

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90347espmc-gs-699e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90V340E-101, MB90V340E-102	MB90F342E(S), MB90F342CE(S), MB90F345E(S), MB90F345CE(S), MB90F346E(S), MB90F346CE(S), MB90F347E(S), MB90F347CE(S), MB90F349E(S), MB90F349CE(S)	MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S), MB90346E(S), MB90346CE(S), MB90347E(S), MB90347CE(S), MB90348E(S), MB90348CE(S), MB90349E(S), MB90349CE(S)		
	24 input channels	Devices with a C suffix in the part number Devices without a C suffix in the part numb	: 24 channels er : 16 channels		
A/D Converter	10-bit or 8-bit resolution Conversion time : Min 3 μ	s include sample time (per one channel)			
16-bit Reload Timer (4 channels)	Operation clock frequency Supports External Event (γ : fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = Machine Count function	clock frequency)		
16-bit Free-run Timer (2 channels)	Operation clock freq. : fsy (fsys = Machine clock fre Free-run Timer 0 (clock in	, en the output compare finds a match s, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fs	U 0/1/2/3		
16-bit Output Compare (8 channels)		nal when one of the 16-bit free-run timer ma s can be used to generate an output signal.	tches the output compare register		
16-bit Input Capture (8 channels)	Captures the value of the edge, falling edge, or both	16-bit free-run timer and generates an interror rising and falling edges).	upt when triggered by a pin input (rising		
8/16-bit	8 channels (16-bit) /16 ch Sixteen 8-bit reload count Sixteen 8-bit reload regist Sixteen 8-bit reload regist	ers ers for L pulse width			
Programmable Pulse Generator	Supports 8-bit and 16-bit operation modes A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler plus 8-bit reload counter Operating clock freq. : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 μs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)				
	3 channels	2 channels : MB90F342E(S), MB90F342CE(S), MB90F345E(S), MB90F345CE(S) 1 channel : MB90F346E(S), MB90F346CE(S), MB90F347E(S), MB90F347CE(S), MB90F349E(S), MB90F349CE(S)	2 channels : MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S) 1 channel : MB90346E(S), MB90346CE(S), MB90347E(S), MB90347CE(S), MB90348E(S), MB90348CE(S), MB90349E(S), MB90349CE(S)		
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission in response to Remote Frames Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps				

MB90340E Series

3. Pin Description

Pir	Pin No.		I/O	Eurotion		
QFP100* ¹	LQFP100* ²	Pin name	Circuit type* ³	Function		
		P24 to P27		General purpose I/O pins. The register can be set to select whether to use a pull-up resistor.In external bus mode, the pin is enabled as a general-purpose I/O port when the corresponding bit in the external address output control register (HACR) is 1.		
1 to 4	99 to 2	A20 to A23	G	Output pins of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0, the pins are enabled as high address output pins (A20 to A23).		
		IN0 to IN3		Trigger input pins for input captures.		
		P30		General purpose I/O pin.The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.		
5	3	ALE	G	Address latch enable output pin. This function is enabled when the external bus is enabled.		
		IN4		Trigger input pin for input capture.		
		P31		General purpose I/O pin.The register can be set to select whether to use a pull-up resistor.		
6	4		G	This function is enabled in single-chip mode.		
0	7	RD		External read strobe output pin. This function is enabled when the external bus is enabled.		
		IN5		Trigger input pin for input capture.		
		P32		General purpose I/O pin. The register can be set to select whether to use a <u>pull-up re</u> sistor. This function is enabled either in single-chip mode or when the WR/WRL pin output is disabled.		
7	5	WR / WRL	G	Write strobe output pin for the <u>external</u> data bus. This function is <u>enabled</u> when both the external bus and the WR/WRL pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16-bit access while WR is used to write-strobe 8 bits of the data bus in 8-bit access.		
		INT10R		External interrupt request input pin.		
8	6	P33	C	General purpose I/O pin. The register can be set to select whether to use a <u>pull-up</u> resistor. This function is enabled either in single-chip mode or when the WRH pin output is disabled.		
0	0	WRH	G	Write strobe output pin for the upper 8 bits of the external data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the WRH output pin is enabled.		

