

Welcome to E-XFL.COM

#### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

#### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Details

E·XFl

| Product Status          | Obsolete                                                             |
|-------------------------|----------------------------------------------------------------------|
| Туре                    | Fixed Point                                                          |
| Interface               | SPI, SSP, UART                                                       |
| Clock Rate              | 600MHz                                                               |
| Non-Volatile Memory     | External                                                             |
| On-Chip RAM             | 328kB                                                                |
| Voltage - I/O           | 2.50V, 3.30V                                                         |
| Voltage - Core          | 1.35V                                                                |
| Operating Temperature   | -40°C ~ 85°C (TA)                                                    |
| Mounting Type           | Surface Mount                                                        |
| Package / Case          | 297-BGA                                                              |
| Supplier Device Package | 297-PBGA (27x27)                                                     |
| Purchase URL            | https://www.e-xfl.com/product-detail/analog-devices/adsp-bf561sbb600 |
|                         |                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# ADSP-BF561\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

### COMPARABLE PARTS

View a parametric search of comparable parts.

### EVALUATION KITS

- Low Cost ICE-1000 and High Performance ICE-2000 USBbased JTAG Emulators
- Multimedia Starter Kit
- The ADSP-BF561 EZ-Kit Lite evaluation hardware provides a low-cost hardware solution for evaluating the ADSP-BF561 Blackfin processor.
- USB-Based Emulator and High Performance USB-Based Emulator

### **DOCUMENTATION**

#### **Application Notes**

- AN-813: Interfacing the ADSP-BF533/ADSP-BF561 Blackfin<sup>®</sup>; Processors to High Speed Parallel ADCs
- EE-120: Interfacing Assembly Language Programs to C
- EE-126: The ABCs of SDRAMemories
- EE-175: Emulator and Evaluation Hardware Troubleshooting Guide for VisualDSP++ Users
- EE-183: Rational Sample Rate Conversion with Blackfin<sup>®</sup> Processors
- EE-185: Fast Floating-Point Arithmetic Emulation on Blackfin® Processors
- EE-228: Switching Regulator Design Considerations for ADSP-BF533 Blackfin<sup>®</sup> Processors
- EE-261: Understanding Jitter Requirements of PLL-Based Processors
- EE-269: A Beginner's Guide to Ethernet 802.3
- EE-281: Hardware Design Checklist for the Blackfin<sup>®</sup> Processors
- EE-289: Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors
- EE-293: Estimating Power for ADSP-BF561 Blackfin<sup>®</sup> Processors
- EE-294: Energy-Aware Programming on Blackfin Processors
- EE-300: Interfacing Blackfin<sup>®</sup> EZ-KIT Lite<sup>®</sup> Boards to CMOS Image Sensors
- EE-314: Booting the ADSP-BF561 Blackfin® Processor
- EE-323: Implementing Dynamically Loaded Software Modules
- EE-326: Blackfin<sup>®</sup> Processor and SDRAM Technology
- EE-330: Windows Vista Compatibility in VisualDSP++ 5.0 Development Tools
- EE-332: Cycle Counting and Profiling
- EE-336: Putting ADSP-BF54x Blackfin<sup>®</sup> Processor Booting into Practice
- EE-339: Using External Switching Regulators with Blackfin® Processors
- EE-340: Connecting SHARC<sup>®</sup> and Blackfin<sup>®</sup> Processors over SPI
- EE-356: Emulator and Evaluation Hardware Troubleshooting Guide for CCES Users

#### Data Sheet

### **GENERAL DESCRIPTION**

The ADSP-BF561 processor is a high performance member of the Blackfin<sup>®</sup> family of products targeting a variety of multimedia, industrial, and telecommunications applications. At the heart of this device are two independent Analog Devices Blackfin processors. These Blackfin processors combine a dual-MAC state-of-the-art signal processing engine, the advantage of a clean, orthogonal RISC-like microprocessor instruction set, and single instruction, multiple data (SIMD) multimedia capabilities in a single instruction set architecture.

The ADSP-BF561 processor has 328K bytes of on-chip memory. Each Blackfin core includes:

- 16K bytes of instruction SRAM/cache
- 16K bytes of instruction SRAM
- 32K bytes of data SRAM/cache
- 32K bytes of data SRAM
- 4K bytes of scratchpad SRAM

Additional on-chip memory peripherals include:

- 128K bytes of low latency on-chip L2 SRAM
- Four-channel internal memory DMA controller
- External memory controller with glueless support for SDRAM, mobile SDRAM, SRAM, and flash.

#### PORTABLE LOW POWER ARCHITECTURE

Blackfin processors provide world-class power management and performance. Blackfin processors are designed in a low power and low voltage design methodology and feature dynamic power management, the ability to vary both the voltage and frequency of operation to significantly lower overall power consumption. Varying the voltage and frequency can result in a substantial reduction in power consumption, compared with just varying the frequency of operation. This translates into longer battery life for portable appliances.

#### **BLACKFIN PROCESSOR CORE**

As shown in Figure 2, each Blackfin core contains two multiplier/accumulators (MACs), two 40-bit ALUs, four video ALUs, and a single shifter. The computational units process 8-bit, 16-bit, or 32-bit data from the register file.

Each MAC performs a 16-bit by 16-bit multiply in every cycle, with accumulation to a 40-bit result, providing eight bits of extended precision. The ALUs perform a standard set of arithmetic and logical operations. With two ALUs capable of operating on 16-bit or 32-bit data, the flexibility of the computation units covers the signal processing requirements of a varied set of application needs.

Each of the two 32-bit input registers can be regarded as two 16-bit halves, so each ALU can accomplish very flexible single 16-bit arithmetic operations. By viewing the registers as pairs of 16-bit operands, dual 16-bit or single 32-bit operations can be accomplished in a single cycle. By further taking advantage of the second ALU, quad 16-bit operations can be accomplished simply, accelerating the per cycle throughput. The powerful 40-bit shifter has extensive capabilities for performing shifting, rotating, normalization, extraction, and depositing of data. The data for the computational units is found in a multiported register file of sixteen 16-bit entries or eight 32-bit entries.

A powerful program sequencer controls the flow of instruction execution, including instruction alignment and decoding. The sequencer supports conditional jumps and subroutine calls, as well as zero overhead looping. A loop buffer stores instructions locally, eliminating instruction memory accesses for tight looped code.

Two data address generators (DAGs) provide addresses for simultaneous dual operand fetches from memory. The DAGs share a register file containing four sets of 32-bit Index, Modify, Length, and Base registers. Eight additional 32-bit registers provide pointers for general indexing of variables and stack locations.

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. Level 2 (L2) memories are other memories, on-chip or off-chip, that may take multiple processor cycles to access. At the L1 level, the instruction memory holds instructions only. The two data memories hold data, and a dedicated scratchpad data memory stores stack and local variable information. At the L2 level, there is a single unified memory space, holding both instructions and data.

