

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x8/12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	24-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f652epft-g-sne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power-on reset

A power-on reset is generated when the power is switched on.

Low-voltage detection reset circuit and low-voltage detection interrupt circuit (only available on MB95F652E/F653E/F654E/F656E)

Built-in low-voltage detection function

Clock supervisor counter

Built-in clock supervisor counter

Dual operation Flash memory

The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.

Flash memory security function

Protects the content of the Flash memory.

5. Pin Functions

Pin no.			I/O		I/O type				
SOP24 ^{*1} , TSSOP24 ^{*2}	QFN32* ³	Pin name	circuit type ^{*4}	Function	Input	Output	OD* ⁵	PU* ⁶	
1	22	PF0	P	General-purpose I/O port	Hystoresia	CMOS			
1	32	X0	В	Main clock input oscillation pin	Hysteresis	CMOS	_		
	04	PF1	ſ	General-purpose I/O port	Liveterecie	01400			
2	31	X1	В	Main clock I/O oscillation pin	Hysteresis	CMOS	_	_	
3	1	V _{SS}	_	Power supply pin (GND)		_	_	—	
4	c	PG2	С	General-purpose I/O port	Hystoresia	CMOS		0	
4	2	X1A	C	Subclock I/O oscillation pin	Hysteresis	CMOS	_	0	
	0	PG1	С	General-purpose I/O port	Liveterecie	01400		0	
5	3	X0A	C	Subclock input oscillation pin	Hysteresis	CMOS	_	0	
6	4	V _{CC}	_	Power supply pin		_	_	—	
7	5	С		Decoupling capacitor connection pin	_	_	_		
		PF2		General-purpose I/O port					
8	6	RST	A	Reset pin Dedicated reset pin on MB95F652L/F653L/F654L/F656L	Hysteresis	CMOS	0	—	
		P17	General-purpose I/O port						
9	7	SCL1	J	I ² C bus interface ch. 1 clock I/O pin	CMOS	CMOS	—/O* ⁷	—	
		UIO		UART/SIO ch. 0 data input pin					
		P16		General-purpose I/O port			—/O* ⁷		
10	8	SDA1	J	I ² C bus interface ch. 1 data I/O pin	CMOS	CMOS			
		UO0		UART/SIO ch. 0 data output pin					
		P62		General-purpose I/O port High-current pin					
11	10	TO10	D	8/16-bit composite timer ch. 1 output pin	Hysteresis	CMOS	_	0	
		UCK0		UART/SIO ch. 0 clock I/O pin					
12	9	P63	D	General-purpose I/O port High-current output	Hysteresis	CMOS	_	0	
		TO11		8/16-bit composite timer ch. 1 output pin	-				
13	16	P15		General-purpose I/O port	CMOS	CMOS	0		
15	10	SCL0	1	I ² C bus interface ch. 0 clock I/O pin	CIVICS	0000	0		
14	15	P14	1	General-purpose I/O port	CMOS	CMOS	0		
14	10	SDA0		I ² C bus interface ch. 0 data I/O pin		0000	0		
		P64		General-purpose I/O port					
15	17	EC1	D	8/16-bit composite timer ch. 1 clock input pin	Hysteresis	CMOS		Ο	