Pin No.					
QFP100* ¹	LQFP100* ²	Pin name	Circuit type* ³	Function	
33	31	AVRH	L	Reference voltage input pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to A is applied to AV _{CC} .	
34	32	AVRL	К	Lower reference voltage input pin for the A/D Converter	
35	33	AV _{SS}	К	Analog GND pin for the A/D Converter	
		P60 to P67		General purpose I/O pins.	
36 to 43	34 to 41	AN0 to AN7		Analog input pins for the A/D converter	
		PPG0, 2, 4, 6, 8, A, C, E		Output pins for PPGs	
44	42	V _{SS}		GND pin	
		P70 to P75		General purpose I/O pins.	
45 to 50	43 to 48	AN16 to AN21	1	Analog input pins for the A/D converter (devices with a C suffix in the part number)	
		INT0 to INT5		External interrupt request input pins	
51	49	MD2	D	Input pin for specifying the operating mode.	
52, 53	50, 51	MD1, MD0	С	Input pins for specifying the operating mode.	
54	52	RST	E	Reset input pin	
		P76, P77		General purpose I/O pins.	
55, 56	53, 54	AN22, AN23	1	Analog input pins for the A/D converter (devices with a C suffix in the part number)	
		INT6, INT7		External interrupt request input pins	
		P80		General purpose I/O pin.	
F7		TIN0	F	Event input pin for the reload timer	
57	55	ADTG		Trigger input pin for the A/D converter	
		INT12R		External interrupt request input pin	
		P81		General purpose I/O pin.	
50	50	TOT0	F	Output pin for the reload timer	
58	56	СКОТ		Output pin for the clock monitor	
		INT13R		External interrupt request input pin	
		P82		General purpose I/O pin.	
50	F 7	SIN0		Serial data input pin for UART0	
59	57	TIN2	M	Event input pin for the reload timer	
		INT14R	1	External interrupt request input pin	
		P83	1	General purpose I/O pin.	
60	58	SOT0	F	Serial data output pin for UART0	
		TOT2		Output pin for the reload timer	

Туре	Circuit	Remarks
F	P-ch P-ch N-ch R R R CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)
G	P-ch P-ch Pout P-ch P-ch Pout P-ch Pout R R R CMOS hysteresis input Automotive input TTL input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby) TTL input (with function to disconnect input during standby) Programmable pull-up resistor: 50 kΩ approx.
н	P-ch Pout P-ch Pout N-ch Nout R 777 CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 3 mA, I_{OH} = -3 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)

5. Handling Devices

1. Preventing latch-up

CMOS IC may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 k Ω or more.

3.Power supply pins (V_{CC}/V_{SS})

■ If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance.

As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device.

4.Mode Pins (MD0 to MD2)

Connect the mode pins directly to V_{CC} or V_{SS} pins. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{CC} or V_{SS} pins and to provide a low-impedance connection.

Address	Register	Abbreviation	Access	Resource name	Initial value
000060 _H	Timer Control Status 0	TMCSR0	R/W	16-bit Reload	00000000 _B
000061 _H	Timer Control Status 0	TMCSR0	R/W	Timer 0	XXXX0000 _B
000062 _H	Timer Control Status 1	TMCSR1	R/W	16-bit Reload	00000000 _B
000063 _H	Timer Control Status 1	TMCSR1	R/W	Timer 1	XXXX0000 _B
000064 _H	Timer Control Status 2	TMCSR2	R/W	16-bit Reload	00000000 _B
000065 _H	Timer Control Status 2	TMCSR2	R/W	Timer 2	XXXX0000 _B
000066 _H	Timer Control Status 3	TMCSR3	R/W	16-bit Reload	00000000 _B
000067 _H	Timer Control Status 3	TMCSR3	R/W	Timer 3	XXXX0000 _B
000068 _H	A/D Control Status 0	ADCS0	R/W		000XXXX0 _B
000069 _H	A/D Control Status 1	ADCS1	R/W		0000000X _B
00006A _H	A/D Data 0	ADCR0	R		00000000 _B
00006B _H	A/D Data 1	ADCR1	R	A/D Converter	XXXXXX00 _B
00006C _H	ADC Setting 0	ADSR0	R/W		00000000 _B
00006D _H	ADC Setting 1	ADSR1	R/W		00000000 _B
00006E _H	Reserved		•		
00006F _H	ROM Mirror Function Select	ROMM	W	ROM Mirror	XXXXXXX1 _B
000070 _H to 00008F _H 000090 _H to	Reserved for CAN Controller 0/1. Refer to Reserved	"CAN Controllers"			
00009A _H					
00009B _H	DMA Descriptor Channel Specified DCSR R/W		DAA		0000000
0009Сн		DCSR	R/W		00000000 _B
100030H		DCSR DSRL	R/W R/W	DMA	00000000 _B
	Register			DMA	
00009D _H	Register DMA Status L Register	DSRL	R/W	DMA Address Match Detection 0	00000000 _B
00009D _H	Register DMA Status L Register DMA Status H Register	DSRL DSRH	R/W R/W	Address Match	00000000 _B
00009D _H 00009E _H 00009F _H	Register DMA Status L Register DMA Status H Register Address Detect Control Register 0 Delayed Interrupt Trigger/Release	DSRL DSRH PACSR0	R/W R/W R/W	Address Match Detection 0	00000000 _B 00000000 _B
00009D _H 00009E _H 00009F _H	Register DMA Status L Register DMA Status H Register Address Detect Control Register 0 Delayed Interrupt Trigger/Release Register	DSRL DSRH PACSR0 DIRR	R/W R/W R/W R/W	Address Match Detection 0 Delayed Interrupt Low Power	00000000 _B 00000000 _B 00000000 _B XXXXXX0 _B
$\frac{00009C_{H}}{00009D_{H}}$ $\frac{00009F_{H}}{00009F_{H}}$ $\frac{0000A0_{H}}{0000A1_{H}}$ $\frac{0000A2_{H}}{0000A3_{H}}$	Register DMA Status L Register DMA Status H Register Address Detect Control Register 0 Delayed Interrupt Trigger/Release Register Low-power Mode Control Register	DSRL DSRH DSRH PACSR0 DIRR LPMCR	R/W R/W R/W R/W W,R/W	Address Match Detection 0 Delayed Interrupt Low Power Control Circuit Low Power	00000000 _B 00000000 _B 00000000 _B XXXXXX0 _B 00011000 _B