In addition, half of L1 instruction memory and half of L1 data memory may be configured as either Static RAMs (SRAMs) or caches. The Memory Management Unit (MMU) provides memory protection for individual tasks that may be operating on the core and may protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

The Blackfin instruction set has been optimized so that 16-bit op-codes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit op-codes, representing fully featured multifunction instructions. Blackfin processors support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin assembly language uses an algebraic syntax for ease of coding and readability. The architecture has been optimized for use in conjunction with the VisualDSP C/C++ compiler, resulting in fast and efficient software implementations.

flexible configuration and upgradability of system memory while allowing the core to view all SDRAM as a single, contiguous, physical address space.

The asynchronous memory controller can also be programmed to control up to four banks of devices with very flexible timing parameters for a wide variety of devices. Each bank occupies a 64M byte segment regardless of the size of the devices used so that these banks will only be contiguous if fully populated with 64M bytes of memory.

#### I/O Memory Space

Blackfin processors do not define a separate I/O space. All resources are mapped through the flat 32-bit address space. Onchip I/O devices have their control registers mapped into memory mapped registers (MMRs) at addresses near the top of the 4G byte address space. These are separated into two smaller blocks, one which contains the control MMRs for all core functions, and the other which contains the registers needed for setup and control of the on-chip peripherals outside of the core. The core MMRs are accessible only by the core and only in supervisor mode and appear as reserved space by on-chip peripherals. The system MMRs are accessible by the core in supervisor mode and can be mapped as either visible or reserved to other devices, depending on the system protection model desired.

#### Booting

The ADSP-BF561 contains a small boot kernel, which configures the appropriate peripheral for booting. If the ADSP-BF561 is configured to boot from boot ROM memory space, the processor starts executing from the on-chip boot ROM.

#### **Event Handling**

The event controller on the ADSP-BF561 handles all asynchronous and synchronous events to the processor. The ADSP-BF561 provides event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing of a higher priority event takes precedence over servicing of a lower priority event. The controller provides support for five different types of events:

- Emulation An emulation event causes the processor to enter emulation mode, allowing command and control of the processor via the JTAG interface.
- Reset This event resets the processor.
- Nonmaskable Interrupt (NMI) The NMI event can be generated by the software watchdog timer or by the NMI input signal to the processor. The NMI event is frequently used as a power-down indicator to initiate an orderly shutdown of the system.
- Exceptions Events that occur synchronously to program flow, i.e., the exception will be taken before the instruction is allowed to complete. Conditions such as data alignment violations or undefined instructions cause exceptions.

• Interrupts – Events that occur asynchronously to program flow. They are caused by timers, peripherals, input pins, and an explicit software instruction.

Each event has an associated register to hold the return address and an associated "return from event" instruction. When an event is triggered, the state of the processor is saved on the supervisor stack.

The ADSP-BF561 event controller consists of two stages: the Core Event Controller (CEC) and the System Interrupt Controller (SIC). The Core Event Controller works with the System Interrupt Controller to prioritize and control all system events. Conceptually, interrupts from the peripherals enter into the SIC, and are then routed directly into the general-purpose interrupts of the CEC.

#### Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15–7), in addition to the dedicated interrupt and exception events. Of these general-purpose interrupts, the two lowest priority interrupts (IVG15–14) are recommended to be reserved for software interrupt handlers, leaving seven prioritized interrupt inputs to support the peripherals of the ADSP-BF561. Table 1 describes the inputs to the CEC, identifies their names in the Event Vector Table (EVT), and lists their priorities.

| Priority       |                        |           |
|----------------|------------------------|-----------|
| (0 is Highest) | Event Class            | EVT Entry |
| 0              | Emulation/Test Control | EMU       |
| 1              | Reset                  | RST       |
| 2              | Nonmaskable Interrupt  | NMI       |
| 3              | Exceptions             | EVX       |
| 4              | Global Enable          |           |
| 5              | Hardware Error         | IVHW      |
| 6              | Core Timer             | IVTMR     |
| 7              | General Interrupt 7    | IVG7      |
| 8              | General Interrupt 8    | IVG8      |
| 9              | General Interrupt 9    | IVG9      |
| 10             | General Interrupt 10   | IVG10     |
| 11             | General Interrupt 11   | IVG11     |
| 12             | General Interrupt 12   | IVG12     |
| 13             | General Interrupt 13   | IVG13     |
| 14             | General Interrupt 14   | IVG14     |
| 15             | General Interrupt 15   | IVG15     |

#### Table 1. Core Event Controller (CEC)

#### System Interrupt Controller (SIC)

The System Interrupt Controller provides the mapping and routing of events from the many peripheral interrupt sources to the prioritized general-purpose interrupt inputs of the CEC. Although the ADSP-BF561 provides a default mapping, the user can alter the mappings and priorities of interrupt events by

even though the event may be latched in the ILAT register. This register may be read from or written to while in supervisor mode.

Note that general-purpose interrupts can be globally enabled and disabled with the STI and CLI instructions, respectively.

 CEC Interrupt Pending Register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but may be read while in supervisor mode.

The SIC allows further control of event processing by providing six 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 2.

- SIC Interrupt Mask Registers (SIC\_IMASKx) These registers control the masking and unmasking of each peripheral interrupt event. When a bit is set in these registers, that peripheral event is unmasked and will be processed by the system when asserted. A cleared bit in these registers masks the peripheral event, thereby preventing the processor from servicing the event.
- SIC Interrupt Status Registers (SIC\_ISRx) As multiple peripherals can be mapped to a single event, these registers allow the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt; a cleared bit indicates the peripheral is not asserting the event.
- SIC Interrupt Wakeup Enable Registers (SIC\_IWRx) By enabling the corresponding bit in these registers, each peripheral can be configured to wake up the processor, should the processor be in a powered-down mode when the event is generated.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC will recognize and queue the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the generalpurpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the mode of the processor.

#### DMA CONTROLLERS

The ADSP-BF561 has two independent DMA controllers that support automated data transfers with minimal overhead for the DSP cores. DMA transfers can occur between the ADSP-BF561 internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPIs. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The ADSP-BF561 DMA controllers support both 1-dimensional (1-D) and 2-dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to  $\pm$  32K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the ADSP-BF561 DMA controllers include:

- A single linear buffer that stops upon completion.
- A circular autorefreshing buffer that interrupts on each full or fractionally full buffer.
- 1-D or 2-D DMA using a linked list of descriptors.
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page.

In addition to the dedicated peripheral DMA channels, each DMA Controller has four memory DMA channels provided for transfers between the various memories of the ADSP-BF561 system. These enable transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptorbased methodology or by a standard register-based autobuffer mechanism.

Further, the ADSP-BF561 has a four channel Internal Memory DMA (IMDMA) Controller. The IMDMA Controller allows data transfers between any of the internal L1 and L2 memories.

#### WATCHDOG TIMER

Each ADSP-BF561 core includes a 32-bit timer, which can be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, via generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

The core clock (CCLK) frequency can also be dynamically changed by means of the CSEL1–0 bits of the PLL\_DIV register. Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in Table 6. This programmable core clock capability is useful for fast core frequency modifications.

