _H	PPG D Operation Mode Control Register	PPGCD	W,R/W	16-bit PPG C/D	0X000001 _B
00004A _H	PPG C/PPG D Count Clock Select Register	PPGCD	R/W		000000X0 _B
00004B _H	Reserved	·			
00004C _H	PPG E Operation Mode Control Register	PPGCE	W,R/W		0X000XX1 _B
00004D _H	PPG F Operation Mode Control Register	PPGCF	W,R/W	16-bit PPG E/F	0X000001 _B
00004E _H	PPG E/PPG F Count Clock Select Register	PPGEF	R/W		000000X0 _B
00004F _H	Reserved				
000050 _H	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	00000000 _B
000051 _H	Input Capture Edge 0/1	ICE01	R/W, R		XXX0X0XX _B
000052 _H	Input Capture Control Status 2/3	ICS23	R/W	Input Canture 2/3	00000000 _B
000053 _H	Input Capture Edge 2/3	ICE23	R		XXXXXXXXB
000054 _H	Input Capture Control Status 4/5	ICS45	R/W	Input Capture 4/5	00000000 _B
000055 _H	Input Capture Edge 4/5	ICE45	R		XXXXXXXXB
000056 _H	Input Capture Control Status 6/7	ICS67	R/W	Input Capture 6/7	00000000 _B
000057 _H	Input Capture Edge 6/7	ICE67	R/W, R		XXX000XX _B
000058 _H	Output Compare Control Status 0	OCS0	R/W	Output Compare 0/1	0000XX00 _B
000059 _H	Output Compare Control Status 1	OCS1	R/W	Output Compare of I	0XX00000 _B
00005A _H	Output Compare Control Status 2	OCS2	R/W	Output Compare 2/3	0000XX00 _B
00005B _H	Output Compare Control Status 3	OCS3	R/W		0XX00000 _B
00005C _H	Output Compare Control Status 4	OCS4	R/W	Output Compare 4/5	0000XX00 _B
00005D _H	Output Compare Control Status 5	OCS5	R/W		0XX00000 _B
00005E _H	Output Compare Control Status 6	OCS6	R/W	Output Compare 6/7	0000XX00 _B
00005F _H	Output Compare Control Status 7	OCS7	R/W	Calpar Compare on	0XX00000 _B