Address	Register	Abbreviation	Access	Resource name	Initial value		
0079E0 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXX _B		
0079E1 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXAB		
0079E2 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXAB		
0079E3 _H	Detect Address Setting 1	PADR1	R/W		XXXXXXXAB		
0079E4 _H	Detect Address Setting 1	PADR1	R/W	Address Match Detection 0	XXXXXXXAB		
0079E5 _H	Detect Address Setting 1	PADR1	R/W		XXXXXXXAB		
0079E6 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXAB		
0079E7 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXAB		
0079E8 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXX _B		
0079E9 _H to 0079EF _H	Reserved						
0079F0 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB		
0079F1 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB		
0079F2 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB		
0079F3 _H	Detect Address Setting 4	PADR4	R/W	Address Match Detection 1	XXXXXXXAB		
0079F4 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXAB		
0079F5 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXX _B		
0079F6 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXX _B		
0079F7 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXX _B		
0079F8 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXAB		
0079F9 _H to 0079FF _H	Reserved						
007A00 _H to 007AFF _H	Reserved for CAN Controller 0. Refer to "C/	AN Controllers					
007B00 _H to 007BFF _H	Reserved for CAN Controller 0. Refer to "CAN Controllers"						
007C00 _H to 007CFF _H	Reserved for CAN Controller 1. Refer to "CAN Controllers"						
007D00 _H to 007DFF _H	Reserved for CAN Controller 1. Refer to "CAN Controllers"						
007E00 _H to 007FFF _H	Reserved						

Note: • Initial value of "X" represents unknown value.

• Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

Address		Deviator	Abbroviction	A	Initial Value	
CAN0	CAN1	Register	Abbreviation	Access	Initial Value	
007A80 _H to 007A87 _H	007C80 _H to 007C87 _H	Data Register 0 (8 bytes) DTR0		R/W	XXXXXXXXB to XXXXXXXXB	
007A88 _H to 007A8F _H	007C88 _H to 007C8F _H	Data Register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXXB	
007A90 _H to 007A97 _H	007C90 _H to 007C97 _H	Data Register 2 (8 bytes)	DTR2	R/W	XXXXXXXX _B to XXXXXXX _B	
007A98 _H to 007A9F _H	007C98 _H to 007C9F _H	Data Register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB	
007AA0 _H to 007AA7 _H	007CA0 _H to 007CA7 _H	Data Register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXXB	
007AA8 _H to 007AAF _H	007CA8 _H to 007CAF _H	Data Register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXB	
007AB0 _H to 007AB7 _H	007CB0 _H to 007CB7 _H	Data Register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB	
007AB8 _H to 007ABF _H	007CB8 _H to 007CBF _H	Data Register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB	
007AC0 _H to 007AC7 _H	007CC0 _H to 007CC7 _H	Data Register 8 (8 bytes)	DTR8	R/W	XXXXXXXX _B to XXXXXXX _B	
007AC8 _H to 007ACF _H	007CC8 _H to 007CCF _H	Data Register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXB	
007AD0 _H to 007AD7 _H	007CD0 _H to 007CD7 _H	Data Register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXB	
007AD8 _H to 007ADF _H	007CD8 _H to 007CDF _H	Data Register 11 (8 bytes)	DTR11	R/W	XXXXXXXX _B to XXXXXXX _B	
007AE0 _H to 007AE7 _H	007CE0 _H to 007CE7 _H	Data Register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXB	
007AE8 _H to 007AEF _H	007CE8 _H to 007CEF _H	Data Register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB	