#### Table 6. Core Clock Ratios

| Signal Name Divider Ratio |          | Example Frequency<br>Ratios (MHz) |      |  |
|---------------------------|----------|-----------------------------------|------|--|
| CSEL1-0                   | VCO/CCLK | VCO                               | CCLK |  |
| 00                        | 1:1      | 500                               | 500  |  |
| 01                        | 2:1      | 500                               | 250  |  |
| 10                        | 4:1      | 200                               | 50   |  |
| 11                        | 8:1      | 200                               | 25   |  |

The maximum PLL clock time when a change is programmed via the PLL\_CTL register is 40  $\mu$ s. The maximum time to change the internal voltage via the internal voltage regulator is also 40  $\mu$ s. The reset value for the PLL\_LOCKCNT register is 0x200. This value should be programmed to ensure a 40  $\mu$ s wakeup time when either the voltage is changed or a new MSEL value is programmed. The value should be programmed to ensure an 80  $\mu$ s wakeup time when both voltage and the MSEL value are changed. The time base for the PLL\_LOCKCNT register is the period of CLKIN.

#### **BOOTING MODES**

The ADSP-BF561 has three mechanisms (listed in Table 7) for automatically loading internal L1 instruction memory, L2, or external memory after a reset. A fourth mode is provided to execute from external memory, bypassing the boot sequence.

#### Table 7. Booting Modes

| BMODE1-0 | Description                                                |
|----------|------------------------------------------------------------|
| 00       | Execute from 16-bit external memory<br>(Bypass Boot ROM)   |
| 01       | Boot from 8-bit/16-bit flash                               |
| 10       | Boot from SPI host slave mode                              |
| 11       | Boot from SPI serial EEPROM<br>(16-, 24-bit address range) |

The BMODE pins of the reset configuration register, sampled during power-on resets and software initiated resets, implement the following modes:

- Execute from 16-bit external memory Execution starts from address 0x2000 0000 with 16-bit packing. The boot ROM is bypassed in this mode. All configuration settings are set for the slowest device possible (3-cycle hold time, 15-cycle R/W access times, 4-cycle setup). Note that, in bypass mode, only Core A can execute instructions from external memory.
- Boot from 8-bit/16-bit external flash memory The 8-bit/16-bit flash boot routine located in boot ROM memory space is set up using Asynchronous Memory Bank 0.

All configuration settings are set for the slowest device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).

- Boot from SPI host device The Blackfin processor operates in SPI slave mode and is configured to receive the bytes of the .LDR file from an SPI host (master) agent. To hold off the host device from transmitting while the boot ROM is busy, the Blackfin processor asserts a GPIO pin, called host wait (HWAIT), to signal the host device not to send any more bytes until the flag is deasserted. The flag is chosen by the user and this information is transferred to the Blackfin processor via bits 10:5 of the FLAG header.
- Boot from SPI serial EEPROM (16-, 24-bit addressable) The SPI uses the PF2 output pin to select a single SPI EPROM device, submits a read command at address 0x0000, and begins clocking data into the beginning of L1 instruction memory. A 16-, 24-bit addressable SPI-compatible EPROM must be used.

For each of the boot modes, a boot loading protocol is used to transfer program and data blocks from an external memory device to their specified memory locations. Multiple memory blocks may be loaded by any boot sequence. Once all blocks are loaded, Core A program execution commences from the start of L1 instruction SRAM (0xFFA0 0000). Core B remains in a heldoff state until Bit 5 of SICA\_SYSCR is cleared by Core A. After that, Core B will start execution at address 0xFF60 0000.

In addition, Bit 4 of the reset configuration register can be set by application code to bypass the normal boot sequence during a software reset. For this case, the processor jumps directly to the beginning of L1 instruction memory.

#### **INSTRUCTION SET DESCRIPTION**

The Blackfin processor family assembly language instruction set employs an algebraic syntax that was designed for ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely encoded instruction set that compiles to a very small final memory size. The instruction set also provides fully featured multifunction instructions that allow the programmer to use many of the processor core resources in a single instruction. Coupled with many features more often seen on microcontrollers, this instruction set is very efficient when compiling C and C++ source code. In addition, the architecture supports both a user (algorithm/application code) and a supervisor (O/S kernel, device drivers, debuggers, ISRs) mode of operation—allowing multiple levels of access to core processor resources.

The assembly language, which takes advantage of the processor's unique architecture, offers the following advantages:

- Seamlessly integrated DSP/CPU features are optimized for both 8-bit and 16-bit operations.
- A multi-issue load/store modified Harvard architecture, which supports two 16-bit MAC or four 8-bit ALU plus two load/store plus two pointer updates per cycle.

- All registers, I/O, and memory are mapped into a unified 4G byte memory space providing a simplified programming model.
- Microcontroller features, such as arbitrary bit and bit-field manipulation, insertion, and extraction; integer operations on 8-, 16-, and 32-bit data types; and separate user and kernel stack pointers.
- Code density enhancements, which include intermixing of 16-bit and 32-bit instructions (no mode switching, no code segregation). Frequently used instructions are encoded as 16-bits.

#### **DEVELOPMENT TOOLS**

The ADSP-BF561 is supported with a complete set of CROSSCORE<sup>®†</sup> software and hardware development tools, including Analog Devices emulators and the VisualDSP++<sup>®†</sup> development environment. The same emulator hardware that supports other Analog Devices processors also fully emulates the ADSP-BF561.

The VisualDSP++ project management environment lets programmers develop and debug an application. This environment includes an easy to use assembler that is based on an algebraic syntax, an archiver (librarian/library builder), a linker, a loader, a cycle-accurate instruction-level simulator, a C/C++ compiler, and a C/C++ runtime library that includes DSP and mathematical functions. A key point for these tools is C/C++ code efficiency. The compiler has been developed for efficient translation of C/C++ code to Blackfin assembly. The Blackfin processor has architectural features that improve the efficiency of compiled C/C++ code.

The VisualDSP++ debugger has a number of important features. Data visualization is enhanced by a plotting package that offers a significant level of flexibility. This graphical representation of user data enables the programmer to quickly determine the performance of an algorithm. As algorithms grow in complexity, this capability can have increasing significance on the designer's development schedule, increasing productivity. Statistical profiling enables the programmer to nonintrusively poll the processor as it is running the program. This feature, unique to VisualDSP++, enables the software developer to passively gather important code execution metrics without interrupting the real-time characteristics of the program. Essentially, the developer can identify bottlenecks in software quickly and efficiently. By using the profiler, the programmer can focus on those areas in the program that impact performance and take corrective action.

Debugging both C/C++ and assembly programs with the VisualDSP++ debugger, programmers can:

- View mixed C/C++ and assembly code (interleaved source and object information).
- Insert breakpoints.

- Set conditional breakpoints on registers, memory, and stacks.
- Trace instruction execution.
- Perform linear or statistical profiling of program execution.
- Fill, dump, and graphically plot the contents of memory.
- Perform source level debugging.
- Create custom debugger windows.

The VisualDSP++ IDE lets programmers define and manage software development. Its dialog boxes and property pages let programmers configure and manage all development tools, including color syntax highlighting in the VisualDSP++ editor. These capabilities permit programmers to:

- Control how the development tools process inputs and generate outputs.
- Maintain a one-to-one correspondence with the tool's command line switches.