Pin n	0.		I/O			I/O type		
SOP24* ¹ , TSSOP24* ²	QFN32* ³	Pin name	circuit type* ⁴	Function	Input	Output	OD* ⁵	PU* ⁶
16	18	P00	E	General-purpose I/O port	Hysteresis/	CMOS		0
10	10	AN00		8/12-bit A/D converter analog input pin	analog	0000		0
17	18	P01	E	General-purpose I/O port	Hysteresis/	CMOS		0
17	10	AN01		8/12-bit A/D converter analog input pin	analog	0000		0
		P02		General-purpose I/O port				
18	20	INT02	E	External interrupt input pin	Hysteresis/	CMOS		0
10	20	AN02		8/12-bit A/D converter analog input pin	analog	011100		0
		SCK		LIN-UART clock I/O pin				
		P03		General-purpose I/O port				
19	21	INT03	E	External interrupt input pin	Hysteresis/	CMOS		0
15	21	AN03		8/12-bit A/D converter analog input pin	analog	01000	_	Ŭ
		SOT		LIN-UART data output pin				
		P04		General-purpose I/O port				
		INT04		External interrupt input pin	CMOS/ analog			ο
20	22	AN04	F	8/12-bit A/D converter analog input pin		CMOS	_	
		SIN		LIN-UART data input pin				
		EC0		8/16-bit composite timer ch. 0 clock input pin				
		P05		General-purpose I/O port High-current pin				
21	23	INT05	к	External interrupt input pin	Hysteresis/	CMOS	_	0
		AN05		8/12-bit A/D converter analog input pin	analog			
		TO00		8/16-bit composite timer ch. 0 output pin				
	_	P06	_	General-purpose I/O port High-current pin				
22	22 24 INT06		D	External interrupt input pin	Hysteresis	CMOS		0
		TO01		8/16-bit composite timer ch. 0 output pin				
		P07		General-purpose I/O port High-current pin			; _	
23	26	INT07	K	External interrupt input pin	Hysteresis	CMOS		0
		TO10	·	8/16-bit composite timer ch. 1 output pin				

Pin n	0.		I/O		I/O type				
SOP24 ^{*1} , TSSOP24 ^{*2}	QFN32* ³	Pin name	circuit type* ⁴	Function	Input	Output	OD* ⁵	PU* ⁶	
		P12		General-purpose I/O port			0		
24	25	25 DBG		DBG input pin	Hysteresis	CMOS			
	20	EC0		8/16-bit composite timer ch. 0 clock input pin	, yeter colo				
	11								
	12					_	_	_	
	13								
	14	NC		It is an internally connected pin. Always					
	27	NO	_	leave it unconnected.	_				
	28								
	29								
	30								

O: Available

*1: FPT-24P-M34

*2: FPT-24P-M10

*3: LCC-32P-M19

*4: For the I/O circuit types, see "6. I/O Circuit Type".

*5: N-ch open drain

*6: Pull-up

*7: In I²C mode, the pin becomes an N-ch open drain pin.

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

7.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

- For reliable performance, do the following:
- 1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

8. Notes On Device Handling

Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.

In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "18.1 Absolute Maximum Ratings" of "18. Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

9. Pin Connection

Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 k\Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 1.0 μ F as a bypass capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device.

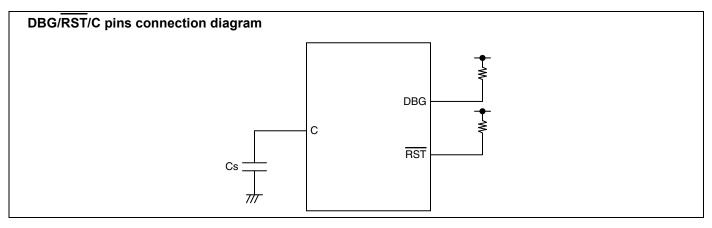
DBG pin

Connect the DBG pin to an external pull-up resistor of 2 k Ω or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

RST pin


Connect the \overline{RST} pin to an external pull-up resistor of 2 k Ω or above.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the RST pin and that between a pull-up resistor and the V_{CC} pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S . For the connection to a decoupling capacitor C_S , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

Note on serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end of data in order to detect errors. If an error is detected, retransmit the data.

11. CPU Core

Memory space

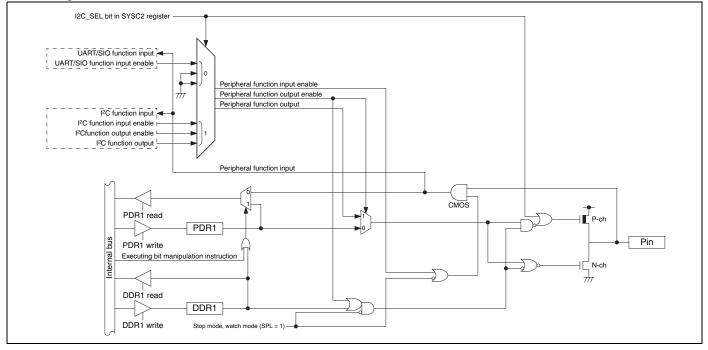
The memory space of the MB95650L Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95650L Series are shown below.