List of Message Buffers (DLC Registers and Data Registers) (2)

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks	
Farameter	Symbol	Min	Max		Remarks	
	V _{CC}	$V_{\rm SS} - 0.3$	$V_{SS} + 6.0$	V		
Power supply voltage* ¹	AV _{CC}	$V_{\rm SS} - 0.3$	$V_{SS} + 6.0$	V	$V_{CC} = AV_{CC}^{*2}$	
	AVRH, AVRL	$V_{\rm SS} - 0.3$	V _{SS} + 6.0	V	$AV_{CC} \ge AVRH, AV_{CC} \ge AVRL, AVRH \ge AVRL$	
Input voltage*1	VI	$V_{\rm SS} - 0.3$	$V_{SS} + 6.0$	V	*3	
Output voltage*1	Vo	$V_{\rm SS} - 0.3$	$V_{SS} + 6.0$	V	*3	
Maximum Clamp Current	I _{CLAMP}	-4.0	+4.0	mA	*5	
Total Maximum Clamp Current	$\Sigma I_{CLAMP} $		40	mA	*5	
"L" level maximum output current	I _{OL}		15	mA	*4, *6	
"L" level average output current	I _{OLAV}		4	mA	*4, *7	
"L" level maximum overall output current	ΣI_{OL}		100	mA	*4	
"L" level average overall output current	ΣI_{OLAV}		50	mA	*4, *8	
"H" level maximum output current	I _{ОН}		-15	mA	*4, *6	
"H" level average output current	I _{OHAV}		-4	mA	*4, *7	
"H" level maximum overall output current	ΣI_{OH}		-100	mA	*4	
"H" level average overall output current	ΣI_{OHAV}		-50	mA	*4, *8	
Power consumption	P _D		450	mW		
Operating temperature	T _A	-40	+105	°C		
Storage temperature	T _{STG}	-55	+150	°C		

*1: This parameter is based on $V_{SS} = AV_{SS} = 0 V$

*2: Set AV_{CC} and V_{CC} to the same voltage. Make sure that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

*3: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

*4: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0, PA1

*5: • Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47,

P50 to P57 (Evaluation device : P50 to P55), P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA1

• Use within recommended operating conditions.

• Use with DC voltage (current)

• The +B signal should always be applied by using a limiting resistance placed between the +B signal and the microcontroller.

• The value of the limiting resistance should be set so that when the +B signal is applied, the input current to

the microcontroller pin does not exceed the rated value, either instantaneously or for prolonged periods.

• Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input

potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.

11.4.5 Bus Timing (Read)

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, V_{SS} = 0.0 V, f_{CP} {\leq} 24 MHz)