Address	Register	Abbreviation	Access	Resource name	Initial value
0000C4 _H , 0000C5 _H	Reserved				
0000C6 _H	External Interrupt Enable 0	ENIR0	R/W		00000000 _B
0000C7 _H	External Interrupt Source 0	EIRR0	R/W		XXXXXXXXB
0000C8 _H	External Interrupt Level Setting 0	ELVR0	R/W	External interrupt 0	00000000 _B
0000C9 _H	External Interrupt Level Setting 0	ELVR0	R/W		00000000 _B
0000CA _H	External Interrupt Enable 1	ENIR1	R/W		00000000 _B
0000CB _H	External Interrupt Source 1	EIRR1	R/W		XXXXXXXXB
0000CC _H	External Interrupt Level Setting 1	ELVR1	R/W	External Interrupt 1	00000000 _B
0000CD _H	External Interrupt Level Setting 1	ELVR1	R/W		00000000 _B
0000CE _H	External Interrupt Source Select	EISSR	R/W		00000000 _B
0000CF _H	PLL/Sub clock Control Register	PSCCR	W	PLL	XXXX0000 _B
0000D0 _H	DMA Buffer Address Pointer L Register	BAPL	R/W		XXXXXXXXB
0000D1 _H	DMA Buffer Address Pointer M Register	BAPM	R/W		XXXXXXXXB
0000D2 _H	DMA Buffer Address Pointer H Register	BAPH	R/W		XXXXXXXXB
0000D3 _H	DMA Control Register	DMACS	R/W		XXXXXXXXB
0000D4 _H	I/O Register Address Pointer L Register	IOAL	R/W	DMA	XXXXXXXXB
0000D5 _H	I/O Register Address Pointer H Register	IOAH	R/W		XXXXXXXXB
0000D6 _H	Data Counter L Register	DCTL	R/W		XXXXXXXXB
0000D7 _H	Data Counter H Register	DCTH	R/W		XXXXXXXAB
0000D8 _H	Serial Mode Register 2	SMR2	W,R/W		00000000 _B
0000D9 _H	Serial Control Register 2	SCR2	W,R/W		00000000 _B
0000DA _H	Reception/Transmission Data Register 2	RDR2/TDR2	R/W		00000000 _B
0000DB _H	Serial Status Register 2	SSR2	R,R/W		00001000 _B
0000DC _H	Extended Communication Control Register 2	ECCR2	R,W, R/W	UARTZ	000000XX _B
0000DD _H	Extended Status Control Register 2	ESCR2	R/W		00000100 _B
0000DE _H	Baud Rate Generator Register 20	BGR20	R/W		00000000 _B
0000DF _H	Baud Rate Generator Register 21	BGR21	R/W		00000000 _B
0000E0 _H to 0000EF _H	Reserved for CAN Controller 2. Refer to "CAN Co	ontrollers"			
0000F0 _H to 0000FF _H	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
0079E0 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXX _B
0079E1 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXX _B
0079E2 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXX _B
0079E3 _H	Detect Address Setting 1	PADR1	R/W]	XXXXXXXX _B
0079E4 _H	Detect Address Setting 1	PADR1	R/W	Address Match	XXXXXXXX _B
0079E5 _H	Detect Address Setting 1	PADR1	R/W		XXXXXXXX _B
0079E6 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXX _B
0079E7 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXX _B
0079E8 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXX _B
0079E9 _H to 0079EF _H	Reserved				
0079F0 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXX _B
0079F1 _H	Detect Address Setting 3	PADR3	R/W	Address Match Detection 1	XXXXXXXXB
0079F2 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXX _B
0079F3 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXXB
0079F4 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXXB
0079F5 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXXB
0079F6 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXXB
0079F7 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXXB
0079F8 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXAB
0079F9 _H to 0079FF _H	Reserved				
007A00 _H to 007AFF _H	Reserved for CAN Controller 0. Refer to "CAN	Controllers			
007B00 _H to 007BFF _H	Reserved for CAN Controller 0. Refer to "CAN	Controllers"			
007C00 _H to 007CFF _H	Reserved for CAN Controller 1. Refer to "CAN	Controllers"			
007D00 _H to 007DFF _H	Reserved for CAN Controller 1. Refer to "CAN	Controllers"			
007E00 _H to 007FFF _H	Reserved				

Note: • Initial value of "X" represents unknown value.

• Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

List of Message	Buffers (II	D Registers)	(2)
not of moodage	= a		·-/

Address		Pogistor	Register Abbreviation		Initial Value	
CAN0	CAN1	Register	Abbreviation	ALLESS		
007A40 _H	007C40 _H				XXXXXXXXB	
007A41 _H	007C41 _H	ID Pagistar 8	פסחו		XXXXXXXXB	
007A42 _H	007C42 _H				XXXXXXXXB	
007A43 _H	007C43 _H				XXXXXXXAB	
007A44 _H	007C44 _H				XXXXXXXXB	
007A45 _H	007C45 _H	ID Register 9	וחפט		XXXXXXXXB	
007A46 _H	007C46 _H	ID Register 8 ID Register 9 ID Register 10 ID Register 11 ID Register 12 ID Register 13 ID Register 14 ID Register 14			XXXXXXXXB	
007A47 _H	007C47 _H				XXXXXXXAB	
007A48 _H	007C48 _H				XXXXXXXX _B	
007A49 _H	007C49 _H	ID Bogistor 10			XXXXXXXXB	
007A4A _H	007C4A _H				XXXXXXXXB	
007A4B _H	007C4B _H				XXXXXXXXB	
007A4C _H	007C4C _H				XXXXXXXXB	
007A4D _H	007C4D _H	ID Register 11		R/M	XXXXXXXAB	
007A4E _H	007C4E _H				XXXXXXXXB	
007A4F _H	007C4F _H				XXXXXXXAB	
007A50 _H	007C50 _H				XXXXXXXXB	
007A51 _H	007C51 _H	ID Register 12			XXXXXXXXB	
007A52 _H	007C52 _H	ID Register 12			XXXXXXXXB	
007A53 _H	007C53 _H				XXXXXXXXB	
007A54 _H	007C54 _H				XXXXXXXXB	
007A55 _H	007C55 _H	ID Register 13			XXXXXXXAB	
007A56 _H	007C56 _H	ID Register 15			XXXXXXXXB	
007A57 _H	007C57 _H				XXXXXXXXB	
007A58 _H	007C58 _H				XXXXXXXXB	
007A59 _H	007C59 _H	ID Register 14			XXXXXXXXB	
007A5A _H	007C5A _H				XXXXXXXXB	
007A5B _H	007C5B _H				XXXXXXXXB	
007A5C _H	007C5C _H				XXXXXXXXB	
007A5D _H	007C5D _H	ID Register 15	IDR15	R/W/	XXXXXXXXB	
007A5E _H	007C5E _H			1.77.8.8	XXXXXXXXB	
007A5F _H	007C5F _H				XXXXXXXXB	

11.3 DC Characteristics

Paramotor	Symb	Din	Condition		Value		Unit	Pomarke
Farameter	ol	FIII	Condition	Min	Тур	Max	Unit	Remarks
	V _{IHS}			0.8 V _{CC}		V _{CC} + 0.3	V	Port inputs if CMOS hysteresis input levels are selected (except P12, P44, P45, P46, P47, P50, P82, P85)
	V _{IHA}			0.8 V _{CC}		$V_{CC} + 0.3$	V	Port inputs if Automotive input levels are selected
Input H	V _{IHT}			2.0		$V_{CC} + 0.3$	V	Port inputs if TTL input levels are selected
(At $V_{CC} = 5 V \pm 10\%$)	V _{IHS}			0.7 V _{CC}		V _{CC} + 0.3	V	P12, P50, P82, P85 inputs if CMOS input levels are selected
	V _{IHI}			0.7 V _{CC}		V _{CC} + 0.3	V	P44, P45, P46, P47 inputs if CMOS hysteresis input levels are selected
	V _{IHR}			0.8 V _{CC}		$V_{CC} + 0.3$	V	RST input pin (CMOS hysteresis)
	V _{IHM}			$V_{\rm CC} - 0.3$		$V_{CC} + 0.3$	V	MD input pin
	V _{ILS}			V _{SS} - 0.3		0.2 V _{CC}	V	Port inputs if CMOS hysteresis input levels are selected (except P12, P44, P45, P46, P47, P50, P82, P85)
	V _{ILA}			$V_{\rm SS} - 0.3$		0.5 V _{CC}	V	Port inputs if Automotive input levels are selected
Input L	V _{ILT}			$V_{\rm SS} - 0.3$		0.8	V	Port inputs if TTL input levels are selected
(At $V_{CC} = 5 V \pm 10\%$)	V _{ILS}			V _{SS} - 0.3		0.3 V _{CC}	V	P12, P50, P82, P85 inputs if CMOS input levels are selected
	V _{ILI}			V _{SS} - 0.3		0.3 V _{CC}	V	P44, P45, P46, P47 inputs if CMOS hysteresis input levels are selected
	V _{ILR}			$V_{\rm SS} - 0.3$		0.2 V _{CC}	V	RST input pin (CMOS hysteresis)
	V _{ILM}			$V_{\rm SS} - 0.3$		$V_{SS} + 0.3$	V	MD input pin
Output H voltage	V _{OH}	Normal outputs	$V_{CC} = 4.5 V,$ $I_{OH} = -4.0 mA$	V _{CC} - 0.5			V	
Output H voltage	V _{OHI}	I ² C current outputs	$V_{CC} = 4.5 V,$ $I_{OH} = -3.0 mA$	V _{CC} - 0.5			V	
Output L voltage	V _{OL}	Normal outputs	$V_{CC} = 4.5 V,$ $I_{OL} = 4.0 mA$	—		0.4	V	
Output L voltage	V _{OLI}	I ² C current outputs	$V_{CC} = 4.5 V,$ $I_{OL} = 3.0 mA$			0.4	V	

