

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

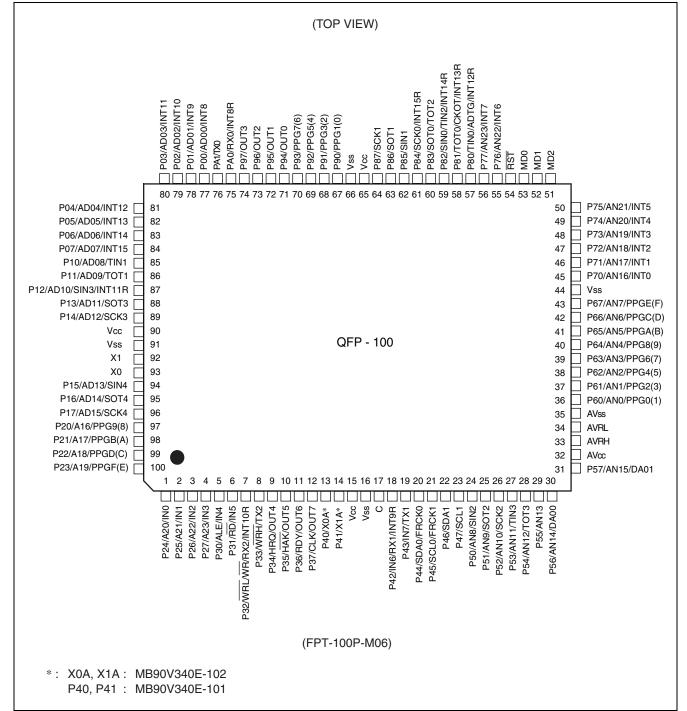
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f347espmc-gs9013spe1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Part Number Parameter	MB90V340E-101, MB90V340E-102	MB90F342E(S), MB90F342CE(S), MB90F345E(S), MB90F345CE(S), MB90F346E(S), MB90F346CE(S), MB90F347E(S), MB90F347CE(S), MB90F349E(S), MB90F349CE(S)	MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S), MB90346E(S), MB90346CE(S), MB90347E(S), MB90347CE(S), MB90348E(S), MB90348CE(S), MB90349E(S), MB90349CE(S)		
	24 input channels	Devices with a C suffix in the part number Devices without a C suffix in the part numb	: 24 channels er : 16 channels		
A/D Converter	10-bit or 8-bit resolution Conversion time : Min 3 μ	s include sample time (per one channel)			
16-bit Reload Timer (4 channels)	Operation clock frequency Supports External Event (γ : fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = Machine Count function	clock frequency)		
16-bit Free-run Timer (2 channels)	Operation clock freq. : fsy (fsys = Machine clock fre Free-run Timer 0 (clock in	, en the output compare finds a match s, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fs	U 0/1/2/3		
16-bit Output Compare (8 channels)		nal when one of the 16-bit free-run timer ma s can be used to generate an output signal.	tches the output compare register		
16-bit Input Capture (8 channels)	Captures the value of the edge, falling edge, or both	16-bit free-run timer and generates an interror rising and falling edges).	upt when triggered by a pin input (rising		
8/16-bit	8 channels (16-bit) /16 ch Sixteen 8-bit reload count Sixteen 8-bit reload regist Sixteen 8-bit reload regist	ers ers for L pulse width			
Programmable Pulse Generator	8-bit prescaler plus 8-bit Operating clock freq. : fsy	ters can be configured as one 16-bit reload o			
	3 channels 2 channels : MB90F342E(S), MB90F342CE(S), MB90F345E(S), MB90F345CE(S) 2 channels : MB90341E(S), MB90341CE(S), MB90342E(S), MB90342CE(S) 3 channels 2 channels : MB90F345E(S), MB90F345CE(S) MB90341E(S), MB90342CE(S) 1 channel : MB90F346E(S), MB90F346CE(S), MB90F347E(S), MB90F347CE(S), MB90F349E(S), MB90F349CE(S) MB90346E(S), MB90346CE(S), MB903448E(S), MB90348CE(S), MB90349E(S), MB90349CE(S)				
CAN Interface	Automatic re-transmission Automatic transmission in Prioritized 16 message bu Supports multiple messag Flexible configuration of a	response to Remote Frames iffers for data and ID's les			

MB90V340E-101/MB90V340E-102

This pin assignment is for using MB90V340E-101/102 via probecable as MB90340E.