The VisualDSP++ Kernel (VDK) incorporates scheduling and resource management tailored specifically to address the memory and timing constraints of embedded, real-time programming. These capabilities enable engineers to develop code more effectively, eliminating the need to start from the very beginning when developing new application code. The VDK features include threads, critical and unscheduled regions, semaphores, events, and device flags. The VDK also supports priority-based, pre-emptive, cooperative, and time-sliced scheduling approaches. In addition, the VDK was designed to be scalable. If the application does not use a specific feature, the support code for that feature is excluded from the target system.

Because the VDK is a library, a developer can decide whether to use it or not. The VDK is integrated into the VisualDSP++ development environment, but can also be used with standard command line tools. When the VDK is used, the development environment assists the developer with many error prone tasks and assists in managing system resources, automating the generation of various VDK-based objects, and visualizing the system state when debugging an application that uses the VDK.

The Expert Linker can be used to visually manipulate the placement of code and data in the embedded system. Memory utilization can be viewed in a color-coded graphical form. Code and data can be easily moved to different areas of the processor or external memory with the drag of the mouse. Runtime stack and heap usage can be examined. The Expert Linker is fully compatible with existing Linker Definition File (LDF), allowing the developer to move between the graphical and textual environments.

Analog Devices emulators use the IEEE 1149.1 JTAG test access port of the ADSP-BF561 to monitor and control the target board processor during emulation. The emulator provides fullspeed emulation, allowing inspection and modification of memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor's JTAG interface—the emulator does not affect the loading or timing of the target system.

<sup>&</sup>lt;sup>†</sup>CROSSCORE is a registered trademark of Analog Devices, Inc.

<sup>&</sup>lt;sup>‡</sup>VisualDSP++ is a registered trademark of Analog Devices, Inc.

#### Table 8. Pin Descriptions (Continued)

| Pin NameTypeFunctionType1PF/SPI/TIMERProgrammable Flag/Slave SPI Select/TimerCPF0/SFISS/TMR0I/OProgrammable Flag/Slave SPI Select/TimerCPF1/SFISEL1/TMR1I/OProgrammable Flag/SPI Select/TimerCPF2/SFISEL2/TMR2I/OProgrammable Flag/SPI Select/TimerCPF3/SFISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SFISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF4/SFISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SFISEL5/TMR6I/OProgrammable Flag/SPI Select/TimerCPF6/SFISEL5/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SFISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC |                           |      |                                                  | Driver            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|--------------------------------------------------|-------------------|
| PF/SPI/TIMERI/OProgrammable Flag/Slave SPI Select/TimerCPF0/SPISEL1/TMR1I/OProgrammable Flag/SPI Select/TimerCPF1/SPISEL2/TMR2I/OProgrammable Flag/SPI Select/TimerCPF3/SPISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL5/TMR6I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL5/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                           | Pin Name                  | Туре | Function                                         | Type <sup>1</sup> |
| PF0/SPISS/TMR0I/OProgrammable Flag/Slave SPI Select/TimerCPF1/SPISEL1/TMR1I/OProgrammable Flag/SPI Select/TimerCPF2/SPISEL2/TMR2I/OProgrammable Flag/SPI Select/TimerCPF3/SPISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable Flag/SPI Select/TimerCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                    | PF/SPI/TIMER              |      |                                                  |                   |
| PF1/SPISEL1/TMR1I/OProgrammable Flag/SPI Select/TimerCPF2/SPISEL2/TMR2I/OProgrammable Flag/SPI Select/TimerCPF3/SPISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                               | PF0/ <i>SPISS/TMR0</i>    | I/O  | Programmable Flag/Slave SPI Select/Timer         | С                 |
| PF2/SPISEL2/TMR2I/OProgrammable Flag/SPI Select/TimerCPF3/SPISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                     | PF1/SPISEL1/TMR1          | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF3/SPISEL3/TMR3I/OProgrammable Flag/SPI Select/TimerCPF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable Flag/SPI Select/TimerCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                           | PF2/SPISEL2/TMR2          | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF4/SPISEL4/TMR4I/OProgrammable Flag/SPI Select/TimerCPF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable FlagCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                  | PF3/ <i>SPISEL3/TMR3</i>  | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF5/SPISEL5/TMR5I/OProgrammable Flag/SPI Select/TimerCPF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable FlagCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                        | PF4/SPISEL4/TMR4          | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF6/SPISEL6/TMR6I/OProgrammable Flag/SPI Select/TimerCPF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable FlagCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PF5/SPISEL5/TMR5          | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF7/SPISEL7/TMR7I/OProgrammable Flag/SPI Select/TimerCPF8I/OProgrammable FlagCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PF6/ <u>SPISEL6</u> /TMR6 | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF8I/OProgrammable FlagCPF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PF7/SPISEL7/TMR7          | I/O  | Programmable Flag/SPI Select/Timer               | С                 |
| PF9I/OProgrammable FlagCPF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PF8                       | I/O  | Programmable Flag                                | С                 |
| PF10I/OProgrammable FlagCPF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PF9                       | I/O  | Programmable Flag                                | С                 |
| PF11I/OProgrammable FlagCPF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PF10                      | I/O  | Programmable Flag                                | С                 |
| PF12I/OProgrammable FlagCPF13I/OProgrammable FlagC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PF11                      | I/O  | Programmable Flag                                | С                 |
| PF13 I/O Programmable Flag C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PF12                      | I/O  | Programmable Flag                                | С                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PF13                      | I/O  | Programmable Flag                                | С                 |
| PF14 I/O Programmable Flag C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PF14                      | I/O  | Programmable Flag                                | С                 |
| PF15/EXT CLK I/O Programmable Flag/External Timer Clock Input C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PF15/EXT CLK              | I/O  | Programmable Flag/External Timer Clock Input     | С                 |
| PPIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPIO                      |      |                                                  |                   |
| PPI0D15-8/PF47-40 I/O PPI Data/Programmable Flag Pins C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPI0D15-8/PF47-40         | I/O  | PPI Data/Programmable Flag Pins                  | С                 |
| PPI0D7–0 I/O PPI Data Pins C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPI0D7-0                  | I/O  | PPI Data Pins                                    | С                 |
| PPIOCLK I PPI Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PPIOCLK                   | I    | PPI Clock                                        |                   |
| PPI0SYNC1/TMR8 I/O PPI Sync/Timer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PPIOSYNC1/TMR8            | I/O  | PPI Sync/Timer                                   | С                 |
| PPI0SYNC2/TMR9 I/O PPI Sync/Timer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PPIOSYNC2/TMR9            | I/O  | PPI Sync/Timer                                   | С                 |
| PPI0SYNC3 I/O PPI Sync C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPI0SYNC3                 | I/O  | PPI Sync                                         | С                 |
| PPI1 PPI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PPI1                      |      |                                                  |                   |
| PPI1D15-8/PF39-32 I/O PPI Data/Programmable Flag Pins C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPI1D15-8/PF39-32         | I/O  | PPI Data/Programmable Flag Pins                  | С                 |
| PPI1D7–0 I/O PPI Data Pins C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPI1D7-0                  | I/O  | PPI Data Pins                                    | с                 |
| PPI1CLK I PPI Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PPI1CLK                   | I    | PPI Clock                                        |                   |
| PPI1SYNC1/TMR10 I/O PPI Sync/Timer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPI1SYNC1/TMR10           | I/O  | PPI Sync/Timer                                   | с                 |
| PPI1SYNC2/TMR11 I/O PPI Sync/Timer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PPI1SYNC2/TMR11           | I/O  | PPI Sync/Timer                                   | с                 |
| PPI1SYNC3 I/O PPI Sync C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPI1SYNC3                 | I/O  | PPI Sync                                         | С                 |
| SPORTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPORTO                    |      |                                                  |                   |
| RSCLK0/PF28 I/O Sport0 Receive Serial Clock/Programmable Flag D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RSCLK0/PF28               | I/O  | Sport0 Receive Serial Clock/Programmable Flag    | D                 |
| RFS0/PF19 I/O Sport0 Receive Frame Sync/Programmable Flag C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RFS0/PF19                 | I/O  | Sport0 Receive Frame Sync/Programmable Flag      | С                 |
| DR0PRI I Sport0 Receive Data Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DROPRI                    | I    | Sport0 Receive Data Primary                      |                   |
| DR0SEC/PF20 I/O Sport0 Receive Data Secondary/Programmable Flag C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR0SEC/PF20               | I/O  | Sport0 Receive Data Secondary/Programmable Flag  | с                 |
| TSCLK0/PF29 I/O Sport0 Transmit Serial Clock/Programmable Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TSCLK0/PF29               | I/O  | Sport0 Transmit Serial Clock/Programmable Flag   | D                 |
| TFS0/PF16 I/O Sport0 Transmit Frame Sync/Programmable Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TFS0/PF16                 | I/O  | Sport0 Transmit Frame Sync/Programmable Flag     | с                 |
| DT0PRI/PF18 I/O Sport0 Transmit Data Primary/Programmable Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT0PRI/PF18               | I/O  | Sport0 Transmit Data Primary/Programmable Flag   | с                 |
| DT0SEC/PF17 I/O Sport0 Transmit Data Secondary/Programmable Flag C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DT0SEC/PF17               | I/O  | Sport0 Transmit Data Secondary/Programmable Flag | с                 |

