

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 32-Core
Speed	4000MIPS
Connectivity	RGMII, USB
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xef232-1024-fb374-i40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

XEF232-1024-FB374 Datasheet

1	xCORE Multicore Microcontrollers
2	XEF232-1024-FB374 Features
3	Pin Configuration
4	Signal Description
5	Example Application Diagram
6	
· ·	Product Overview
7	PLL
8	Boot Procedure
9	Memory
10	USB PHY
11	RGMII
12	JTAG
13	Board Integration
14	DC and Switching Characteristics
15	Package Information
16	
	Ordering Information
	endices
Α	Configuration of the XEF232-1024-FB374 33
В	Processor Status Configuration 36
С	Tile Configuration
D	Node Configuration
E	USB Node Configuration
F	USB PHY Configuration
Ġ	Device Errata
н	
2	JTAG, xSCOPE and Debugging
	Schematics Design Check List
J	PCB Layout Design Check List
K	Associated Design Documentation
L	Related Documentation
М	Revision History

TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

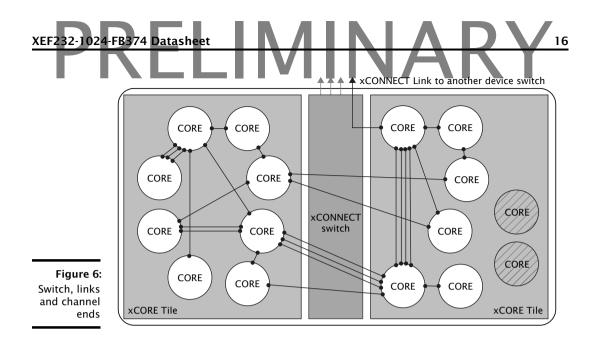
XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

1

X00		

74 Datash	eet				Ν			D
							-	
Signal	Function						Туре	Properties
X2D00		1A ⁰					I/0	IOL, PD
X2D02		4	4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/0	IOL, PD
X2D03		2	4A ¹	8A ¹	16A ¹	32A ²¹	1/0	IOL, PD
X2D04		4	4B ⁰	8A ²	16A ²	32A ²²	1/0	IOL, PD
X2D05		4	4B ¹	8A ³	16A ³	32A ²³	1/0	IOL, PD
X2D06		4	4B ²	8A ⁴	16A ⁴	32A ²⁴	1/0	IOL, PD
X2D07		4	4B ³	8A ⁵	16A ⁵	32A ²⁵	1/0	IOL, PD
X2D08		4	4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOL, PD
X2D09		4	4A ³	8A ⁷	16A ⁷	32A ²⁷	1/0	IOL, PD
X2D11		1D ⁰		-	-	-	1/0	IOL, PD
X2D12		1E ⁰					1/0	IOR, PD
X2D12		1F ⁰					1/0	IOR, PD
X2D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	1/0	IOR, PD
X2D15			4C ¹	8B ¹	16A ⁹	32A ²⁹	1/0	IOR, PD
X2D15	XL4 ⁴		4D ⁰	8B ²	16A ¹⁰	32A	1/0	IOR, PD
X2D10 X2D17			4D ¹	8B ³	16A ¹¹		1/0	,
X2D17 X2D18	XL4 ³		4D ²	8B ⁴	16A ¹²		I/O	IOR, PD
	XL4 ² xL4 ¹			8B ⁵				IOR, PD
X2D19	XL4 ¹		4D ³	-	16A ¹³	22.30	1/0	IOR, PD
X2D20			4C ²	8B ⁶	16A ¹⁴		I/O	IOR, PD
X2D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IOR, PD
X2D22		1G ⁰					I/O	IOR, PD
X2D23		1H ⁰					I/O	IOR, PD
X2D24	XL7 ⁰	110					I/O	IOR, PD
X2D25	XL7 ⁰ out	1J ⁰					I/O	IOR, PD
X2D26	XL7 ³ _{out}	4	4E ⁰	8C ⁰	16B ⁰		I/0	IOR, PD
X2D27	XL7 ⁴ _{out}		4E ¹	8C1	16B ¹		I/O	IOR, PD
X2D28		4	4F ⁰	8C ²	16B ²		I/O	IOR, PD
X2D29		4	4F ¹	8C ³	16B ³		I/O	IOR, PD
X2D30		4	4F ²	8C ⁴	16B ⁴		I/O	IOR, PD
X2D31		4	4F ³	8C ⁵	16B ⁵		I/O	IOR, PD
X2D32		4	4E ²	8C ⁶	16B ⁶		I/0	IOR, PD
X2D33		4	4E ³	8C ⁷	16B ⁷		I/O	IOR, PD
X2D34	XL7 ¹ _{out}	1K ⁰					I/O	IOR, PD
X2D35	XL7 ² _{out}	1L ⁰					I/0	IOR, PD
X2D36		1M ⁰		8D ⁰	16B ⁸		I/0	IOL, PD
X2D49	XL5 ⁴					32A ⁰	1/0	IOR, PD
X2D50	XL5 ³					32A ¹	I/0	IOR, PD
X2D51	XL5 ²					32A ²	I/O	IOR, PD
X2D52	XL5 ¹					32A ³	1/0	IOR, PD
X2D53	XL5 ⁰					32A ⁴	1/0	IOR, PD
X2D54	XL5 ⁰ _{out}					32A ⁵	1/0	IOR, PD
X2D55	XL5 ¹ _{out}					32A ⁶	1/0	IOR, PD
X2D56	XL5 ² _{out}					32A ⁷	1/0	IOR, PD