Туре	Circuit	Remarks
F	P-ch Pout N-ch Nout R 7/7 CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)
G	P-ch P-ch Pout P-ch P-ch Pout P-ch Pout R R R CMOS hysteresis input Automotive input TTL input Standby control for input shutdown	 CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby) TTL input (with function to disconnect input during standby) Programmable pull-up resistor: 50 kΩ approx.
н	P-ch Pout P-ch Pout N-ch Nout R 777 CMOS hysteresis input Automotive input Standby control for input shutdown	 CMOS level output (I_{OL} = 3 mA, I_{OH} = -3 mA) CMOS hysteresis input (with function to disconnect input during standby) Automotive input (with function to disconnect input during standby)

5. Handling Devices

1. Preventing latch-up

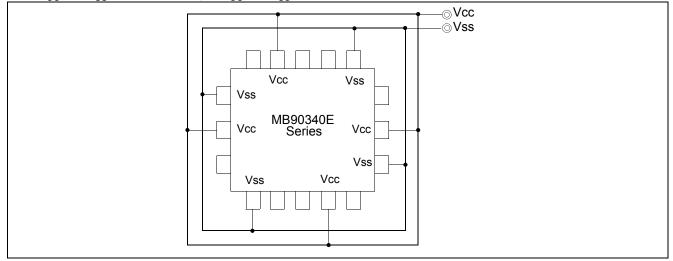
CMOS IC may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins


Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 k Ω or more.

3.Power supply pins (V_{CC}/V_{SS})

■ If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance.

As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device.

4.Mode Pins (MD0 to MD2)

Connect the mode pins directly to V_{CC} or V_{SS} pins. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pins to V_{CC} or V_{SS} pins and to provide a low-impedance connection.

7. Memory Map

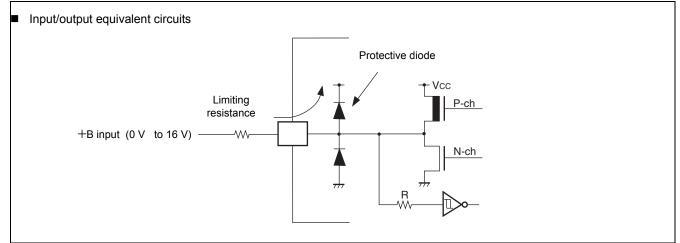
	MB90V340E-101/102	MB90F345E(S)/F345CE(S)
000000H 0000EFH		000000н 0000EFн Peripheral
000100H	External access area	000100H External access area
	RAM 30 Kbytes	RAM 20 Kbytes
0078FFн 007900н		007900н Peripheral
007FFFH 008000H 00FFFFH	ROM (image of FF bank)	007FFFH 008000H 00FFFFH (image of FF bank)
F80000⊦ F8FFF⊦	BOM (F8 bank)	F80000H F8FFFFH ROM (F8 bank)
F90000H F9FFFH	ROM (F9 bank)	F90000н F9FFFFн ROM (F9 bank)
FA0000H FAFFFH	ROM (FA bank)	FA0000H FAFFFFH ROM (FA bank)
FB0000H FBFFFH	ROM (FB bank)	FB0000н FBFFFFн ROM (FB bank)
FC0000H FCFFFH	ROM (FC bank)	FC0000H FCFFFFH ROM (FC bank)
FD0000H FDFFFF	ROM (FD bank)	FD0000H ROM (FD bank)
FE0000H FEFFFH	ROM (FE bank)	FE0000H ROM (FE bank)
FF0000⊦ FFFFF⊦	BOM (FF bank)	FF0000н FFFFFFн ROM (FF bank)
	Not accessible	