#### **ABSOLUTE MAXIMUM RATINGS**

Stresses greater than those listed in Table 13 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Table 13. Absolute Maximum Ratings

| Parameter                                            | Value                                |
|------------------------------------------------------|--------------------------------------|
| Internal (Core) Supply Voltage (V <sub>DDINT</sub> ) | –0.3 V to +1.42 V                    |
| External (I/O) Supply Voltage (V <sub>DDEXT</sub> )  | –0.5 V to +3.8 V                     |
| Input Voltage <sup>1</sup>                           | –0.5 V to +3.8 V                     |
| Output Voltage Swing                                 | -0.5 V to V <sub>DDEXT</sub> + 0.5 V |
| Load Capacitance <sup>2</sup>                        | 200 pF                               |
| Storage Temperature Range                            | -65°C to +150°C                      |
| Junction Temperature Under Bias                      | 125℃                                 |

<sup>1</sup> Applies to 100% transient duty cycle. For other duty cycles see Table 14.

<sup>2</sup> For proper SDRAM controller operation, the maximum load capacitance is 50 pF (at 3.3 V) or 30 pF (at 2.5 V) for ADDR19–1, DATA15–0, ABE1–0/SDQM1–0, CLKOUT, SCKE, SA10, SRAS, SCAS, SWE, and SMS.

#### Table 14. Maximum Duty Cycle for Input Transient Voltage<sup>1</sup>

| V <sub>IN</sub> Min (V) | V <sub>IN</sub> Max (V) <sup>2</sup> | Maximum Duty Cycle |
|-------------------------|--------------------------------------|--------------------|
| -0.50                   | 3.80                                 | 100%               |
| -0.70                   | 4.00                                 | 40%                |
| -0.80                   | 4.10                                 | 25%                |
| -0.90                   | 4.20                                 | 15%                |
| -1.00                   | 4.30                                 | 10%                |

<sup>1</sup> Applies to all signal pins with the exception of CLKIN, XTAL, VROUT1–0. <sup>2</sup> Only one of the listed options can apply to a particular design.

#### **PACKAGE INFORMATION**

The information presented in Figure 7 and Table 15 provides details about the package branding for the Blackfin processors. For a complete listing of product availability, see the Ordering Guide on Page 63.



Figure 7. Product Information on Package

#### Table 15. Package Brand Information

| Brand Key | Field Description   |
|-----------|---------------------|
| t         | Temperature Range   |
| рр        | Package Type        |
| Z         | RoHS Compliant Part |
| ссс       | See Ordering Guide  |
| vvvvv.x   | Assembly Lot Code   |
| n.n       | Silicon Revision    |
| yyww      | Date Code           |

#### ESD SENSITIVITY



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

#### TIMING SPECIFICATIONS

#### **Clock and Reset Timing**

Table 16 and Figure 8 describe clock and reset operations. Per Absolute Maximum Ratings on Page 22, combinations of CLKIN and clock multipliers must not result in core/system clocks exceeding the maximum limits allowed for the processor, including system clock restrictions related to supply voltage.

#### Table 16. Clock and Normal Reset Timing

| Paramet             | er                                          | Min                         | Max   | Unit |
|---------------------|---------------------------------------------|-----------------------------|-------|------|
| Timing Requirements |                                             |                             |       |      |
| t <sub>ckin</sub>   | CLKIN (to PLL) Period <sup>1, 2, 3</sup>    | 25.0                        | 100.0 | ns   |
| t <sub>ckinl</sub>  | CLKIN Low Pulse                             | 10.0                        |       | ns   |
| t <sub>ckinh</sub>  | CLKIN High Pulse                            | 10.0                        |       | ns   |
| $\mathbf{t}_{WRST}$ | RESET Asserted Pulse Width Low <sup>4</sup> | $11 \times t_{\text{cKIN}}$ |       | ns   |

<sup>1</sup> If DF bit in PLL\_CTL register is set t<sub>CLKIN</sub> is divided by two before going to PLL, then the t<sub>CLKIN</sub> maximum period is 50 ns and the t<sub>CLKIN</sub> minimum period is 12.5 ns.

<sup>2</sup> Applies to PLL bypass mode and PLL nonbypass mode.

<sup>3</sup> Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed f<sub>VCO</sub>, f<sub>CCLK</sub>, and f<sub>SCLK</sub> settings discussed in Table 9 on Page 20 through Table 12 on Page 21.

<sup>4</sup> Applies after power-up sequence is complete. See Table 17 and Figure 9 for power-up reset timing.