-XMOS[®]-

X009587,	

XEF232-1024-FB374 Datas	heet	Δ	Ļ	Ν		Λ_	
Signal	Function					Туре	Properties
X2D57	XL5 ³ _{out}				32A ⁸	I/O	IOR, PD
X2D58	XL5 ⁴ _{out}				32A ⁹	I/O	IOR, PD
X2D61	XL6 ⁴ _{in}				32A ¹⁰	I/O	IOR, PD
X2D62	XL6 ³ _{in}				32A ¹¹	I/O	IOR, PD
X2D63	XL6 ² _{in}				32A ¹²	I/O	IOR, PD
X2D64	XL6 ¹				32A ¹³	I/O	IOR, PD
X2D65	XL6 ⁰ in				32A ¹⁴	I/O	IOR, PD
X2D66	XL6 ⁰ out				32A ¹⁵	I/0	IOR, PD
X2D67	XL6 ¹ _{out}				32A ¹⁶	I/O	IOR, PD
X2D68	XL6 ² _{out}				32A ¹⁷	I/O	IOR, PD
X2D69	XL6 ³ _{out}				32A ¹⁸	I/O	IOR, PD
X2D70	XL6 ⁴ _{out}				32A ¹⁹	I/O	IOR, PD
X3D00	XL7 ² 1A)				I/O	IOR, PD
X3D01	XL7 ¹ 1B ⁰)				I/0	IOR, PD
X3D02	XL4 ⁰	4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/0	IOR, PD
X3D03	XL4 ⁰ _{out}	4A ¹	8A ¹	16A ¹	32A ²¹	1/0	IOR, PD
X3D04	XL4 ¹ _{out}	4B ⁰	8A ²	16A ²	32A ²²	1/0	IOR, PD
X3D05	XL4 ² _{out}	4B ¹	8A ³	16A ³	32A ²³	1/0	IOR, PD
X3D06	XL4 ³ _{out}	4B ²	8A ⁴	16A ⁴	32A ²⁴	I/0	IOR, PD
X3D07	XL4 ⁴ _{out}	4B ³	8A ⁵	16A ⁵	32A ²⁵	1/0	IOR, PD
X3D08	XL7 ⁴	4A ²	8A ⁶	16A ⁶	32A ²⁶	1/0	IOR, PD
X3D09	XL7 ³	4A ³	8A ⁷	16A ⁷	32A ²⁷	1/0	IOR, PD
X3D10	10					1/0	IOT, PD
X3D11	10					1/0	IOT, PD
X3D12	15					I/O	IOL, PD
X3D12 X3D13	15					1/0	IOL, PD
X3D13		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	1/0	IOR, PD
X3D14 X3D15		4C ¹	8B ¹	16A ⁹	32A ²⁹	1/0	IOR, PD
X3D13		4C ²	8B ⁶	16A ¹	32A ³⁰	1/0	IOR, PD
X3D20		4C 4C ³	8B ⁷	16A ¹⁵	32A ³¹	1/0	
	1H		OD.	TOA	52A-		IOR, PD
X3D23	110					1/0	IOL, PD
X3D24						I/0	IOR, PD
X3D25	1J ⁰	. =0	0	0		1/0	IOR, PD
X3D26	tx_clk (rgmii)	4E ⁰	8C ⁰			1/0	IOT, PD
X3D27	tx_ctl (rgmii)	4E ¹	8C ¹	16B ¹		I/O	IOT, PD
X3D28	rx_clk (rgmii)	4F ⁰	8C ²	16B ²		I/O	IOT, PD
X3D29	rx_ctl (rgmii)	4F ¹	8C ³	16B ³		I/O	IOT, PD
X3D30	rx0 (rgmii)	4F ²	8C ⁴	16B ⁴		I/O	IOT, PD
X3D31	rx1 (rgmii)	4F ³	8C ⁵	16B ⁵		I/O	IOT, PD
X3D32	rx2 (rgmii)	4E ²	8C ⁶	16B ⁶		I/O	IOT, PD
X3D33	rx3 (rgmii)	4E ³	8C ⁷	16B ⁷		I/O	IOT, PD
X3D40	tx3 (rgmii)		8D ⁴	16B ¹²		I/O	IOT, PD
X3D41	tx2 (rgmii)		8D ⁵	16B ¹³		I/O	IOT, PD