Address	Register	Abbreviation	Access	Resource name	Initial value			
0079E0 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXX _B			
0079E1 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXAB			
0079E2 _H	Detect Address Setting 0	PADR0	R/W		XXXXXXXAB			
0079E3 _H	Detect Address Setting 1	PADR1	R/W		XXXXXXXAB			
0079E4 _H	Detect Address Setting 1	PADR1	R/W	Address Match Detection 0	XXXXXXXAB			
0079E5 _H	Detect Address Setting 1	PADR1	R/W		XXXXXXXAB			
0079E6 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXAB			
0079E7 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXAB			
0079E8 _H	Detect Address Setting 2	PADR2	R/W		XXXXXXXX _B			
0079E9 _H to 0079EF _H	Reserved							
0079F0 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB			
0079F1 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB			
0079F2 _H	Detect Address Setting 3	PADR3	R/W		XXXXXXXAB			
0079F3 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXAB			
0079F4 _H	Detect Address Setting 4	PADR4	R/W	Address Match Detection 1	XXXXXXXAB			
0079F5 _H	Detect Address Setting 4	PADR4	R/W		XXXXXXXX _B			
0079F6 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXX _B			
0079F7 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXX _B			
0079F8 _H	Detect Address Setting 5	PADR5	R/W		XXXXXXXAB			
0079F9 _H to 0079FF _H	Reserved							
007A00 _H to 007AFF _H	Reserved for CAN Controller 0. Refer to "C/	AN Controllers						
007B00 _H to 007BFF _H	Reserved for CAN Controller 0. Refer to "CAN Controllers"							
007C00 _H to 007CFF _H	Reserved for CAN Controller 1. Refer to "CAN Controllers"							
007D00 _H to 007DFF _H	Reserved for CAN Controller 1. Refer to "CAN Controllers"							
007E00 _H to 007FFF _H	Reserved							

Note: • Initial value of "X" represents unknown value.

• Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

Address		Pagiotor	Abbreviation	A	Initial Value	
CAN0	CAN1	Register	Appreviation	Access		
007A00 _H to 007A1F _H	007C00 _H to 007C1F _H	General- Purpose RAM	_	R/W	XXXXXXXXB to XXXXXXXXB	
007A20 _H	007C20 _H				XXXXXXXX _B	
007A21 _H	007C21 _H	ID De sister 0	IDR0		XXXXXXXAB	
007A22 _H	007C22 _H	ID Register 0	R/W	XXXXXXXX _B		
007A23 _H	007C23 _H			XXXXXXXAB		
007A24 _H	007C24 _H				XXXXXXXXB	
007A25 _H	007C25 _H	– ID Register 1 IDR1			XXXXXXXXB	
007A26 _H	007C26 _H			R/W	XXXXXXXX _B	
007A27 _H	007C27 _H					
007A28 _H	007C28 _H				XXXXXXXXB	
007A29 _H	007C29 _H	ID Desister 2	IDR2	R/W	XXXXXXXXB	
007A2A _H	007C2A _H	ID Register 2	IDRZ	R/W	XXXXXXXX _B	
007A2B _H	007C2B _H				XXXXXXXXB	
007A2C _H	007C2C _H			R/W	XXXXXXXX _B	
007A2D _H	007C2D _H	ID Degister 2	IDR3		XXXXXXXXB	
007A2E _H	007C2E _H	ID Register 3	IDRJ		XXXXXXXX _B	
007A2F _H	007C2F _H				XXXXXXXXB	
007A30 _H	007C30 _H		XX	XXXXXXXXAB		
007A31 _H	007C31 _H	ID Pagistar 4		R/W	XXXXXXXXB XXXXXXXXB	
007A32 _H	007C32 _H	ID Register 4 IDR4		R/W	XXXXXXXX _B	
007A33 _H	007C33 _H				XXXXXXXXB	
007A34 _H	007C34 _H				XXXXXXXXB	
007A35 _H	007C35 _H	ID Register 5	IDR5	R/W	XXXXXXXX	
007A36 _H	007C36 _H		IDKJ	r./ v v	XXXXXXXXB	
007A37 _H	007C37 _H				XXXXXXXXB	
007A38 _H	007C38 _H				XXXXXXXAB	
007A39 _H	007C39 _H	ID Register 6	IDR6	R/W	XXXXXXXXB	
007A3A _H	007C3A _H				XXXXXXXAB	
007A3B _H	007C3B _H				XXXXXXXXB	
007A3C _H	007C3C _H				XXXXXXXXB	
007A3D _H	007C3D _H	ID Pogistor 7	ID Register 7 IDR7		XXXXXXXXB	
007A3E _H	007C3E _H	INEGISIEI I			XXXXXXXX _B	
007A3F _H	007C3F _H				XXXXXXXXB	