Memory maps

14. I/O Map

Address	Register abbreviation	Register name	R/W	Initial value
0x0000	PDR0	Port 0 data register	R/W	0b0000000
0x0001	DDR0	Port 0 direction register	R/W	0b0000000
0x0002	PDR1	Port 1 data register	R/W	0b0000000
0x0003	DDR1	Port 1 direction register	R/W	0b0000000
0x0004		(Disabled)	—	_
0x0005	WATR	Oscillation stabilization wait time setting register	R/W	0b11111111
0x0006	PLLC	PLL control register	R/W	0b000X0000
0x0007	SYCC	System clock control register		0bXXX11011
0x0008	STBC	Standby control register	R/W	0b0000000
0x0009	RSRR	Reset source register	R/W	0b000XXXXX
0x000A	TBTC	Time-base timer control register	R/W	0b0000000
0x000B	WPCR	Watch prescaler control register	R/W	0b0000000
0x000C	WDTC	Watchdog timer control register	R/W	0b00XX0000
0x000D	SYCC2	System clock control register 2	R/W	0bXXXX0011
0x000E to 0x0015	_	(Disabled)	_	_
0x0016	PDR6	Port 6 data register	R/W	0b0000000
0x0017	DDR6	Port 6 direction register	R/W	0b0000000
0x0018 to 0x0027	_	(Disabled)		—
0x0028	PDRF	Port F data register	R/W	0b0000000
0x0029	DDRF	Port F direction register	R/W	0b0000000
0x002A	PDRG	Port G data register	R/W	0b0000000
0x002B	DDRG	Port G direction register	R/W	0b0000000
0x002C	PUL0	Port 0 pull-up register	R/W	0b0000000
0x002D to 0x0032	_	(Disabled)	_	_
0x0033	PUL6	Port 6 pull-up register	R/W	0b0000000
0x0034	_	(Disabled)		_
0x0035	PULG	Port G pull-up register	R/W	0b0000000
0x0036	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	0b0000000
0x0037	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	0b0000000
0x0038	T11CR1	8/16-bit composite timer 11 status control register 1	R/W	0b0000000
0x0039	T10CR1	8/16-bit composite timer 10 status control register 1		0b0000000
0x003A to 0x0048	—	(Disabled)	—	_

Address	Register abbreviation	Register name	R/W	Initial value
0x0049	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0b0000000
0x004A	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	0b0000000
0x004B	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	0b0000000
0x004C to 0x004E	_	(Disabled)	_	_
0x004F	LVDC	LVD control register	R/W	0b00000100
0x0050	SCR	LIN-UART serial control register	R/W	0b0000000
0x0051	SMR	LIN-UART serial mode register	R/W	0b0000000
0x0052	SSR	LIN-UART serial status register	R/W	0b00001000
0.0050	RDR	LIN-UART receive data register		01 0000000
0x0053	TDR	LIN-UART transmit data register	R/W	0b0000000
0x0054	ESCR	LIN-UART extended status control register	R/W	0b00000100
0x0055	ECCR	LIN-UART extended communication control register	R/W	0b000000XX
0x0056	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0b0000000
0x0057	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0b00100000
0x0058	SSR0	UART/SIO serial status and data register ch. 0	R/W	0b0000001
0x0059	TDR0	UART/SIO serial output data register ch. 0	R/W	0b0000000
0x005A	RDR0	UART/SIO serial input data register ch. 0	R	0b0000000
0x005B to 0x005F	_	(Disabled)	_	_
0x0060	IBCR00	I ² C bus control register 0 ch. 0	R/W	0b0000000
0x0061	IBCR10	I ² C bus control register 1 ch. 0	R/W	0b0000000
0x0062	IBSR0	I ² C bus status register ch. 0	R/W	0b0000000
0x0063	IDDR0	I ² C data register ch. 0	R/W	0b0000000
0x0064	IAAR0	I ² C address register ch. 0	R/W	0b0000000
0x0065	ICCR0	I ² C clock control register ch. 0	R/W	0b0000000
0x0066	IBCR01	I ² C bus control register 0 ch. 1	R/W	0b0000000
0x0067	IBCR11	I ² C bus control register 1 ch. 1	R/W	0b0000000
0x0068	IBSR1	I ² C bus status register ch. 1	R/W	0b0000000
0x0069	IDDR1	I ² C data register ch. 1	R/W	0b0000000
0x006A	IAAR1	I ² C address register ch. 1	R/W	0b0000000
0x006B	ICCR1	I ² C clock control register ch. 1	R/W	0b0000000
0x006C	ADC1	8/12-bit A/D converter control register 1	R/W	0b0000000
0x006D	ADC2	8/12-bit A/D converter control register 2	R/W	0b0000000
0x006E	ADDH	8/12-bit A/D converter data register (upper)	R/W	0b0000000
0x006F	ADDL	8/12-bit A/D converter data register (lower)	R/W	0b0000000
0x0070	ADC3	8/12-bit A/D converter control register 3	R/W	0b01111100