#### Table 17. Power-Up Reset Timing

CLKIN, V<sub>DDINT,</sub> V<sub>DDEXT</sub>

| Paramet              | arameter                 |                        |                                                                                          | Min                    | Max | Unit |
|----------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------|------------------------|-----|------|
| Timing Re            | equirements              |                        |                                                                                          |                        |     |      |
| $t_{\rm RST_IN_PWR}$ | RESET Dea<br>Specificati | asserted after t<br>on | he $V_{\mbox{\tiny DDINT}}, V_{\mbox{\tiny DDExT}}$ and CLKIN Pins are Stable and Within | $3500 \times t_{cKIN}$ |     | μs   |
|                      | RESET                    |                        | t <sub>RST_IN_</sub> PWR                                                                 |                        |     |      |

Figure 9. Power-Up Reset Timing

#### Parallel Peripheral Interface Timing

Table 22, and Figure 14 through Figure 17 on Page 30, describe default Parallel Peripheral Interface operations.

If bit 4 of the PLL\_CTL register is set, then Figure 18 on Page 30 and Figure 19 on Page 31 apply.

#### Table 22. Parallel Peripheral Interface Timing

| Param                        | eter                                     | Min  | Max | Unit |
|------------------------------|------------------------------------------|------|-----|------|
| Timing                       | Timing Requirements                      |      |     |      |
| $\mathbf{t}_{PCLKW}$         | PPIxCLK Width <sup>1</sup>               | 5.0  |     | ns   |
| $\mathbf{t}_{\text{PCLK}}$   | PPIxCLK Period <sup>1</sup>              | 13.3 |     | ns   |
| $\mathbf{t}_{\text{SFSPE}}$  | External Frame Sync Setup Before PPIxCLK | 4.0  |     | ns   |
| $\mathbf{t}_{\text{HFSPE}}$  | External Frame Sync Hold After PPIxCLK   | 1.0  |     | ns   |
| $\mathbf{t}_{SDRPE}$         | Receive Data Setup Before PPIxCLK        | 3.5  |     | ns   |
| $\mathbf{t}_{\text{HDRPE}}$  | Receive Data Hold After PPIxCLK          | 2.0  |     | ns   |
| Switchi                      | ing Characteristics                      |      |     |      |
| $\mathbf{t}_{\text{dfspe}}$  | Internal Frame Sync Delay After PPIxCLK  |      | 8.0 | ns   |
| $\mathbf{t}_{\text{HOFSPE}}$ | Internal Frame Sync Hold After PPIxCLK   | 1.7  |     | ns   |
| $\mathbf{t}_{\text{DDTPE}}$  | Transmit Data Delay After PPIxCLK        |      | 8.0 | ns   |
| $\mathbf{t}_{\text{HDTPE}}$  | Transmit Data Hold After PPIxCLK         | 2.0  |     | ns   |

<sup>1</sup> For PPI modes that use an internally generated frame sync, the PPIxCLK frequency cannot exceed  $f_{sclk}/2$ . For modes with no frame syncs or external frame syncs, PPIxCLK cannot exceed 75 MHz and  $f_{sclk}$  should be equal to or greater than PPIxCLK.



Figure 14. PPI GP Rx Mode with Internal Frame Sync Timing (Default)

#### Table 25. Serial Ports—Enable and Three-State

| Param                     | eter                                                 | Min  | Мах  | Unit |
|---------------------------|------------------------------------------------------|------|------|------|
| Switching Characteristics |                                                      |      |      |      |
| t <sub>dtene</sub>        | Data Enable Delay from External TSCLKx <sup>1</sup>  | 0    |      | ns   |
| t <sub>ddtte</sub>        | Data Disable Delay from External TSCLKx <sup>1</sup> |      | 10.0 | ns   |
| t <sub>dteni</sub>        | Data Enable Delay from Internal TSCLKx <sup>1</sup>  | -2.0 |      | ns   |
| t <sub>DDTTI</sub>        | Data Disable Delay from Internal TSCLKx <sup>1</sup> |      | 3.0  | ns   |

<sup>1</sup>Referenced to drive edge.

#### Table 26. External Late Frame Sync

| Paran                | neter                                                                               | Min | Max  | Unit |
|----------------------|-------------------------------------------------------------------------------------|-----|------|------|
| Switch               | ing Characteristics                                                                 |     |      |      |
| t <sub>DDTLFSE</sub> | Data Delay from Late External TFSx or External RFSx with MCMEN = 1, MFD = $0^{1,2}$ |     | 10.0 | ns   |
| t                    | Data Enable from Late FS or MCMEN = 1, MFD = $0^{1, 2}$                             | 0   |      | ns   |

 $^1\,MCMEN$  = 1, TFSx enable and TFSx valid follow  $t_{\mbox{\tiny DTENLFS}}$  and  $t_{\mbox{\tiny DDTLESE}}$ 

DTx

 $^{2} If external RFSx/TFSx setup to RSCLKx/TSCLKx > t_{\text{SCLKE}}/2, then t_{\text{DDTTE/1}} and t_{\text{DTENE/1}} apply; otherwise t_{\text{DDTLFSE}} and t_{\text{DTENLFS}} apply.$ 

tDDTENFS

t<sub>DDTLFSE</sub>

#### DRIVE SAMPLE DRIVE RSCLKx t<sub>HFSE/I</sub> t<sub>SFSE/I</sub> RFSx t<sub>DDTE/I</sub> tDDTENFS t<sub>HDTE/I</sub> 7 DTx 2ND BIT 1ST BIT t<sub>DDTLFSE</sub> LATE EXTERNAL TRANSMIT FS DRIVE SAMPLE DRIVE TSCLKx t<sub>HFSE/I</sub> t<sub>SFSE/I</sub> TFSx

#### EXTERNAL RECEIVE FS WITH MCMEN = 1, MFD = 0

Figure 22. External Late Frame Sync

t<sub>HDTE/I</sub>

1ST BIT

t<sub>DDTE/I</sub>

7

2ND BIT

#### **OUTPUT DRIVE CURRENTS**

Figure 29 through Figure 36 on Page 42 show typical current voltage characteristics for the output drivers of the ADSP-BF561 processor. The curves represent the current drive capability of the output drivers as a function of output voltage. Refer to Table 8 on Page 17 to identify the driver type for a pin.



Figure 29. Drive Current A (Low V<sub>DDEXT</sub>)



Figure 30. Drive Current A (High V<sub>DDEXT</sub>)











Figure 33. Drive Current C (Low V<sub>DDEXT</sub>)



Figure 34. Drive Current C (High V<sub>DDEXT</sub>)



Figure 35. Drive Current D (Low V<sub>DDEXT</sub>)



Figure 36. Drive Current D (High V<sub>DDEXT</sub>)

#### **POWER DISSIPATION**

Many operating conditions can affect power dissipation. System designers should refer to *Estimating Power for ADSP-BF561 Blackfin Processors (EE-293)* on the Analog Devices website (www.analog.com)—use site search on "EE-293." This document provides detailed information for optimizing your design for lowest power.

See the *ADSP-BF561 Blackfin Processor Hardware Reference Manual* for definitions of the various operating modes and for instructions on how to minimize system power.