Address		Pagiatar	Abbreviation	Access	Initial Value
CAN0	CAN1	Register	Appreviation	Access	
007AF0 _H to 007AF7 _H	007CF0 _H to 007CF7 _H	Data Register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
007AF8 _H to 007AFF _H	007CF8 _H to 007CFF _H	Data Register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXXB

List of Message Buffers (DLC Registers and Data Registers) (3)

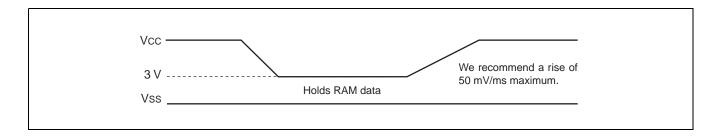
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the
 resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits:

*6: The maximum output current is defined as the peak value of the current of any one of the corresponding pins.

*7: The average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins.

*8: The average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


11.4.3 Power On Reset

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5.0 \text{ V} \pm 10\%, f_{CP} \le 24 \text{ MHz}, V_{SS} = AV_{SS} = 0.0 \text{ V})$

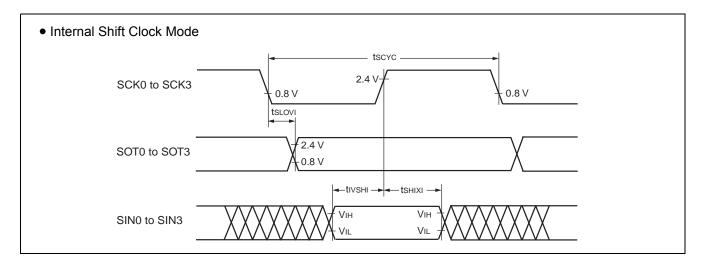
Parameter	neter Symbol Pin Condition Value Unit		Unit	Remarks			
Falameter	Symbol	E III	condition	Min	Min Max		Remarks
Power on rise time	t _R	V _{CC}		0.05	30	ms	
Power off time	t _{OFF}	V _{CC}		1		ms	Waiting time until power-on

Note: : If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you startup smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within 1 V/s, you can operate while using the PLL clock.

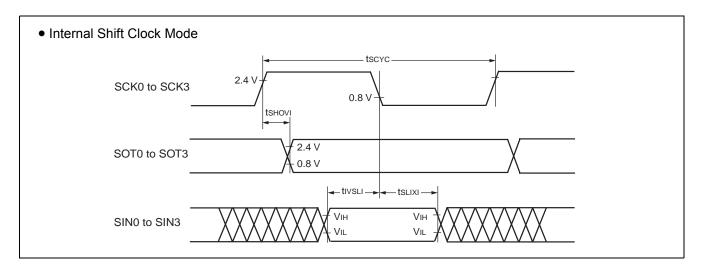
11.4.4 Clock Output Timing

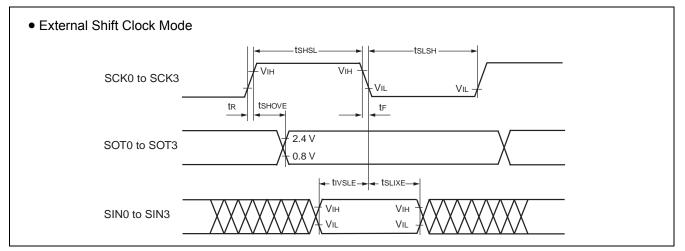
 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, f_{CP} \le 24 \text{ MHz})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Falameter	Symbol	FIII	Condition	Min	Max	Onit	Omt	Remarks
Cycle time	+	CLK		62.5	—	ns	$f_{CP} = 16 \text{ MHz}$	
	Cycle time t _{CYC}	ULK		41.67	—	ns	$f_{CP} = 24 \text{ MHz}$	
$CLK \uparrow \rightarrow CLK \downarrow$	+	CLK		20		ns	$f_{CP} = 16 \text{ MHz}$	
$CLK \mid \rightarrow CLK \downarrow$	t _{CHCL}	ULIN		13		ns	$f_{CP} = 24 \text{ MHz}$	