Parameter	Symbol	ol Pin Cond		Va	lue	Unit
Farameter	Symbol	FIII	Condition	Min	Max	Unit
ALE pulse width	t _{LHLL}	ALE		t _{CP} /2 - 10		ns
Valid address → ALE↓ time	t _{AVLL}	ALE, A23 to A16, AD15 to AD00		t _{CP} /2 — 20		ns
$ALE \downarrow \rightarrow$ Address valid time	t _{LLAX}	ALE, AD15 to AD00		t _{CP} /2 — 15		ns
Valid address → RD↓time	t _{AVRL}	A23 to A16, AD15 to AD00, RD		t _{CP} — 15		ns
Valid address → Valid data input	t _{AVDV}	A23 to A16, AD15 to AD00			5 t _{CP} /2 — 60	ns
RD pulse width	t _{RLRH}	RD		3 t _{CP} /2 - 20		ns
$\overline{RD} \downarrow \longrightarrow$ Valid data input	t _{RLDV}	RD, AD15 to AD00			3 t _{CP} /2 — 50	ns
\overline{RD} \uparrow \rightarrow Data hold time	t _{RHDX}	RD, AD15 to AD00		0	—	ns
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t _{RHLH}	RD, ALE		t _{CP} /2 — 15		ns
\overline{RD} \uparrow \rightarrow Address valid time	t _{RHAX}	RD, A23 to A16		t _{CP} /2 - 10		ns
Valid address → CLK ↑ time	t _{AVCH}	A23 to A16, AD15 to AD00, CLK		t _{CP} /2 — 16		ns
$\overline{RD} \downarrow \longrightarrow CLK \uparrow time$	t _{RLCH}	RD, CLK		t _{CP} /2 — 15		ns
$ALE \downarrow \rightarrow \overline{RD} \downarrow time$	t _{LLRL}	ALE, RD		t _{CP} /2 — 15		ns

■ Bit setting: ESCR:SCES = 1, ECCR:SCDE = 0

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

Devementer	Parameter Symbol Pin Conditio		Condition	Value		Unit
Parameter	Symbol	Pin	Condition	Min	Max	Onit
Serial clock cycle time	t _{SCYC}	SCK0 to SCK3		5 t _{CP}		ns
$SCK \uparrow \to SOT$ delay time	t _{SHOVI}	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	t _{IVSLI}	SCK0 to SCK3, SIN0 to SIN3	mode output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	t _{CP} + 80		ns
$SCK \downarrow \to Valid SIN hold time$	t _{SLIXI}	SCK0 to SCK3, SIN0 to SIN3		0		ns
Serial clock "H" pulse width	t _{SHSL}	SCK0 to SCK3		3 t _{CP} - t _R		ns
Serial clock "L" pulse width	t _{SLSH}	SCK0 to SCK3		t _{CP} + 10		ns
$SCK \uparrow o SOT$ delay time	t _{SHOVE}	SCK0 to SCK3, SOT0 to SOT3			2 t _{CP} + 60	ns
Valid SIN $ ightarrow$ SCK \downarrow	t _{IVSLE}	SCK0 to SCK3, SIN0 to SIN3	External shift clock mode output pins are $C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	30		ns
$SCK \downarrow \to Valid SIN hold time$	t _{SLIXE}	SCK0 to SCK3, SIN0 to SIN3		t _{CP} + 30		ns
SCK fall time	t _F	SCK0 to SCK3			10	ns
SCK rise time	t _R	SCK0 to SCK3			10	ns

Note:

C_L is load capacity value of pins when testing.
t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing".

12. Example Characteristics

■ MB90F347E, MB90F347ES, MB90F347CE, MB90F347CES

■ MB90F349E, MB90F349ES, MB90F349CE, MB90F349CES

■ MB90347E, MB90347ES, MB90347CE, MB90347CES

I/O characteristics

Part number	Package	Remarks	
MB90346EPF			
MB90346ESPF	100-pin plastic QFP		
MB90346CEPF	(FPT-100P-M06)		
MB90346CESPF			
MB90346EPMC			
MB90346ESPMC	100-pin plastic LQFP		
MB90346CEPMC	(FPT-100P-M20)		
MB90346CESPMC			
MB90347EPF			
MB90347ESPF	100-pin plastic QFP		
MB90347CEPF	(FPT-100P-M06)		
MB90347CESPF			
MB90347EPMC			
MB90347ESPMC	100-pin plastic LQFP		
MB90347CEPMC	(FPT-100P-M20)		
MB90347CESPMC			
MB90348EPF			
MB90348ESPF	100-pin plastic QFP		
MB90348CEPF	(FPT-100P-M06)		
MB90348CESPF			
MB90348EPMC			
MB90348ESPMC	100-pin plastic LQFP		
MB90348CEPMC	(FPT-100P-M20)		
MB90348CESPMC			
MB90349EPF			
MB90349ESPF	100-pin plastic QFP		
MB90349CEPF	(FPT-100P-M06)		
MB90349CESPF			
MB90349EPMC			
MB90349ESPMC	100-pin plastic LQFP		
MB90349CEPMC	(FPT-100P-M20)		
MB90349CESPMC			
MB90V340E-101CR	299-pin ceramic PGA	For evaluation	
MB90V340E-102CR	(PGA-299C-A01)	For evaluation	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.