Address	Register abbreviation	Register name	R/W	Initial value
0x0071	FSR2	Flash memory status register 2	R/W	060000000
0x0072	FSR	Flash memory status register	R/W	0b000X0000
0x0073	SWRE0	Flash memory sector write control register 0	R/W	060000000
0x0074	FSR3	Flash memory status register 3	R	0b000XXXXX
0x0075	FSR4	Flash memory status register 4	R/W	0b0000000
0x0076	WREN	Wild register address compare enable register	R/W	0b0000000
0x0077	WROR	Wild register data test setting register	R/W	0b0000000
0x0078	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	—	—
0x0079	ILR0	Interrupt level setting register 0	R/W	0b11111111
0x007A	ILR1	Interrupt level setting register 1	R/W	0b11111111
0x007B	ILR2	Interrupt level setting register 2	R/W	0b11111111
0x007C	ILR3	Interrupt level setting register 3	R/W	0b11111111
0x007D	ILR4	Interrupt level setting register 4	R/W	0b11111111
0x007E	ILR5	Interrupt level setting register 5	R/W	0b11111111
0x007F	_	(Disabled)	—	_
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b0000000
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b0000000
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b0000000
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b0000000
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b0000000
0x0F85	WRDR1	Wild register data setting register ch. 1	R/W	0b0000000
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0b0000000
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0b0000000
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b0000000
0x0F89 to 0x0F91	_	(Disabled)	_	_
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b0000000
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	060000000
0x0F94	T01DR	8/16-bit composite timer 01 data register	R/W	060000000
0x0F95	T00DR	8/16-bit composite timer 00 data register	R/W	0b0000000
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	060000000
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	060000000
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b0000000
0x0F99	T11DR	8/16-bit composite timer 11 data register	R/W	060000000
0x0F9A	T10DR	8/16-bit composite timer 10 data register	R/W	060000000
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	0b0000000

P17/SCL1/UI0 pin

This pin has the following peripheral functions:
I²C bus interface ch. 1 clock I/O pin (SCL1)
UART/SIO ch. 0 data input pin (UI0)