#### **TEST CONDITIONS**

All timing parameters appearing in this data sheet were measured under the conditions described in this section. Figure 37 shows the measurement point for ac measurements (except output enable/disable). The measurement point  $V_{\text{MEAS}}$  is 1.5 V for  $V_{\text{DDEXT}}$  (nominal) = 2.5 V/3.3 V.



Figure 37. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

#### **Output Enable Time Measurement**

Output pins are considered to be enabled when they have made a transition from a high impedance state to the point when they start driving.

The output enable time  $t_{ENA}$  is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving as shown on the right side of Figure 38 on Page 43.

The time  $t_{\text{ENA\_MEASURED}}$  is the interval, from when the reference signal switches, to when the output voltage reaches  $V_{\text{TRIP}}(\text{high})$  or  $V_{\text{TRIP}}(\text{low})$ .  $V_{\text{TRIP}}(\text{high})$  is 2.0 V and  $V_{\text{TRIP}}(\text{low})$  is 1.0 V for  $V_{\text{DDEXT}}$  (nominal) = 2.5 V/3.3 V. Time  $t_{\text{TRIP}}$  is the interval from when the output starts driving to when the output reaches the  $V_{\text{TRIP}}(\text{high})$  or  $V_{\text{TRIP}}(\text{low})$  trip voltage.

Time  $t_{ENA}$  is calculated as shown in the equation:

$$t_{ENA} = t_{ENA\_MEASURED} - t_{TRIP}$$

If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

#### **Output Disable Time Measurement**

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The output disable time  $t_{DIS}$  is the difference between  $t_{DIS\_MEASURED}$  and  $t_{DECAY}$  as shown on the left side of Figure 38 on Page 43.

 $t_{DIS} = t_{DIS\_MEASURED} - t_{DECAY}$ 

The time for the voltage on the bus to decay by  $\Delta V$  is dependent on the capacitive load  $C_L$  and the load current  $I_L$ . This decay time can be approximated by the equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time  $t_{\text{DECAY}}$  is calculated with test loads  $C_L$  and  $I_L$ , and with  $\Delta V$  equal to 0.5 V for  $V_{\text{DDEXT}}$  (nominal) = 2.5 V/3.3 V.

The time  $t_{DIS\_MEASURED}$  is the interval from when the reference signal switches, to when the output voltage decays  $\Delta V$  from the measured output high or output low voltage.

#### **Example System Hold Time Calculation**

To determine the data output hold time in a particular system, first calculate  $t_{DECAY}$  using the equation given above. Choose  $\Delta V$  to be the difference between the ADSP-BF561 processor's output voltage and the input threshold for the device requiring the hold time.  $C_L$  is the total bus capacitance (per data line), and  $I_L$  is the total leakage or three-state current (per data line). The hold time will be  $t_{DECAY}$  plus the various output disable times as specified in the Timing Specifications on Page 23 (for example  $t_{DSDAT}$  for an SDRAM write cycle as shown in SDRAM Interface Timing on Page 26).



Figure 38. Output Enable/Disable

#### **Capacitive Loading**

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 39).  $V_{\text{LOAD}}$  is 1.5 V for  $V_{\text{DDEXT}}$  (nominal) = 2.5 V/3.3 V. Figure 40 through Figure 47 on Page 44 show how output rise time varies with capacitance. The delay and hold specifications given should be derated by a factor derived from these figures. The graphs in these figures may not be linear outside the ranges shown.



Figure 39. Equivalent Device Loading for AC Measurements (Includes All Fixtures)



Figure 40. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver A at V<sub>DDEVT</sub> (min)



Figure 41. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver A at V<sub>DDEXT</sub> (max)



Figure 42. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver B at V<sub>DDEVT</sub> (min)

### 256-BALL CSP\_BGA (17 mm) BALL ASSIGNMENT

Table 35 lists the 256-Ball CSP\_BGA (17 mm  $\times$  17 mm) ball assignment by ball number. Table 36 on Page 48 lists the ball assignment alphabetically by signal.

| Table 35. 256-Ball CSP | _BGA (17 mm × 17 mm) | Ball Assignment ( | Numerically by Ball Number) |
|------------------------|----------------------|-------------------|-----------------------------|
|------------------------|----------------------|-------------------|-----------------------------|

| Ball No. | Signal    | Ball No. | Signal    | Ball No. | Signal  | Ball No. | Signal    | Ball No. | Signal    |
|----------|-----------|----------|-----------|----------|---------|----------|-----------|----------|-----------|
| A1       | VDDEXT    | С9       | SMS3      | F1       | CLKIN   | H9       | GND       | L1       | PPI0D3    |
| A2       | ADDR22    | C10      | SWE       | F2       | PPI0D10 | H10      | GND       | L2       | PPI0D2    |
| A3       | ADDR18    | C11      | SA10      | F3       | RESET   | H11      | GND       | L3       | PPI0D1    |
| A4       | ADDR14    | C12      | ABE0      | F4       | BYPASS  | H12      | GND       | L4       | PPI0D0    |
| A5       | ADDR11    | C13      | ADDR07    | F5       | VDDEXT  | H13      | GND       | L5       | VDDEXT    |
| A6       | AMS3      | C14      | ADDR04    | F6       | VDDEXT  | H14      | DATA21    | L6       | VDDEXT    |
| A7       | AMS0      | C15      | DATA0     | F7       | VDDEXT  | H15      | DATA19    | L7       | VDDEXT    |
| A8       | ARDY      | C16      | DATA05    | F8       | GND     | H16      | DATA23    | L8       | VDDEXT    |
| A9       | SMS2      | D1       | PPI0D15   | F9       | GND     | J1       | VROUT1    | L9       | GND       |
| A10      | SCLK0     | D2       | PPI0SYNC3 | F10      | VDDEXT  | J2       | PPI0D8    | L10      | VDDEXT    |
| A11      | SCLK1     | D3       | PPI0SYNC2 | F11      | VDDEXT  | J3       | PPI0D7    | L11      | VDDEXT    |
| A12      | ABE2      | D4       | ADDR21    | F12      | VDDEXT  | J4       | PPI0D9    | L12      | VDDEXT    |
| A13      | ABE3      | D5       | ADDR15    | F13      | DATA11  | J5       | GND       | L13      | NC        |
| A14      | ADDR06    | D6       | ADDR09    | F14      | DATA08  | J6       | GND       | L14      | DTOPRI    |
| A15      | ADDR03    | D7       | AWE       | F15      | DATA10  | J7       | GND       | L15      | DATA31    |
| A16      | VDDEXT    | D8       | SMS0      | F16      | DATA16  | 18       | GND       | L16      | DATA28    |
| B1       | ADDR24    | D9       | SRAS      | G1       | XTAL    | 19       | GND       | M1       | PPI1SYNC2 |
| B2       | ADDR23    | D10      | SCAS      | G2       | VDDEXT  | J10      | GND       | M2       | PPI1D15   |
| B3       | ADDR19    | D11      | BGH       | G3       | VDDEXT  | J11      | GND       | М3       | PPI1D14   |
| B4       | ADDR17    | D12      | ABE1      | G4       | GND     | J12      | VDDINT    | M4       | PPI1D9    |
| B5       | ADDR12    | D13      | DATA02    | G5       | GND     | J13      | VDDINT    | M5       | VDDINT    |
| B6       | ADDR10    | D14      | DATA01    | G6       | VDDEXT  | J14      | DATA20    | M6       | VDDINT    |
| B7       | AMS1      | D15      | DATA03    | G7       | GND     | J15      | DATA22    | M7       | GND       |
| B8       | AOE       | D16      | DATA07    | G8       | GND     | J16      | DATA24    | M8       | VDDINT    |
| B9       | SMS1      | E1       | PPI0D11   | G9       | GND     | K1       | PPI0D6    | M9       | GND       |
| B10      | SCKE      | E2       | PPI0D13   | G10      | GND     | К2       | PPI0D5    | M10      | VDDINT    |
| B11      | BR        | E3       | PPI0D12   | G11      | VDDEXT  | К3       | PPI0D4    | M11      | GND       |
| B12      | BG        | E4       | PPI0D14   | G12      | VDDEXT  | К4       | PPI1SYNC3 | M12      | VDDINT    |
| B13      | ADDR08    | E5       | PPI1CLK   | G13      | DATA17  | K5       | VDDEXT    | M13      | RSCLK0    |
| B14      | ADDR05    | E6       | VDDINT    | G14      | DATA14  | Кб       | VDDEXT    | M14      | DROPRI    |
| B15      | ADDR02    | E7       | GND       | G15      | DATA15  | K7       | GND       | M15      | TSCLK0    |
| B16      | DATA04    | E8       | VDDINT    | G16      | DATA18  | К8       | GND       | M16      | DATA29    |
| C1       | PPI0SYNC1 | E9       | GND       | H1       | VROUT0  | К9       | GND       | N1       | PPI1SYNC1 |
| C2       | ADDR25    | E10      | VDDINT    | H2       | GND     | K10      | GND       | N2       | PPI1D10   |
| C3       | PPIOCLK   | E11      | GND       | H3       | GND     | K11      | VDDEXT    | N3       | PPI1D7    |
| C4       | ADDR20    | E12      | VDDINT    | H4       | VDDINT  | K12      | GND       | N4       | PPI1D5    |
| C5       | ADDR16    | E13      | DATA06    | H5       | VDDINT  | K13      | GND       | N5       | PF0       |
| C6       | ADDR13    | E14      | DATA13    | H6       | GND     | K14      | DATA26    | N6       | PF04      |
| C7       | AMS2      | E15      | DATA09    | H7       | GND     | K15      | DATA25    | N7       | PF09      |
| C8       | ARE       | E16      | DATA12    | H8       | GND     | K16      | DATA27    | N8       | PF12      |