-XMOS[®]-

and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link.

Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-UEF Link Performance and Design Guide, X2999.

7 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock. The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 7:

	Oscillator	MC	DDE	Tile	PLL Ratio	PLL settings					
	Frequency	1	0	Frequency		OD	F	R			
e 7:	3.25-10 MHz	0	0	130-400 MHz	40	1	159	0			
olier	9-25 MHz	1	1	144-400 MHz	16	1	63	0			
and	25-50 MHz	1	0	167-400 MHz	8	1	31	0			
oins	50-100 MHz	0	1	196-400 MHz	4	1	15	0			

-XMOS

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 16. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, *see* §9.1 (all zero on unprogrammed devices).

Figure 16: USERCODE return value

<i>c</i> .	Bit31 Usercode Register																	В	Bit0													
6:	OTP User ID							Unused Silicon Revision																								
DE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Je		0 0					(0 2			2 8				0			0			0											

13 Board Integration

The device has the following power supply pins:

- ▶ VDD pins for the xCORE Tile
- ▶ VDDIO pins for the I/O lines
- ▶ PLL_AVDD pins for the PLL
- ▶ OTP_VCC pins for the OTP

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0V to its final value within 10 ms to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.

The PLLVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a 4.7Ω resistor and multi-layer ceramic capacitor) is recommended on this pin.

The following ground pins are provided:

- PLL_AGND for PLL_AVDD
- ► GND for all other supplies

All ground pins must be connected directly to the board ground.

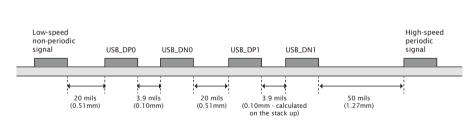
-XM()S

The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 4x100nF 0402 low inductance MLCCs per supply rail). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

13.1 USB connections

USB_VBUS should be connected to the VBUS pin of the USB connector. A 2.2 μ F capacitor to ground is required on the VBUS pin. A ferrite bead may be used to reduce HF noise.