Block diagram of P17/SCL1/UI0

16. Interrupt Source Table

Interrupt source	Interrupt request	Vector tab	le address	Interrupt le regi	evel setting ster	Priority order of interrupt sources of the same level (occurring
	number	Upper	Lower	Register	Bit	simultaneously)
External interrupt ch. 4	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High
External interrupt ch. 5	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]	
External interrupt ch. 2	IRQ02	0xFFF6	0xFFF7	ILR0	L02 [1:0]	
External interrupt ch. 6	INQUZ	UXFFFU	UXFFF/	ILRU	LUZ [1.0]	
External interrupt ch. 3	IRQ03	0xFFF4	0xFFF5	ILR0	1 02 [1:0]	
External interrupt ch. 7	IKQUS	UXFFF4	UXFFFD		L03 [1:0]	
Low-voltage detection interrupt circuit	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]	
UART/SIO ch. 0		UXFFFZ	UXFFF3		L04 [1.0]	
8/16-bit composite timer ch. 0 (lower)	IRQ05	0xFFF0	0xFFF1	ILR1	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	0xFFEE	0xFFEF	ILR1	L06 [1:0]	
LIN-UART (reception)	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]	
LIN-UART (transmission)	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]	
—	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]	
I ² C bus interface ch. 1	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]	
—	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]	
—	IRQ12	0xFFE2	0xFFE3	ILR3	L12 [1:0]	
—	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]	
8/16-bit composite timer ch. 1 (upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]	
—	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]	
I ² C bus interface ch. 0	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]	
—	IRQ17	0xFFD8	0xFFD9	ILR4	L17 [1:0]	
8/12-bit A/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]	
Time-base timer	IRQ19	0xFFD4	0xFFD5	ILR4	L19 [1:0]	1
Watch prescaler	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]	
—	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]	
8/16-bit composite timer ch. 1 (lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]] ↓
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	Low

18.3 DC Characteristics

					Value	, 00		$ _{A} = -40 \ C \ (0 + 85 \ C)$
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	V _{IHI1}	P04, P16, P17	*1	0.7 V _{CC}		V _{CC} + 0.3	V	CMOS input level
	V _{IHI2}	P14, P15	*1	0.7 V _{CC}	_	V _{CC} + 5.5	V	CMOS input level
"H" level input voltage	V _{IHS}	P00 to P03, P05 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	0.8 V _{CC}		V _{CC} + 0.3	V	Hysteresis input
	V _{IHM}	PF2	_	0.8 V _{CC}	_	$V_{CC} + 0.3$	V	Hysteresis input
	V _{ILI}	P04, P14 to P17	*1	$V_{SS} - 0.3$	_	0.3 V _{CC}	V	CMOS input level
'L" level input voltage	V _{ILS}	P00 to P03, P05 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	V _{SS} – 0.3	_	0.2 V _{CC}	V	Hysteresis input
	V _{ILM}	PF2	—	$V_{SS} - 0.3$	_	0.2 V _{CC}	V	Hysteresis input
Open-drain	V _{D1}	P12, PF2	_	$V_{SS} - 0.3$		$V_{SS} + 5.5$	V	
output	V _{D2}	P14, P15		$V_{SS} - 0.3$	_	$V_{SS} + 5.5$	V	
application voltage	V _{D3}	P16, P17		$V_{SS} - 0.3$		$V_{SS} + 5.5$	V	In I ² C mode
"H" level output	V _{OH1}	Output pins other than P05 to P07, P12, P62, P63	I _{OH} = -4 mA* ²	V _{CC} - 0.5	_	_	V	
voltage	V _{OH2}	P05 to P07, P62, P63	I _{OH} = –8 mA* ³	$V_{CC} - 0.5$	_	_	V	
"L" level output	V _{OL1}	Output pins other than P05 to P07, P62, P63	I _{OL} = 4 mA* ⁴	_	_	0.4	v	
voltage	V _{OL2}	P05 to P07, P62, P63	I _{OL} = 12 mA* ⁵	_	_	0.4	V	
Input leak current (Hi-Z output leak current)	ILI	All input pins	0.0 V < V _I < V _{CC}	-5	_	+5	μΑ	When the internal pull-up resistor is disabled
Internal pull-up resistor	R _{PULL}	P00 to P07, P62 to P64, PG1, PG2	V _I = 0 V	75	100	150	kΩ	When the internal pull-up resistor is enabled
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF	Continued

(V_{CC} = 3.0 V±10%, V_{SS} = 0.0 V, T_A = –40 °C to +85 °C)