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)

11.4.2 Reset Standby Input

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0.0 V)

Paramotor Symb		Din	Value	Unit	Pomarke	
Farameter	Cymbol	• •••	Min	Max	Unit	Kennarks
			500	—	ns	Under normal operation
Reset input time	t _{RSTL}	RST	Oscillation time of oscillator* + 100 μs		μs	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100		μs	In Time Timer mode

* : The oscillation time of the oscillator is the time it takes for the amplitude of the oscillations to reach 90%. For crystal oscillators, this time is between several ms and several tens of ms, for ceramic oscillators the time is between several hundred µs and several ms, and for an external clock, the time is 0 ms.

11.4.8 Hold Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, V_{SS} = 0.0 V, f_{CP} {\leq} 24 MHz)

Paramotor	Symbol	Pin	Condition	Va	Unit	
Parameter	Symbol	FIII	Condition	Min	Max	Unit
Pin floating $\rightarrow \overline{\text{HAK}} \downarrow$ time	t _{XHAL}	HAK		30	t _{CP}	ns
$\overline{\text{HAK}}$ \uparrow time \rightarrow Pin valid time	t _{HAHV}	HAK		t _{CP}	2 t _{CP}	ns

Note: : There is more than 1 cycle from when HRQ reads in until the \overline{HAK} is changed.

Bit setting: ESCR:SCES = 0, ECCR:SCDE = 1

Paramotor	Symbol Din		Condition	Va	Unit	
Falameter	Symbol	FIII	Condition	Min	Мах	Onit
Serial clock cycle time	t _{SCYC}	SCK0 to SCK3	-	5 t _{CP}		ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK0 to SCK3, SOT0 to SOT3		—50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	t _{IVSLI}	SCK0 to SCK3, SIN0 to SIN3	Internal clock operation output pins are	t _{CP} + 80		ns
$SCK \downarrow \to \text{ Valid SIN hold time}$	t _{SLIXI}	SCK0 to SCK3, SIN0 to SIN3	$C_L = 80 \text{ pF} + 1 \text{ TTL}.$	0		ns
$SOT \to SCK \downarrow delay$ time	t _{SOVLI}	SCK0 to SCK3, SOT0 to SOT3		3 t _{CP} - 70		ns

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

Note:

C_L is load capacity value of pins when testing.
t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing".

11.4.10 Trigger Input Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0.0 V)

Paramotor	Symbol Pin		Condition	Value		Unit
Falalletei	Symbol	F III	Condition	Min	Max	Onit
Input pulse width	t _{TRGH} t _{TRGL}	INT0 to INT15, INT0R to INT15R, ADTG		5 t _{CP}		ns

11.4.11 Timer Related Resource Input Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

Parameter	Symbol	Pin	Condition	Value		Unit
	Symbol	FIII	Condition	Min	Max	Onit
Input pulse width	t _{TIWH} t _{TIWL}	TIN0 to TIN3, IN0 to IN7		4 t _{CP}		ns

11.4.12 Timer Related Resource Output Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0.0 V)

Paramotor	Symbol	Pin	Condition	Value		Unit
Farameter		F III	condition	Min	Мах	Onit
${\rm CLK} \uparrow {\longrightarrow} {\rm T}_{\rm OUT}$ change time	t _{TO}	TOT0 to TOT3, PPG0 to PPGF		30		ns

11.4.13 I²C Timing

$(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5.0 \text{ V}$	\pm 10%, V _{SS} = 0.0 V)
---	-------------------------------------