For self-powered systems, a bleeder resistor may be required to stop VBUS from floating when no USB cable is attached.

USB_DP and USB_DN should be connected to the USB connector. USB_ID does not need to be connected.

13.2 USB signal routing and placement

The USB_DP and USB_DN lines are the positive and negative data polarities of a high speed USB signal respectively. Their high-speed differential nature implies that they must be coupled and properly isolated. The board design must ensure that the board traces for USB_DP and USB_DN are tightly matched. In addition, according to the USB 2.0 specification, the USB_DP and USB_DN differential impedance must be 90 Ω .

Figure 17: USB trace separation showing a low speed signal, two differential pairs and a high-speed clock

13.2.1 General routing and placement guidelines

The following guidelines will help to avoid signal quality and EMI problems on high speed USB designs. They relate to a four-layer (Signal, GND, Power, Signal) PCB.

For best results, most of the routing should be done on the top layer (assuming the USB connector and XS2-UEF32A-1024-FB374 are on the top layer) closest to GND. Reference planes should be below the transmission lines in order to maintain control of the trace impedance.

-XM()S

	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
	f(TCK_D)	TCK frequency (debug)			18	MHz	
	f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
	T(SETUP)	TDO to TCK setup time	5			ns	А
Figure 27:	T(HOLD)	TDO to TCK hold time	5			ns	А
JTAG timing	T(DELAY)	TCK to output delay			15	ns	В

A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.

All JTAG operations are synchronous to TCK.

This register contains the base address of the RAM. It is initialized to 0x00040000.

0x00: RAM base address

00:	Bits	Perm	Init	Description
ase	31:2	RW		Most significant 16 bits of all addresses.
ess	1:0	RO	-	Reserved

B.2 Vector base address: 0x01

Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector.

0x01 Vector base address

1:	Bits	Perm	Init	Description
e.	31:18	RW		The event and interrupt vectors.
S	17:0	RO	-	Reserved

B.3 xCORE Tile control: 0x02

Register to control features in the xCORE tile

X009587,

XEF232-1024-F	B374 D	atashee	t				N	Λ	D		38
					V			F	\square		
	Bits	Perm	Init	Des	scripti	on					

BITS	Perm	init	Description
31:26	RO	-	Reserved
25:18	RW	0	RGMII TX data delay value (in PLL output cycle increments)
17:9	RW	0	RGMII TX clock divider value. TX clk rises when counter (clocked by PLL output) reaches this value and falls when counter reaches (value»1). Value programmed into this field should be actual divide value required minus 1
8	RW	0	Enable RGMII interface periph ports
7:6	RO	-	Reserved
5	RW	0	Select the dynamic mode (1) for the clock divider when the clock divider is enabled. In dynamic mode the clock divider is only activated when all active threads are paused. In static mode the clock divider is always enabled.
4	RW	0	Enable the clock divider. This divides the output of the PLL to facilitate one of the low power modes.
3	RO	-	Reserved
2	RW		Select between UTMI (1) and ULPI (0) mode.
1	RW		Enable the ULPI Hardware support module
0	RO	-	Reserved
	31:26 25:18 17:9 8 7:6 5 5 4 4 3 2 1	31:26 RO 25:18 RW 17:9 RW 8 RW 7:6 RO 5 RW 4 RW 3 RO 2 RW 1 RW	31:26 RO - 25:18 RW 0 17:9 RW 0 8 RW 0 7:6 RO - 5 RW 0 4 RW 0 3 RO - 2 RW 1 1 RW 1

0x02: xCORE Tile control

B.4 xCORE Tile boot status: 0x03

This read-only register describes the boot status of the xCORE tile.

-XMOS[®]-

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	RO		Processor number.
15:9	RO	-	Reserved
8	RO		Overwrite BOOT_MODE.
7:6	RO	-	Reserved
5	RO		Indicates if core1 has been powered off
4	RO		Cause the ROM to not poll the OTP for correct read levels
3	RO		Boot ROM boots from RAM
2	RO		Boot ROM boots from JTAG
1:0	RO		The boot PLL mode pin value.