Deveryoten	Cumhal	Din nome	Condition		Value		11	Domorko
Parameter	Symbol	Pin name	Condition	Min	Typ* ¹	Max* ⁶	Unit	Remarks
	I _{CCTS}	V _{CC} (External clock	$F_{CH} = 32 \text{ MHz}$ Time-base timer mode $T_A = +25 \text{ °C}$	_	450	500	μA	
	I _{CCH}	operation)	Substop mode T _A = +25 °C	_	0.7	5	μΑ	
	I _{PLVD}		Current consumption of the low-voltage detection reset circuit in operation	_	6	26	μA	
Power supply	I _{ILVD}		Current consumption of the low-voltage detection interrupt circuit operating in normal mode	_	6	14	μA	
current*7	I _{ILVDL}	V _{cc}	Current consumption of the low-voltage detection interrupt circuit operating in low power consumption mode		3	10	μΑ	
	I _{CRH}		Current consumption of the main CR oscillator	_	270	320	μA	
	I _{CRL}		Current consumption of the sub-CR oscillator oscillating at 100 kHz	_	5	20	μA	
	I _{SOSC}		Current consumption of the suboscillator	_	0.8	7	μA	

 $(V_{CC} = 3.0 \text{ V}\pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

*1: V_{CC} = 3.0 V, T_A = +25 °C

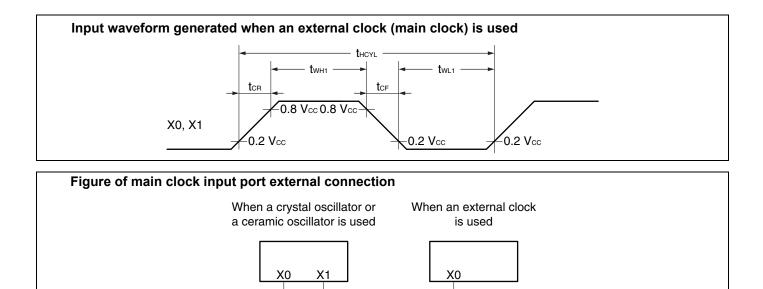
*2: When V_{CC} is smaller than 4.5 V, the condition becomes I_{OH} = -2 mA.

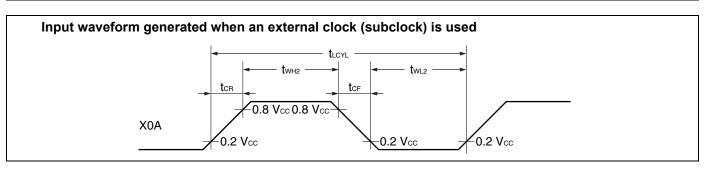
*3: When V_{CC} is smaller than 4.5 V, the condition becomes I_{OH} = -4 mA.

*4: When V_{CC} is smaller than 4.5 V, the condition becomes I_{OL} = 2 mA.

*5: When V_{CC} is smaller than 4.5 V, the condition becomes I_{OH} = 6 mA.

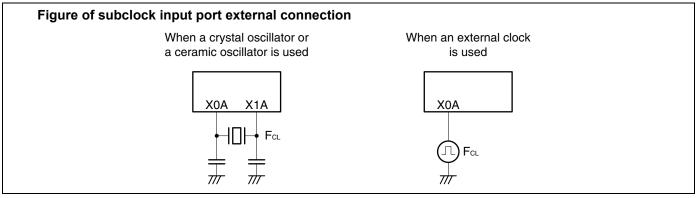
*6: V_{CC} = 3.3 V, T_A = +85 °C (unless otherwise specified)


- *7: The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (I_{PLVD}) to one of the values from I_{CC} to I_{CCH}. In addition, when the low-voltage detection reset circuit and a CR oscillator are selected, the power supply current is the sum of adding up the current consumption of the low-voltage detection reset circuit (I_{PLVD}), the current consumption of the low-voltage detection reset circuit (I_{PLVD}), the current consumption of the CR oscillator (I_{CRH} or I_{CRL}) and one of the values from I_{CC} to I_{CCH}. In on-chip debug mode, the main CR oscillator (I_{CRH}) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases accordingly.
 - See "18.4. AC Characteristics 18.4.1. Clock Timing" for F_{CH} , F_{CL} , F_{CRH} , F_{MCRPLL} and F_{MPLL} .
 - + See "18.4. AC Characteristics 18.4.2. Source Clock/Machine Clock" for F_{MP} and $F_{\text{MPL}}.$
 - The power supply current in subclock mode is determined by the external clock. In subclock mode, current consumption in using the crystal oscillator is higher than that in using the external clock. When the crystal oscillator is used, the power supply current is the sum of adding I_{SOSC} (current consumption of the suboscillator) to the power supply current in using the external clock. For details of controlling the subclock, refer to "Chapter 3 Clock Controller" And "chapter 24 System Configuration Register" in "New 8FX MB95650L Series Hardware Manual".



