Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | F ² MC-16LX | | Core Size | 16-Bit | | Speed | 24MHz | | Connectivity | CANbus, EBI/EMI, LINbus, SCI, UART/USART | | Peripherals | DMA, POR, WDT | | Number of I/O | 82 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | Mask ROM | | EEPROM Size | - | | RAM Size | 6K x 8 | | Voltage - Supply (Vcc/Vdd) | 3.5V ~ 5.5V | | Data Converters | A/D 16x8/10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-LQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb90347espmc-gs-470e1 | # 1. Product Lineup | Part Number Parameter | MB90V340E-101,
MB90V340E-102 | MB90F342E(S), MB90F342CE(S),
MB90F345E(S), MB90F345CE(S),
MB90F346E(S), MB90F346CE(S),
MB90F347E(S), MB90F347CE(S),
MB90F349E(S), MB90F349CE(S) | MB90341E(S), MB90341CE(S),
MB90342E(S), MB90342CE(S),
MB90346E(S), MB90346CE(S),
MB90347E(S), MB90347CE(S),
MB90348E(S), MB90348CE(S),
MB90349E(S), MB90349CE(S) | | | | |---------------------------------|---|---|---|--|--|--| | Туре | Evaluation products | Flash memory products | MASK ROM products | | | | | CPU | F ² MC-16LX CPU | | | | | | | System clock | | ier (\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 when PLL stop ution time : 42 ns (4 MHz osc. PLL \times 6) | s) | | | | | ROM | External | 512 Kbytes: MB90F345E(S), MB90F345CE(S) 256 Kbytes: MB90F342E(S), MB90F342CE(S), MB90F349E(S), MB90F349CE(S) 128 Kbytes: MB90F347E(S), MB90F347CE(S) 64 Kbytes: MB90F346E(S), MB90F346CE(S) | 256 Kbytes: MB90342E(S), MB90342CE(S), MB90349E(S), MB90349CE(S) 128 Kbytes: MB90341E(S), MB90341CE(S), MB90347E(S), MB90347CE(S), MB90348E(S), MB90348CE(S) 64 Kbytes: MB90346E(S), MB90346CE(S) | | | | | RAM | 30 Kbytes | 20 Kbytes: MB90F345E(S), MB90F345CE(S) 16 Kbytes: MB90F342E(S), MB90F342CE(S), MB90F349E(S), MB90F349CE(S) 6 Kbytes: MB90F347E(S), MB90F347CE(S) 2 Kbytes: MB90F346E(S), MB90F346CE(S) | 16 Kbytes: MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S), MB90348E(S), MB90348CE(S), MB90349E(S), MB90349CE(S) 6 Kbytes: MB90347E(S), MB90347CE(S) 2 Kbytes: MB90346E(S), MB90346CE(S) | | | | | Emulator-specific power supply* | Yes | _ | | | | | | Technology | 0.35 μm CMOS with regulator for built-in power supply | 0.35 μm CMOS with built-in power supply re
Flash memory with Charge pump for progra | | | | | | Operating voltage range | 5 V ± 10% | 3.5 V to 5.5 V : When normal operating (not using A/D converter) 4.0 V to 5.5 V : When using the A/D converter/Flash programming 4.5 V to 5.5 V : When using the external bus | | | | | | Temperature range | _ | -40°C to +105°C | | | | | | Package | PGA-299 | QFP-100, LQFP-100 | | | | | | | 5 channels | 4 channels | | | | | | LIN-UART | Special synchronous option | settings using a dedicated baud rate generator (reload timer) tions for adapting to different synchronous serial protocols either as master or slave LIN device | | | | | | I ² C (400 kbps) | 2 channels | Devices with a C suffix in the part number : Devices without a C suffix in the part number | | | | | | Туре | Circuit | Remarks | |------|--|--| | M | P-ch Pout N-ch Nout R Automotive input Standby control for input shutdown | ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) ■ CMOS input (with function to disconnect input during standby) ■ Automotive input (with function to disconnect input during standby) | | N | Pull-up control P-ch Pout N-ch Nout R TTL input Standby control for input shutdown | ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = −4 mA) ■ CMOS input (with function to disconnect input during standby) ■ Automotive input (with function to disconnect input during standby) ■ TTL input (with function to disconnect input during standby) Programmable pull-up resistor: 50 kΩ approx | | 0 | P-ch Pout Nout R CMOS input Automotive input Standby control for input shutdown Analog input | ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) ■ CMOS input (with function to disconnect input during standby) ■ Automotive input (with function to disconnect input during standby) ■ A/D converter analog input | ## 5. Handling Devices #### 1. Preventing latch-up CMOS IC may suffer latch-up under the following conditions: - A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin. - A voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins. - The AV_{CC} power supply is applied before the V_{CC} voltage. Latch-up may increase the power supply current drastically, causing thermal damage to the device. For the same reason, also be careful not to let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage. ### 2. Handling unused pins Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 k Ω or more. ### 3. Power supply pins (V_{CC}/V_{SS}) ■ If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance. ■ As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 μ F as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device. #### 4. Mode Pins (MD0 to MD2) Connect the mode pins directly to V_{CC} or V_{SS} pins. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{CC} or V_{SS} pins and to provide a low-impedance connection. ### 13. Stabilization of power supply voltage A sudden change in the supply voltage may cause the device to malfunction even within the V_{CC} supply voltage operating range. Therefore, the V_{CC} supply voltage should be stabilized. For reference, the supply voltage should be controlled so that V_{CC} ripple variations (peak- to-peak values) at commercial frequencies (50 MHz/60 MHz) fall below 10% of the standard V_{CC} supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching. ### 14.Port 0 to Port 3 Output During Power-on (External-bus Mode) As shown below, when the power is turned on in External-Bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable irrespective of the reset input. ### 15.Notes on Using the CAN Function To use the CAN function, please set the DIRECT bit of the CAN Direct Mode Register (CDMR) to 1. ### 16.Flash Security Function (except for MB90F346E) A security bit is located in the area of the flash memory. If protection code 01_H is written in the security bit, the flash memory is in the protected state by security. Therefore please do not write 01_H in this address if you do not use the security function. Refer to following table for the address of the security bit. | | Flash memory size | Address of the security bit | |------------------------|-------------------------------|-----------------------------| | MB90F347E | Embedded 1 Mbit Flash Memory | FE0001 _H | | MB90F342E
MB90F349E | Embedded 2 Mbits Flash Memory | FC0001 _H | | MB90F345E | Embedded 4 Mbits Flash Memory | F80001 _H | ### 17.Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Retransmit the data if an error occurs because of applying the checksum to the last data in consideration of receiving wrong data due to the noise. ■ MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S), MB90F342E(S), MB90F342CE(S), MB90F345CE(S), MB90F345CE(S), MB90346E(S), MB90346CE(S), MB90F346CE(S), MB90F346CE(S), MB90347CE(S), MB90F347CE(S), MB90F347CE(S), MB90F349CE(S), MB90F34CE(S), MB90F34CE(S), MB90F34CE(S), MB90F34CE(S), MB90F3AC(S), MB90F3AC(S), MB90F3AC(S), MB90F3AC(S), MB90F3AC(S) Note: :An image of the data in the FF bank of ROM is visible in the upper part of bank 00, which makes it possible for the C compiler to use the small memory model. The lower 16 bits of addresses in the FF bank are the same as the lower 16 bits of addresses in the 00 bank so that tables stored in the ROM can be accessed without using the far specifier in the pointer declaration. For example, when the address $00C000_H$ is accessed, the data at FFC000_H in ROM is actually accessed. The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00. As