11.4.9 LIN-UART0/1/2/3 ■ Bit setting: ESCR:SCES = 0, ECCR:SCDE = 0

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

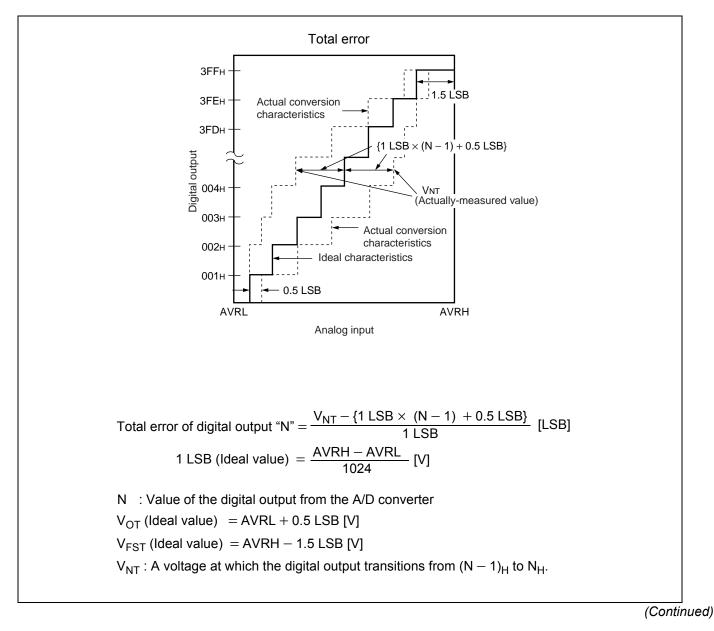

Parameter	Symbol	Pin	Condition	Value		Unit
Farameter	Symbol	FIII	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK0 to SCK3		5 t _{CP}	—	ns
$SCK \downarrow \ \rightarrow \ SOT \ delay \ time$	t _{SLOVI}	SCK0 to SCK3, SOT0 to SOT3	Internal shift clock	-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHI}	SCK0 to SCK3, SIN0 to SIN3	mode output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	t _{CP} + 80		ns
$SCK \uparrow \to Valid SIN hold time$	t _{SHIXI}	SCK0 to SCK3, SIN0 to SIN3		0		ns
Serial clock "L" pulse width	t _{SHSL}	SCK0 to SCK3		3 t _{CP} - t _R		ns
Serial clock "H" pulse width	t _{SLSH}	SCK0 to SCK3		t _{CP} + 10		ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCK0 to SCK3, SOT0 to SOT3			2 t _{CP} + 60	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHE}	SCK0 to SCK3, SIN0 to SIN3	External shift clock mode output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	30		ns
$SCK \uparrow \to Valid SIN hold time$	t _{SHIXE}	SCK0, SCK1, SIN0 to SIN3		t _{CP} + 30		ns
SCK fall time	t _F	SCK0 to SCK3			10	ns
SCK rise time	t _R	SCK0 to SCK3		—	10	ns


Note: • AC characteristic in CLK synchronized mode.

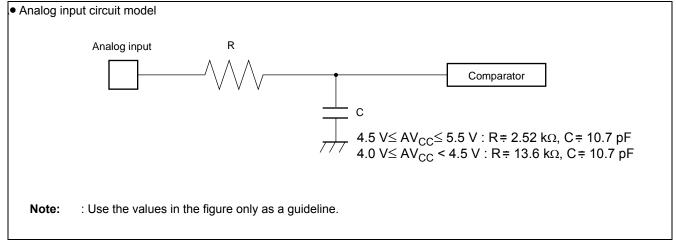
C_L is load capacity value of pins when testing.
t_{CP} is internal operating clock cycle time (machine clock). Refer to " (1) Clock Timing".