0x03 xCORE Tile boot status

XEF232-1024-I	-B374 D	atashee	t	MINARY ⁴⁶
	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x9C 0x9F: Resources	15:2	RO	-	Reserved
breakpoint control	1	DRW	0	When 0 break when condition A is met. When 1 = break when condition B is met.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

XEF232-1024-FB374 Datasheet 47 C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	CRO	Device identification
0x01	CRO	xCORE Tile description 1
0x02	CRO	xCORE Tile description 2
0x04	CRW	Control PSwitch permissions to debug registers
0x05	CRW	Cause debug interrupts
0x06	CRW	xCORE Tile clock divider
0x07	CRO	Security configuration
0x20 0x27	CRW	Debug scratch
0x40	CRO	PC of logical core 0
0x41	CRO	PC of logical core 1
0x42	CRO	PC of logical core 2
0x43	CRO	PC of logical core 3
0x44	CRO	PC of logical core 4
0x45	CRO	PC of logical core 5
0x46	CRO	PC of logical core 6
0x47	CRO	PC of logical core 7
0x60	CRO	SR of logical core 0
0x61	CRO	SR of logical core 1
0x62	CRO	SR of logical core 2
0x63	CRO	SR of logical core 3
0x64	CRO	SR of logical core 4
0x65	CRO	SR of logical core 5
0x66	CRO	SR of logical core 6
0x67	CRO	SR of logical core 7

Figure 32: Summary

C.1 Device identification: 0x00

This register identifies the xCORE Tile

-XMOS

XEF232-1024-I	-B374 D	<u>ata</u> shee	et	MINARY ⁴⁸
	Bits	Perm	Init	Description
	31:24	CRO		Processor ID of this XCore.
0x00:	23:16	CRO		Number of the node in which this XCore is located.
Device	15:8	CRO		XCore revision.
identification	7:0	CRO		XCore version.

C.2 xCORE Tile description 1: 0x01

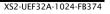
This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile.

001
0x01:
xCORE Tile
description 1

Bits	Perm	Init	Description
31:24	CRO		Number of channel ends.
23:16	CRO		Number of the locks.
15:8	CRO		Number of synchronisers.
7:0	RO	-	Reserved

C.3 xCORE Tile description 2: 0x02

This register describes the number of timers and clock blocks available on this xCORE tile.


0x02: xCORE Tile description 2

	Bits	Perm	Init	Description
x02:	31:16	RO	-	Reserved
Tile	15:8	CRO		Number of clock blocks.
on 2	7:0	CRO		Number of timers.

C.4 Control PSwitch permissions to debug registers: 0x04

-XMOS-

This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect.

XEF232-1024-I	FB374 D	atashee	t	MINARY ⁵⁰
	Bits	Perm	Init	Description
	31	CRO		Disables write permission on this register
	30:15	RO	-	Reserved
	14	CRO		Disable access to XCore's global debug
	13	RO	-	Reserved
	12	CRO		lock all OTP sectors
	11:8	CRO		lock bit for each OTP sector
	7	CRO		Enable OTP reduanacy
	6	RO	-	Reserved
	5	CRO		Override boot mode and read boot image from OTP
0x07:	4	CRO		Disable JTAG access to the PLL/BOOT configuration registers
Security	3:1	RO	-	Reserved
configuration	0	CRO		Disable access to XCore's JTAG debug TAP

C.8 Debug scratch: 0x20 .. 0x27

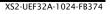
A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27 Debug scratch

0x27: Debug	Bits	Perm	Init	Description
cratch	31:0	CRW		Value.

C.9 PC of logical core 0: 0x40

Value of the PC of logical core 0.


0x40 PC of logical core 0

0x40: ogical	Bits	Perm	Init	Description
ore 0	31:0	CRO		Value.