a result, the image between FF8000_H and FFFFFF_H is visible in bank 00, while the image between FF0000_H and FF7FFF_H is visible only in bank FF. # 8. I/O Map | Address | Register | Abbreviation | Access | Resource name | Initial value | |---------------------|-------------------------------------|--------------|--------|---------------|-----------------------| | 000000 _H | Port 0 Data Register | PDR0 | R/W | Port 0 | XXXXXXXX _B | | 000001 _H | Port 1 Data Register | PDR1 | R/W | Port 1 | XXXXXXXX _B | | 000002 _H | Port 2 Data Register | PDR2 | R/W | Port 2 | XXXXXXXX _B | | 000003 _H | Port 3 Data Register | PDR3 | R/W | Port 3 | XXXXXXXX _B | | 000004 _H | Port 4 Data Register | PDR4 | R/W | Port 4 | XXXXXXXX _B | | 000005 _H | Port 5 Data Register | PDR5 | R/W | Port 5 | XXXXXXXX _B | | 000006 _H | Port 6 Data Register | PDR6 | R/W | Port 6 | XXXXXXXX _B | | 000007 _H | Port 7 Data Register | PDR7 | R/W | Port 7 | XXXXXXXX _B | | 000008 _H | Port 8 Data Register | PDR8 | R/W | Port 8 | XXXXXXXX _B | | 000009 _H | Port 9 Data Register | PDR9 | R/W | Port 9 | XXXXXXXX _B | | 00000A _H | Port A Data Register | PDRA | R/W | Port A | XXXXXXXX _B | | 00000B _H | Port 5 Analog Input Enable Register | ADER5 | R/W | Port 5, A/D | 11111111 _B | | 00000C _H | Port 6 Analog Input Enable Register | ADER6 | R/W | Port 6, A/D | 11111111 _B | | 00000D _H | Port 7 Analog Input Enable Register | ADER7 | R/W | Port 7, A/D | 11111111 _B | | 00000E _H | Input Level Select Register 0 | ILSR0 | R/W | Ports | XXXXXXXX _B | | 00000F _H | Input Level Select Register 1 | ILSR1 | R/W | Ports | XXXX0XXX _B | | 000010 _H | Port 0 Direction Register | DDR0 | R/W | Port 0 | 00000000 _B | | 000011 _H | Port 1 Direction Register | DDR1 | R/W | Port 1 | 00000000 _B | | 000012 _H | Port 2 Direction Register | DDR2 | R/W | Port 2 | 00000000 _B | | 000013 _H | Port 3 Direction Register | DDR3 | R/W | Port 3 | 00000000 _B | | 000014 _H | Port 4 Direction Register | DDR4 | R/W | Port 4 | 00000000 _B | | 000015 _H | Port 5 Direction Register | DDR5 | R/W | Port 5 | 00000000 _B | | 000016 _H | Port 6 Direction Register | DDR6 | R/W | Port 6 | 00000000 _B | | 000017 _H | Port 7 Direction Register | DDR7 | R/W | Port 7 | 00000000 _B | | 000018 _H | Port 8 Direction Register | DDR8 | R/W | Port 8 | 00000000 _B | | 000019 _H | Port 9 Direction Register | DDR9 | R/W | Port 9 | 00000000 _B | | 00001A _H | Port A Direction Register | DDRA | R/W | Port A | 00000100 _B | | 00001B _H | Reserved | | 1 | | | | 00001C _H | Port 0 Pull-up Control Register | PUCR0 | R/W | Port 0 | 00000000 _B | | 00001D _H | Port 1 Pull-up Control Register | PUCR1 | R/W | Port 1 | 00000000 _B | | 00001E _H | Port 2 Pull-up Control Register | PUCR2 | R/W | Port 2 | 00000000 _B | | 00001F _H | Port 3 Pull-up Control Register | PUCR3 | W, R/W | Port 3 | 00000000 _B | | Address | Register | Abbreviation | Access | Resource name | Initial value | |---------------------|---|--------------|--------|---------------------------|-----------------------| | 0000A5 _H | Automatic Ready Function Select
Register | ARSR | W | | 0011XX00 _B | | 0000A6 _H | External Address Output Control
Register | HACR | W | External Memory
Access | 00000000 _B | | 0000A7 _H | Bus Control Signal Selection Register | ECSR | W | | 0000000X _B | | 0000A8 _H | Watchdog Control Register | WDTC | R,W | Watchdog Timer | XXXXX111 _B | | 0000A9 _H | Time Base Timer Control Register | TBTC | W,R/W | Time Base Timer | 1XX00100 _B | | 0000AA _H | Watch Timer Control Register | WTC | R,R/W | Watch Timer | 1X001000 _B | | 0000AB _H | Reserved | • | • | | | | 0000AC _H | DMA Enable L Register | DERL | R/W | DMA | 00000000 _B | | 0000AD _H | DMA Enable H Register | DERH | R/W | DMA | 00000000 _B | | 0000AE _H | Flash Control Status Register
(Flash memory devices only.