11.5 A/D Converter

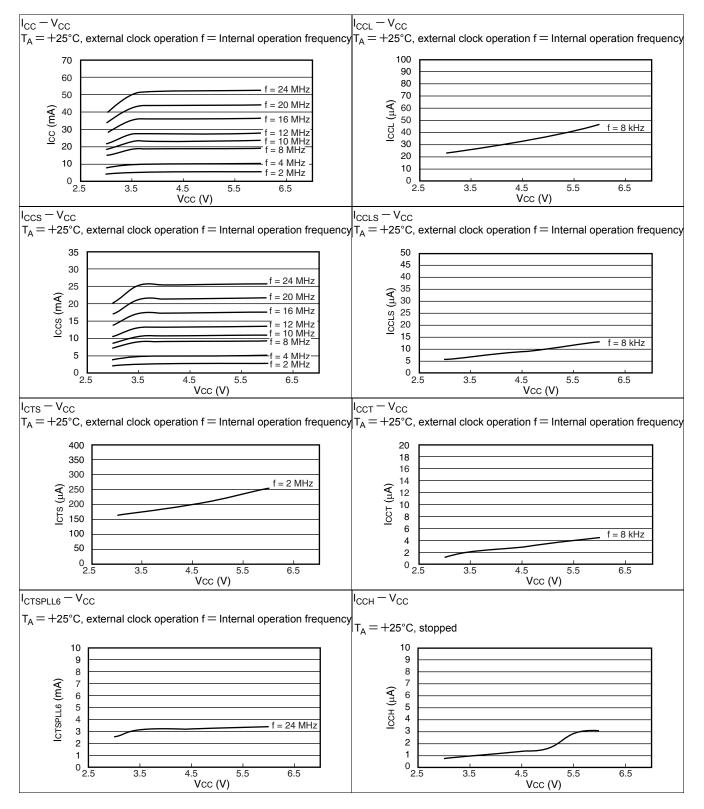
 $(T_{\text{A}} = -40^{\circ}\text{C to} + 105^{\circ}\text{C}, \ 3.0 \text{ V} \le \text{AVRH} - \text{AVRL}, \ \text{V}_{\text{CC}} = \text{AV}_{\text{CC}} = 5.0 \text{ V} \pm 10\%, \ \text{f}_{\text{CP}} \le 24 \text{ MHz}, \ \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$


Deremeter	Symbol	Din	Value				Remarks
Parameter	Symbol	Pin	Min	Тур	Max	Unit	Remarks
Resolution		—			10	bit	
Total error		—			±3.0	LSB	
Nonlinearity error		—			±2.5	LSB	
Differential nonlinearity error					±1.9	LSB	
Zero reading voltage	V _{OT}	AN0 to AN23	AVRL — 1.5 × LSB	AVRL + 0.5 × LSB	AVRL + 2.5 × LSB	V	
Full scale reading voltage	V _{FST}	AN0 to AN23	AVRH — 3.5 × LSB	AVRH — 1.5 × LSB	AVRH + 0.5 × LSB	V	
Compare time			1.0		16500	μS	$4.5~\text{V}{\leq}~\text{AV}_{\text{CC}}{\leq}~5.5~\text{V}$
			2.0	1			$4.0 \ V \le AV_{CC} \le 4.5 \ V$
Sampling time			0.5		∞	μS	$4.5~\text{V}{\leq}~\text{AV}_{\text{CC}}{\leq}~5.5~\text{V}$
			1.2				$4.0 \ V \le AV_{CC} \le 4.5 \ V$
Analog port input current	I _{AIN}	AN0 to AN23	-0.3		+0.3	μA	
Analog input voltage range	V _{AIN}	AN0 to AN23	AVRL		AVRH	V	
Reference		AVRH	AVRL + 2.7		AV _{CC}	V	
voltage range		AVRL	0		AVRH - 2.7	V	
Power supply	I _A	AV _{CC}		3.5	7.5	mA	
current	I _{AH}	AV _{CC}			5	μΑ	*
Reference	I _R	AVRH		600	900	μΑ	
voltage current	I _{RH}	AVRH			5	μΑ	*
Offset between input channels		AN0 to AN23			4	LSB	

*: If the A/D convertor is not operating, a current when CPU is stopped is applicable ($V_{CC} = AV_{CC} = AVRH = 5.0 V$). **Note:** : The accuracy gets worse as |AVRH - AVRL| becomes smaller.