Deveryoter	Cumb al	Din nome	Condition		Value		Unit	Demerika
Parameter	Symbol	Pin name	Condition	Min	Тур	Мах	Unit	Remarks
	F _{CL}	X0A, X1A	_		32.768		kHz	When the suboscillation circuit is used
Clock frequency				_	32.768	_	kHz	When the sub-external clock is used
	F _{CRL}	—	_	50	100	150	kHz	When the sub-CR clock is used
		X0, X1	_	61.5	—	1000	ns	When the main oscillation circuit is used
Clock cycle time	t _{HCYL}	X0	_	30.8	—	1000	ns	When an external clock is used
		X0, X1	_	_	250	_	ns	When the main PLL clock is used
	t _{LCYL}	X0A, X1A	_	_	30.5	_	μs	When the subclock is used
	t _{WH1} , t _{WL1}	X0	_	12.4	_	_	ns	When an external clock is used, the duty ratio should range between 40% and 60%.
Input clock pulse width		X0, X1	_	_	125	_	ns	When the main PLL clock is used
	t _{WH2} , t _{WL2}	X0A	_	_	15.2	_	μs	When an external clock is used, the duty ratio should range between 40% and 60%.
Input clock rising time and falling time	t _{CR} , t _{CF}	X0, X0A	_	_	_	5	ns	When an external clock is used
CR oscillation	t _{CRHWK}	—	_	_	—	50	μs	When the main CR clock is used
start time	t _{CRLWK}	_		_	_	30	μs	When the sub-CR clock is used
PLL oscillation start time	t _{MCRPLLWK}			_		100	μs	When the main CR PLL clock is used

(V_{CC} = 1.8 V to 5.5 V, V_{SS} = 0.0 V, T_A = –40 °C to +85 °C)


) **F**сн

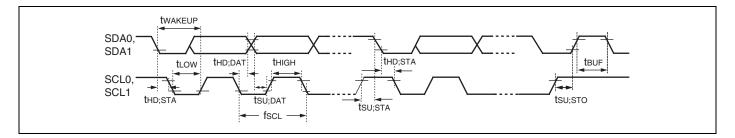
77

Fсн

777

7

18.4.8 I²C Bus Interface Timing


					Va	ue		
Parameter	Symbol	Pin name	Condition	Standard-mode		Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	f _{SCL}	SCL0, SCL1		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HD;STA}	SCL0, SCL1, SDA0, SDA1		4.0	_	0.6		μs
SCL clock "L" width	t _{LOW}	SCL0, SCL1		4.7	_	1.3	_	μs
SCL clock "H" width	t _{HIGH}	SCL0, SCL1		4.0		0.6	_	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SU;STA}	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ,	4.7	_	0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HD;DAT}	SCL0, SCL1, SDA0, SDA1	$C = 50 \text{ pF}^{*1}$	0	3.45 ^{*2}	0	0.9 ^{*3}	μs
Data setup time SDA ↓↑ → SCL ↑	t _{SU;DAT}	SCL0, SCL1, SDA0, SDA1		0.25	_	0.1		μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{su;sто}	SCL0, SCL1, SDA0, SDA1		4	_	0.6	_	μs
Bus free time between STOP condition and START condition	t _{BUF}	SCL0, SCL1, SDA0, SDA1		4.7	_	1.3	_	μs

(V_{CC} = 3.0 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

*1: R represents the pull-up resistor of the SCL0/1 and SDA0/1 lines, and C the load capacitor of the SCL0/1 and SDA0/1 lines.

*2: The maximum t_{HD;DAT} in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (t_{LOW}) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of $t_{SU;DAT} \ge 250$ ns is fulfilled.