Otherwise reserved) | FMCS | R,R/W | Flash Memory | 000X0000 _B | | 0000AF _H | Reserved | <u>.</u> | • | | | | 0000B0 _H | Interrupt Control Register 00 | ICR00 | W,R/W | | 00000111 _B | | 0000B1 _H | Interrupt Control Register 01 | ICR01 | W,R/W | | 00000111 _B | | 0000B2 _H | Interrupt Control Register 02 | ICR02 | W,R/W | | 00000111 _B | | 0000B3 _H | Interrupt Control Register 03 | ICR03 | W,R/W | | 00000111 _B | | 0000B4 _H | Interrupt Control Register 04 | ICR04 | W,R/W | | 00000111 _B | | 0000B5 _H | Interrupt Control Register 05 | ICR05 | W,R/W | | 00000111 _B | | 0000B6 _H | Interrupt Control Register 06 | ICR06 | W,R/W | | 00000111 _B | | 0000B7 _H | Interrupt Control Register 07 | ICR07 | W,R/W | Into an int Control | 00000111 _B | | 0000B8 _H | Interrupt Control Register 08 | ICR08 | W,R/W | Interrupt Control | 00000111 _B | | 0000B9 _H | Interrupt Control Register 09 | ICR09 | W,R/W | | 00000111 _B | | 0000BA _H | Interrupt Control Register 10 | ICR10 | W,R/W | | 00000111 _B | | 0000BB _H | Interrupt Control Register 11 | ICR11 | W,R/W | | 00000111 _B | | 0000BC _H | Interrupt Control Register 12 | ICR12 | W,R/W | | 00000111 _B | | 0000BD _H | Interrupt Control Register 13 | ICR13 | W,R/W | | 00000111 _B | | 0000BE _H | Interrupt Control Register 14 | ICR14 | W,R/W | 1 | 00000111 _B | | 0000BF _H | Interrupt Control Register 15 | ICR15 | W,R/W | 1 | 00000111 _B | | 0000C0 _H | D/A Converter Data 0 | DAT0 | R/W | | XXXXXXXX _B | | 0000C1 _H | D/A Converter Data 1 | DAT1 | R/W | D/A Comunitari | XXXXXXXX _B | | 0000C2 _H | D/A Control 0 | DACR0 | R/W | D/A Converter | XXXXXXX0 _B | | 0000C3 _H | D/A Control 1 | DACR1 | R/W | | XXXXXXX0 _B | | Address | Register | Abbreviation | Access | Resource name | Initial value | |--|--|------------------|-------------|----------------|-----------------------| | 007948 _H | Time or O/Delegad O | TA ADO/TA ADI DO | R/W | 16-bit Reload | XXXXXXXX _B | | 007949 _H | Timer 0/Reload 0 | TMR0/TMRLR0 | R/W | Timer 0 | XXXXXXXX _B | | 00794A _H | Timer 1/Deleged 1 | TMD4/TMDLD4 | R/W | 16-bit Reload | XXXXXXXX _B | | 00794B _H | Timer 1/Reload 1 | TMR1/TMRLR1 | R/W | Timer 1 | XXXXXXXX _B | | 00794C _H | Timer 2/Reload 2 | TMR2/TMRLR2 | R/W | 16-bit Reload | XXXXXXXX _B | | 00794D _H | Timer Z/Reioau Z | TWRZ/TWRLRZ | R/W | Timer 2 | XXXXXXXX _B | | 00794E _H | Timer 3/Reload 3 | TMR3/TMRLR3 | R/W | 16-bit Reload | XXXXXXXX | | 00794F _H | Timer 3/Reload 3 | TIVIRS/TIVIRLRS | R/W | Timer 3 | XXXXXXXX _B | | 007950 _H | Serial Mode Register 3 | SMR3 | W,R/W | | 00000000 _B | | 007951 _H | Serial Control Register 3 | SCR3 | W,R/W | | 00000000 _B | | 007952 _H | Reception/Transmission Data
Register 3 | RDR3/TDR3 | R/W | | 00000000 _B | | 007953 _H | Serial Status Register 3 | SSR3 | R,R/W | UART3 | 00001000 _B | | 007954 _H | Extended Communication Control
Register 3 | ECCR3 | R,W,