XMOS

C.10 PC of logical core 1: 0x41

Value of the PC of logical core 1.

Value of the PC of logical core 6.

0x46: PC of logical core 6

Bits

31:0

Perm	Init	Description
CRO		Value.

C.16 PC of logical core 7: 0x47

Value of the PC of logical core 7.

0 PC of loo со

0x47: ogical	Bits	Perm	Init	Description
ore 7	31:0	CRO		Value.

C.17 SR of logical core 0: 0x60

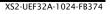
Value of the SR of logical core 0

0 SR of log со

0 x60: ogical	Bits	Perm	Init	Description
ore 0	31:0	CRO		Value.

C.18 SR of logical core 1: 0x61

Value of the SR of logical core 1


0x6 SR of logic core

51: cal	Bits	Perm	Init	Description
21	31:0	CRO		Value.

•**X**M(

C.19 SR of logical core 2: 0x62

Value of the SR of logical core 2

55 XEF232-1024-FB374 Datasheet Node Configuration D

The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	System switch description
0x04	RW	Switch configuration
0x05	RW	Switch node identifier
0x06	RW	PLL settings
0x07	RW	System switch clock divider
0x08	RW	Reference clock
0x09	R	System JTAG device ID register
0x0A	R	System USERCODE register
0x0C	RW	Directions 0-7
0x0D	RW	Directions 8-15
0x10	RW	Reserved
0x11	RW	Reserved.
0x1F	RO	Debug source
0x20 0x28	RW	Link status, direction, and network
0x40 0x47	RO	PLink status and network
0x80 0x88	RW	Link configuration and initialization
0xA0 0xA7	RW	Static link configuration

Figure 33: Summary

D.1 Device identification: 0x00

This register contains version and revision identifiers and the mode-pins as sampled at boot-time.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
0x00:	23:16	RO		Sampled values of BootCtl pins on Power On Reset.
Device	15:8	RO		SSwitch revision.
tification	7:0	RO		SSwitch version.

-XMOS

identi

XS2-UEF32A-1024-FB374

XEF232-1024-F	- B 374 D	<u>ata</u> shee	t	MINARY ⁶¹
	Bits	Perm	Init	Description
	31:26	RO	-	Reserved
	25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
	23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
	15:6	RO	-	Reserved
	5:4	RW	0	Determines the network to which this link belongs, reset as 0.
	3	RO	-	Reserved
0x40 0x47:	2	RO		1 when the current packet is considered junk and will be thrown away.
PLink status	1	RO		1 when the dest side of the link is in use.

and network

0

RO

D.17 Link configuration and initialization: 0x80 ... 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

1 when the source side of the link is in use.

Bits	Perm	Init	Description
31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
29:28	RO	-	Reserved
27	RO		Rx buffer overflow or illegal token encoding received.
26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
25	RO	0	This end of the xlink has credit to allow it to transmit.
24	WO		Clear this end of the xlink's credit and issue a HELLO token.
23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
22	RO	-	Reserved
21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS°

0x80 .. 0x88 Lin configuration an initializatio

The USB node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, ...) for reads and writes).

Number	Perm	Description	
0x00	RO	Device identification register	
0x04	RW	Node configuration register	
0x05	RW	Node identifier	
0x51	RW	System clock frequency	
0x80	RW	Link Control and Status	

Figure 34: Summary

E.1 Device identification register: 0x00

This register contains version information, and information on power-on behavior.

0x00: Device identification register

Bits	Perm	Init	Description
31:24	RO	0x0F	Chip identifier
23:16	RO	-	Reserved
15:8	RO	0x02	Revision number of the USB block
7:0	RO	0x00	Version number of the USB block

E.2 Node configuration register: 0x04

This register is used to set the communication model to use (1 or 3 byte headers), and to prevent any further updates.