11.6 Definition of A/D Converter Terms

Resolution	: Analog variation that is recognized by the A/D converter.
Non linearity error	: The deviation between the actual conversion characteristics and a line that joins the zero-transition line ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") to the full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111").
Differential linearity error	: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error	Difference between the actual value and the ideal value. The total error includes zero transition error, full-scale transition error, and linear error.



If the output impedance of the external circuit is too high, a sampling period for an analog voltage may be insufficient.

■ MB90F347E, MB90F347ES, MB90F347CE, MB90F347CES

13. Ordering Information

Part number	Package	Remarks
MB90F342EPF		
MB90F342ESPF	100-pin plastic QFP	
MB90F342CEPF	(FPT-100P-M06)	
MB90F342CESPF		
MB90F342EPMC		
MB90F342ESPMC	100-pin plastic LQFP	
MB90F342CEPMC	(FPT-100P-M20)	
MB90F342CESPMC		
MB90F345EPF		
MB90F345ESPF	100-pin plastic QFP	
MB90F345CEPF	(FPT-100P-M06)	
MB90F345CESPF		
MB90F345EPMC		
MB90F345ESPMC	100-pin plastic LQFP	
MB90F345CEPMC	(FPT-100P-M20)	
MB90F345CESPMC		
MB90F346EPF		
MB90F346ESPF	100-pin plastic QFP	
MB90F346CEPF	(FPT-100P-M06)	
MB90F346CESPF		
MB90F346EPMC		
MB90F346ESPMC	100-pin plastic LQFP	
MB90F346CEPMC	(FPT-100P-M20)	
MB90F346CESPMC		

Part number	Package	Remarks
MB90F347EPF		
MB90F347ESPF	100-pin plastic QFP	
MB90F347CEPF	(FPT-100P-M06)	
MB90F347CESPF		
MB90F347EPMC		
MB90F347ESPMC	100-pin plastic LQFP	
MB90F347CEPMC	(FPT-100P-M20)	
MB90F347CESPMC		
MB90F349EPF		
MB90F349ESPF	100-pin plastic QFP	
MB90F349CEPF	(FPT-100P-M06)	
MB90F349CESPF		
MB90F349EPMC		
MB90F349ESPMC	100-pin plastic LQFP	
MB90F349CEPMC	(FPT-100P-M20)	
MB90F349CESPMC		
MB90341EPF		
MB90341ESPF	100-pin plastic QFP	
MB90341CEPF	(FPT-100P-M06)	
MB90341CESPF		
MB90341EPMC		
MB90341ESPMC	100-pin plastic LQFP	
MB90341CEPMC	(FPT-100P-M20)	
MB90341CESPMC		
MB90342EPF		
MB90342ESPF	100-pin plastic QFP	
MB90342CEPF	(FPT-100P-M06)	
MB90342CESPF		
MB90342EPMC		
MB90342ESPMC	100-pin plastic LQFP	
MB90342CEPMC	(FPT-100P-M20)	
MB90342CESPMC		

15. Major Changes

Spansiion Publication Number: DS07-13747-4E

Page	Section	Change Results
_	—	Deleted the part numbers; MB90F343E(S), MB90F343CE(S)
51	Electrical Characteristics Absolute Maximum Ratings	Added "*6" in remark for "L" level maximum output current and "H" level maximum output current. Added "*7" in remark for "L" level average output current and "H" level average output current. Added "*8" in remark for "L"level average overall output current and "H" level average overall output current.
52		Added as follows. "*6:The maximum output current is defined as the peak value of the current of any one of the corresponding pins." "*7:The average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins." "*8:The average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins."

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90340E Series F2MC-16LX 16-bit Microcontroller Datasheet Document Number: 002-04498					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	_	AKIH	08/23/2010	Migrated to Cypress and assigned document number 002-04498. No change to document contents or format.	
*A	5221535	AKIH	05/04/2016	Updated to Cypress template	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.