R/W | UARTS | 000000XX _B | | 007955 _H | Extended Status Control Register | ESCR3 | R/W | | 00000100 _B | | 007956 _H | Baud Rate Generator Register 30 | BGR30 | R/W | | 00000000 _B | | 007957 _H | Baud Rate Generator Register 31 | BGR31 | R/W | | 00000000 _B | | 007958 _H | Serial Mode Register 4 | SMR4 | W,R/W | | 00000000 _B | | 007959 _H | Serial Control Register 4 | SCR4 | W,R/W | | 00000000 _B | | 00795A _H | Reception/Transmission Data
Register 4 | RDR4/TDR4 | R/W | | 00000000 _B | | 00795B _H | Serial Status Register 4 | SSR4 | R,R/W | UART4 | 00001000 _B | | 00795C _H | Extended Communication Control
Register 4 | ECCR4 | R,W,
R/W | - UART4 | 000000XX _B | | 00795D _H | Extended Status Control Register | ESCR4 | R/W | | 00000100 _B | | 00795E _H | Baud Rate Generator Register 40 | BGR40 | R/W | | 00000000 _B | | 00795F _H | Baud Rate Generator Register 41 | BGR41 | R/W | | 00000000 _B | | 007960 _H
to
00796B _H | Reserved | | | | | | 00796C _H | Clock Output Enable Register | CLKR | R/W | Clock Monitor | XXXX0000 _B | | 00796D _H | Reserved | • | • | <u> </u> | | | 00796E _H | CAN Direct Mode Register | CDMR | R/W | CAN Clock sync | XXXXXXX0 _B | | 00796F _H | CAN Switch Register | CANSWR | R/W | CAN 0/1 | XXXXXX00 _B | ## 11.3 DC Characteristics (T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V) | Davamatav | Symb | Dia | Condition | | Value | | I I ton! 4 | Damanka | |---|------------------|----------------------------------|---|-----------------------|-------|-----------------------|------------|---| | Parameter | ol | Pin | Condition | Min | Тур | Max | Unit | Remarks | | | V _{IHS} | | _ | 0.8 V _{CC} | | V _{CC} + 0.3 | V | Port inputs if CMOS
hysteresis input levels are selected
(except P12, P44, P45, P46, P47,
P50, P82, P85) | | | V_{IHA} | | | 0.8 V _{CC} | | $V_{CC} + 0.3$ | V | Port inputs if
Automotive input levels are selected | | Input H
voltage | V _{IHT} | | | 2.0 | | $V_{CC} + 0.3$ | V | Port inputs if TTL input levels are selected | | (At $V_{CC} = 5 \text{ V} \pm 10\%$) | V _{IHS} | | _ | 0.7 V _{CC} | | $V_{CC} + 0.3$ | V | P12, P50, P82, P85
inputs if CMOS input levels are
selected | | | V _{IHI} | | | 0.7 V _{CC} | | $V_{CC} + 0.3$ | V | P44, P45, P46, P47
inputs if CMOS hysteresis
input levels are selected | | | V _{IHR} | | _ | 0.8 V _{CC} | | $V_{CC} + 0.3$ | V | RST input pin (CMOS hysteresis) | | | V_{IHM} | _ | | $V_{CC} - 0.3$ | | $V_{CC} + 0.3$ | V | MD input pin | | | V _{ILS} | | _ | V _{SS} - 0.3 | | 0.2 V _{CC} | V | Port inputs if CMOS
hysteresis input levels are selected
(except P12, P44, P45, P46, P47,
P50, P82, P85) | | | V _{ILA} | | | V _{SS} - 0.3 | | 0.5 V _{CC} | V | Port inputs if
Automotive input levels are selected | | Input L | V _{ILT} | | | V _{SS} - 0.3 | | 0.8 | V | Port inputs if TTL input levels are selected | | voltage (At $V_{CC} = 5 \text{ V} \pm 10\%$) | V _{ILS} | | | V _{SS} - 0.3 | | 0.3 V _{CC} | V | P12, P50, P82, P85