Parameter	Symbol	Condition	Standard-mode		Fast-mode* ¹		Unit
Falameter	Symbol	Condition	Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}	R = 1.7 kΩ $C = 50 pF^{*2}$	4.0		0.6		μs
"L" width of the SCL clock	t _{LOW}		4.7		1.3		μs
"H" width of the SCL clock	t _{HIGH}		4.0	—	0.6		μs
Set-up time (repeated) START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SUSTA}		4.7		0.6		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HDDAT}		0	3.45* ³	0	0.9* ⁴	μs
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t _{SUDAT}	SUDAT			100		ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t _{SUSTO}		4.0		0.6		μs
Bus free time between a STOP and START condition	t _{BUS}		4.7		1.3		μs

*1:For use at over 100 kHz, set the machine clock to at least 6 MHz.

*2:R,C: Pull-up resistor and load capacitor of the SCL and SDA lines.

*3:The maximum t_{HDDAT} meets the requirement that it does not extend the "L" width (t_{LOW}) of the SCL signal.

*4:A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met.

11.5 A/D Converter

 $(T_{\text{A}} = -40^{\circ}\text{C to} + 105^{\circ}\text{C}, \ 3.0 \text{ V} \le \text{AVRH} - \text{AVRL}, \ \text{V}_{\text{CC}} = \text{AV}_{\text{CC}} = 5.0 \text{ V} \pm 10\%, \ \text{f}_{\text{CP}} \le 24 \text{ MHz}, \ \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Deveneter Symbol Din		Value			L lus i t	Demoster		
Parameter	Symbol	Pin	Min	Тур	Мах	Unit	Remarks	
Resolution					10	bit		
Total error					±3.0	LSB		
Nonlinearity error					±2.5	LSB		
Differential nonlinearity error					±1.9	LSB		
Zero reading voltage	V _{OT}	AN0 to AN23	AVRL — 1.5 × LSB	AVRL + 0.5 × LSB	AVRL + 2.5 × LSB	V		
Full scale reading voltage	V _{FST}	AN0 to AN23	AVRH — 3.5 × LSB	AVRH — 1.5 × LSB	AVRH + 0.5 × LSB	V		
Compare time			1.0		16500	μs	$4.5 \text{ V} \le \text{AV}_{\text{CC}} \le 5.5 \text{ V}$	
			2.0				$4.0 V \le AV_{CC} \le 4.5 V$	
Sompling time			0.5		∞	μs	$4.5 \text{ V} \le \text{AV}_{\text{CC}} \le 5.5 \text{ V}$	
Sampling time			1.2				$4.0 \text{ V} \le \text{AV}_{\text{CC}} \le 4.5 \text{ V}$	
Analog port input current	I _{AIN}	AN0 to AN23	-0.3		+0.3	μA		
Analog input voltage range	V _{AIN}	AN0 to AN23	AVRL		AVRH	V		
Reference		AVRH	AVRL + 2.7		AV _{CC}	V		
voltage range		AVRL	0		AVRH - 2.7	V		
Power supply current	I _A	AV _{CC}		3.5	7.5	mA		
	I _{AH}	AV _{CC}			5	μΑ	*	
Reference voltage current	I _R	AVRH		600	900	μΑ		
	I _{RH}	AVRH			5	μΑ	*	
Offset between input channels		AN0 to AN23			4	LSB		

*: If the A/D convertor is not operating, a current when CPU is stopped is applicable ($V_{CC} = AV_{CC} = AVRH = 5.0 V$). **Note:** : The accuracy gets worse as |AVRH - AVRL| becomes smaller.

11.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs :

Recommended output impedance of external circuits are : Approx. 1.5 k Ω or lower (4.0 V \leq AV_{CC} \leq 5.5 V, sampling period = 0.5 μ s)

If an external capacitor is used, in consideration of the capacitive voltage dividing effect between the external capacitor and the internal on-chip capacitor, it is recommended that the capacitance of the external capacitor be several thousand times greater than the capacitance of the internal capacitor.

■ MB90347E, MB90347ES, MB90347CE, MB90347CES

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.