0x04	4:
Nod	e
configuratio	n
registe	er

	Bits	Perm	Init	Description
9 4: de	31	RW	0	Set to 1 to disable further updates to the node configuration and link control and status registers.
on	30:1	RO	-	Reserved
er	0	RW	0	Header mode. 0: 3-byte headers; 1: 1-byte headers.

XS2-UEF32A-1024-FB374

-XMOS

E.3 Node identifier: 0x05

	Bits	Perm	Init	Description
0x05:	31:16	RO	-	Reserved
Node identifier	15:0	RW	0	16-bit node identifier. This does not need to be set, and is present for compatibility with XS1-switches.

E.4 System clock frequency: 0x51

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6:0	RW	25	Oscillator clock frequency in MHz rounded up to the nearest integer value. Only values between 5 and 100 MHz are valid - writes outside this range are ignored and will be NACKed. This field must be set on start up of the device and any time that the input oscillator clock frequency is changed. It must contain the system clock frequency in MHz rounded up to the nearest integer value.

E.5 Link Control and Status: 0x80

Bits	Perm	Init	Description	
31:28	RO	-	Reserved	
27	RO		Rx buffer overflow or illegal token encoding received.	
26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit	
25	RO	0	This end of the xlink has credit to allow it to transmit.	
24	WO		Clear this end of the xlink's credit and issue a HELLO token.	
23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.	
22	RO	-	Reserved	
21:11	RW	1	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.	
10:0	RW	1	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.	

-XMOS

0x80: Link Control and Status

0x51: System clock frequency

XEF232-1024-1	FB374 I	D <u>ata</u> she	et	IMINARY ⁷⁰
	Bits	Perm	Init	Description
0x2C:	31:4	RO	-	Reserved
UIFM PID	3:0	RO	0	Value of the last received PID.

F.13 UIFM Endpoint: 0x30

The last endpoint seen

0x30 UIFM Endpoint

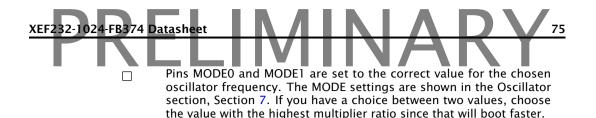
	Bits	Perm	Init	Description
0:	31:5	RO	-	Reserved
м. М	4	RO	0	1 if endpoint contains a valid value.
nt	3:0	RO	0	A copy of the last received endpoint.

F.14 UIFM Endpoint match: 0x34

This register can be used to mark UIFM endpoints as special.

0x34: UIFM Endpoint match

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RW	0	This register contains a bit for each endpoint. If its bit is set, the endpoint will be supplied on the RX port when ORed with 0x10.


F.15 OTG Flags mask: 0x38

0x38 OTG Flags mask

0x38: Flags	Bits	Perm	Init	Description		
mask	31:0	RW	0	Data		

F.16 UIFM power signalling: 0x3C

	Bits	Perm	Init	Description
0x3C:	31:9	RO	-	Reserved
UIFM power	8	RW	0	Valid
signalling	7:0	RW	0	Data

I.5 RGMII interface

This section can be skipped if you do not have any device connected to the RGMII interface.

- \square RX_CLK will be low when the xCORE comes out of reset (see Section 11).
- \Box VDDIOT has a 2.5V supply.
- \square RGMII signals are connected to the appropriate RGMII pins of the xCORE device.

I.6 Boot

- \square X0D01 has a 1K pull-up to VDDIOL (Section 8).
- The device is kept in reset for at least 1 ms after VDDIOL has reached its minimum level (Section 8).

I.7 JTAG, XScope, and debugging

- \Box You have decided as to whether you need an XSYS header or not (Section H)
- □ If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section H).

I.8 GPIO

- You have not mapped both inputs and outputs to the same multi-bit port.
- Pins X0D04, X0D05, X0D06, and X0D07 are output only and are, after reset, pulled low or not connected (Section 8)

I.9 Multi device designs

Skip this section if your design only includes a single XMOS device.

 \Box One device is connected to a SPI flash for booting.