inputs if CMOS input levels are
selected | | | V _{ILI} | | | V _{SS} - 0.3 | | 0.3 V _{CC} | V | P44, P45, P46, P47
inputs if CMOS hysteresis
input levels are selected | | | V_{ILR} | | | $V_{SS} - 0.3$ | | 0.2 V _{CC} | V | RST input pin
(CMOS hysteresis) | | | V_{ILM} | | | $V_{SS} - 0.3$ | | $V_{SS} + 0.3$ | V | MD input pin | | Output H voltage | V _{OH} | Normal outputs | $V_{CC} = 4.5 \text{ V},$ $I_{OH} = -4.0 \text{ mA}$ | V _{CC} — 0.5 | | | V | | | Output H voltage | V _{OHI} | I ² C current outputs | $V_{CC} = 4.5 \text{ V},$
$I_{OH} = -3.0 \text{ mA}$ | V _{CC} — 0.5 | | | V | | | Output L voltage | V _{OL} | Normal outputs | $V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$ | | | 0.4 | V | | | Output L voltage | V _{OLI} | I ² C current outputs | $V_{CC} = 4.5 \text{ V},$ $I_{OL} = 3.0 \text{ mA}$ | | | 0.4 | V | | ### 11.4.2 Reset Standby Input (T_A = -40°C to +105°C, V_{CC} = 5.0 V $$\pm$$ 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0.0 V) | Parameter | Symbol | Pin | Value | | Unit | Remarks | |------------------|-------------------|-----|--|-----|-------|---| | raiailletei | Syllibol | F | Min | Max | Oilit | Kemarks | | | | | 500 | | ns | Under normal operation | | Reset input time | t _{RSTL} | RST | Oscillation time of oscillator* + 100 μs | | μs | In Stop mode, Sub Clock mode,
Sub Sleep mode and Watch
mode | | | | | 100 | | μs | In Time Timer mode | $^{^{\}star}$: The oscillation time of the oscillator is the time it takes for the amplitude of the oscillations to reach 90%. For crystal oscillators, this time is between several ms and several tens of ms, for ceramic oscillators the time is between several hundred μ s and several ms, and for an external clock, the time is 0 ms. # 11.4.10 Trigger Input Timing (T_A = -40°C to +105°C, V_{CC} = 5.0 V $$\pm$$ 10%, f_{CP} \leq 24 MHz, V_{SS} = 0.0 V) | Parameter | Symbol | Pin | Condition | Va | lue | Unit | | |-------------------|-------------------|--|-----------|-------------------|-----|------|--| | raiailletei | Syllibol | FIII | Condition | Min | Max | John | | | Input pulse width | t _{TRGH} | INT0 to INT15,
INT0R to INT15R,
ADTG | | 5 t _{CP} | | ns | | ## 11.4.13 I²C Timing (T_A = -40°C to +105°C, V_{CC} = 5.0 V $$\pm$$ 10%, V_{SS} = 0.0 V) | Parameter | Symbol | Condition | Standar | rd-mode | Fast-n | Unit | | |--|--------------------|--------------------------------|---------|--------------------|--------|-------|-------| | Farameter | Symbol | Symbol Condition | | Max | Min | Max | Ullit | | SCL clock frequency | f _{SCL} | | 0 | 100 | 0 | 400 | kHz | | Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow | t _{HDSTA} | | 4.0 | | 0.6 | | μs | | "L" width of the SCL clock | t_{LOW} | | 4.7 | | 1.3 | — | μs | | "H" width of the SCL clock | t _{HIGH} | | 4.0 | | 0.6 | _ | μs | | Set-up time (repeated) START condition SCL $\uparrow \rightarrow$ SDA \downarrow | t _{SUSTA} | R = 1.7 kΩ