Parameter	Symbol	Pin name	Condition	Value ^{*2}		Unit	Remarks
Falametel				Min	Мах	Onit	Remains
SCL clock "L" width	t _{LOW}	SCL0, SCL1	R = 1.7 kΩ, C = 50 pF* ¹	(2 + nm/2)t _{MCLK} - 20	_	ns	Master mode
SCL clock "H" width	t _{HIGH}	SCL0, SCL1		(nm/2)t _{MCLK} – 20	(nm/2)t _{MCLK} + 20	ns	Master mode
START condition hold time	t _{hd;sta}	SCL0, SCL1, SDA0, SDA1		(-1 + nm/2)t _{MCLK} – 20	(-1 + nm)t _{MCLK} + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
STOP condition setup time	t _{SU;STO}	SCL0, SCL1, SDA0, SDA1		(1 + nm/2)t _{MCLK} – 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
START condition setup time	t _{SU;STA}	SCL0, SCL1, SDA0, SDA1		(1 + nm/2)t _{MCLK} – 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
Bus free time between STOP condition and START condition	t _{BUF}	SCL0, SCL1, SDA0, SDA1		(2 nm + 4) t _{MCLK} – 20	—	ns	
Data hold time	t _{HD;DAT}	SCL0, SCL1, SDA0, SDA1		3 t _{MCLK} – 20	_	ns	Master mode

(V_{CC} = 3.0 V to 5.5 V, V_{SS} = 0.0 V, T_A = –40 °C to +85 °C)

(continued)				(V _{CC} = 3.0 V t	o 5.5 V, V _{SS}	= 0.0	√, T _A = −40 °C to +85 °C)
Parameter	Symbol	Pin name	Condition	Value* ²		Unit	Remarks
T arameter				Min	Max	Onit	Reiliaikə
Bus free time	t _{BUF}	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF* ¹	2 t _{MCLK} – 20	_	ns	At reception
Data hold time	t _{hd;dat}	SCL0, SCL1, SDA0, SDA1		2 t _{MCLK} – 20	_	ns	At slave transmission mode
Data setup time	t _{su;dat}	SCL0, SCL1, SDA0, SDA1		t _{LOW} – 3 t _{MCLK} – 20	_	ns	At slave transmission mode
Data hold time	t _{HD;DAT}	SCL0, SCL1, SDA0, SDA1		0	_	ns	At reception
Data setup time	t _{su;dat}	SCL0, SCL1, SDA0, SDA1		t _{MCLK} – 20	_	ns	At reception
SDA↓ → SCL↑ (with wakeup function in use)	twakeup	SCL0, SCL1, SDA0, SDA1		Oscillation stabilization wait time +2 t _{MCLK} – 20	_	ns	

*1: R represents the pull-up resistor of the SCL0/SCL1 and SDA0/SDA1 lines, and C the load capacitor of the SCL0/SCL1 and SDA0/SDA1 lines.

*2: • See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

- m represents the CS[4:3] bits in the I²C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).
- n represents the CS[2:0] bits in the I²C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).
- The actual timing of the I²C bus interface is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS[4:0] bits in the ICCR0/ICCR1 register.
- Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

(m, n) = (1, 8)	: 0.9 MHz < t _{MCLK} ≤ 1 MHz
(m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4)	: 0.9 MHz < t _{MCLK} ≤ 2 MHz
(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8)	: 0.9 MHz < t _{MCLK} ≤ 4 MHz
(m, n) = (1, 98), (5, 22), (6, 22), (7, 22)	: 0.9 MHz < t _{MCLK} ≤ 10 MHz
(m, n) = (8, 22)	: 0.9 MHz < t _{MCLK} ≤ 16.25 MHz
East-mode	

Fast-mode:

m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. (m, n) = (1, 8)

(m, n) = (1, 8)	: 3.3 MHZ < t _{MCLK} ≤ 4 MHZ
(m, n) = (1, 22), (5, 4)	: 3.3 MHz < t _{MCLK} ≤ 8 MHz
(m, n) = (1, 38), (6, 4), (7, 4), (8, 4)	: 3.3 MHz < t _{MCLK} ≤ 10 MHz
(m, n) = (5, 8)	: 3.3 MHz < $t_{MCLK} \le$ 16.25 MHz