$C = 50 pF^{*2}$ | 4.7 | | 0.6 | | μs | | Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$ | t _{HDDAT} | C = 50 pF*2 | 0 | 3.45* ³ | 0 | 0.9*4 | μs | | Data set-up time SDA ↓ ↑ → SCL ↑ | t _{SUDAT} | | 250 | | 100 | | ns | | Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow | t _{SUSTO} | | 4.0 | | 0.6 | | μs | | Bus free time between a STOP and START condition | t _{BUS} | | 4.7 | | 1.3 | | μs | ^{*1:}For use at over 100 kHz, set the machine clock to at least 6 MHz. ^{*4:}A Fast-mode I^2C -bus device can be used in a Standard-mode I^2C -bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met. ^{*2:}R,C: Pull-up resistor and load capacitor of the SCL and SDA lines. $^{^{\}star}3$:The maximum t_{HDDAT} meets the requirement that it does not extend the "L" width (t_{LOW}) of the SCL signal. ## 11.8 Flash Memory Program/Erase Characteristics | Parameter | Conditions | | Value | | | Remarks | |--------------------------------------|--|-------|-------|------|-------|---| | raiailletei | Conditions | Min | Тур | Max | Unit | Nemarks | | Sector erase time | | _ | 1 | 15 | s | Excludes programming prior to erasure | | Chip erase time | $T_A = +25^{\circ}C$
$V_{CC} = 5.0 \text{ V}$ | _ | 9 | | s | Excludes programming prior to erasure | | Word (16-bit width) programming time | | _ | 16 | 3600 | μs | Except for the over head time of the system | | Program/Erase cycle | _ | 10000 | | | cycle | | | Flash Data Retention Time | Average
T _A = +85°C | 20 | | | year | * | $^{^{\}star}$: This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ}$ C) . ## 12. Example Characteristics ■ MB90F346E, MB90F346ES, MB90F346CE, MB90F346CES ### ■ MB90F345E, MB90F345ES, MB90F345CE, MB90F345CES | Part number | Package | Remarks | |-----------------|--|----------------| | MB90346EPF | | | | MB90346ESPF | 100-pin plastic QFP
(FPT-100P-M06) | | | MB90346CEPF | | | | MB90346CESPF | | | | MB90346EPMC | 100-pin plastic LQFP
(FPT-100P-M20) | | | MB90346ESPMC | | | | MB90346CEPMC | | | | MB90346CESPMC | | | | MB90347EPF | 100-pin plastic QFP
(FPT-100P-M06) | | | MB90347ESPF | | | | MB90347CEPF | | | | MB90347CESPF | | | | MB90347EPMC | 100-pin plastic LQFP
(FPT-100P-M20) | | | MB90347ESPMC | | | | MB90347CEPMC | | | | MB90347CESPMC | | | | MB90348EPF | 100-pin plastic QFP
(FPT-100P-M06) | | | MB90348ESPF | | | | MB90348CEPF | | | | MB90348CESPF | | | | MB90348EPMC | 100-pin plastic LQFP
(FPT-100P-M20) | | | MB90348ESPMC | | | | MB90348CEPMC | | | | MB90348CESPMC | | | | MB90349EPF | 100-pin plastic QFP
(FPT-100P-M06) | | | MB90349ESPF | | | | MB90349CEPF | | | | MB90349CESPF | | | | MB90349EPMC | 100-pin plastic LQFP
(FPT-100P-M20) | | | MB90349ESPMC | | | | MB90349CEPMC | | | | MB90349CESPMC | | | | MB90V340E-101CR | 299-pin ceramic PGA
(PGA-299C-A01) | For evaluation | | MB90V340E-102CR | | |