### 256-BALL CSP\_BGA (12 mm) BALL ASSIGNMENT

Table 37 lists the 256-Ball CSP\_BGA (12 mm  $\times$  12 mm) ball assignment by ball number. Table 38 on Page 53 lists the ball assignment alphabetically by signal.

| Table 37. | 256-Ball CSP | BGA (12 mm > | < 12 mm) Ball | Assignment ( | Numerically b | y Ball Number) |
|-----------|--------------|--------------|---------------|--------------|---------------|----------------|
|           | -            | - ``         | ,             |              |               | ,              |

| Ball No. | Signal    | Ball No. | Signal    | Ball No. | Signal  | Ball No. | Signal    | Ball No. | Signal    |
|----------|-----------|----------|-----------|----------|---------|----------|-----------|----------|-----------|
| A01      | VDDEXT    | C09      | SMS2      | F01      | CLKIN   | H09      | GND       | L01      | PPI0D0    |
| A02      | ADDR24    | C10      | SRAS      | F02      | VDDEXT  | H10      | GND       | L02      | PPI1SYNC2 |
| A03      | ADDR20    | C11      | GND       | F03      | RESET   | H11      | VDDINT    | L03      | GND       |
| A04      | VDDEXT    | C12      | BGH       | F04      | PPI0D10 | H12      | DATA16    | L04      | PPI1SYNC3 |
| A05      | ADDR14    | C13      | GND       | F05      | ADDR21  | H13      | DATA18    | L05      | VDDEXT    |
| A06      | ADDR10    | C14      | ADDR07    | F06      | ADDR17  | H14      | DATA20    | L06      | PPI1D11   |
| A07      | AMS3      | C15      | DATA1     | F07      | VDDINT  | H15      | DATA17    | L07      | GND       |
| A08      | AWE       | C16      | DATA3     | F08      | GND     | H16      | DATA19    | L08      | VDDINT    |
| A09      | VDDEXT    | D01      | PPI0D13   | F09      | VDDINT  | J01      | VROUT0    | L09      | GND       |
| A10      | SMS3      | D02      | PPI0D15   | F10      | GND     | J02      | VROUT1    | L10      | VDDEXT    |
| A11      | SCLK0     | D03      | PPI0SYNC3 | F11      | ADDR08  | J03      | PPI0D2    | L11      | GND       |
| A12      | SCLK1     | D04      | ADDR23    | F12      | DATA10  | J04      | PPI0D3    | L12      | DROPRI    |
| A13      | BG        | D05      | GND       | F13      | DATA8   | J05      | PPI0D1    | L13      | TFS0      |
| A14      | ABE2      | D06      | GND       | F14      | DATA12  | J06      | VDDEXT    | L14      | GND       |
| A15      | ABE3      | D07      | ADDR09    | F15      | DATA9   | J07      | GND       | L15      | DATA27    |
| A16      | VDDEXT    | D08      | GND       | F16      | DATA11  | 308      | VDDINT    | L16      | DATA29    |
| B01      | PPI1CLK   | D09      | ARDY      | G01      | XTAL    | J09      | VDDINT    | M01      | PPI1D15   |
| B02      | ADDR22    | D10      | SCAS      | G02      | GND     | J10      | VDDINT    | M02      | PPI1D13   |
| B03      | ADDR18    | D11      | SA10      | G03      | VDDEXT  | J11      | GND       | M03      | PPI1D9    |
| B04      | ADDR16    | D12      | VDDEXT    | G04      | BYPASS  | J12      | DATA30    | M04      | GND       |
| B05      | ADDR12    | D13      | ADDR02    | G05      | PPI0D14 | J13      | DATA22    | M05      | NC        |
| B06      | VDDEXT    | D14      | GND       | G06      | GND     | J14      | GND       | M06      | PF3       |
| B07      | AMS1      | D15      | DATA5     | G07      | GND     | J15      | DATA21    | M07      | PF7       |
| B08      | ARE       | D16      | DATA6     | G08      | GND     | J16      | DATA23    | M08      | VDDINT    |
| B09      | SMS1      | E01      | GND       | G09      | VDDINT  | K01      | PPI0D6    | M09      | GND       |
| B10      | SCKE      | E02      | PPI0D11   | G10      | ADDR05  | K02      | PPI0D4    | M10      | BMODE0    |
| B11      | VDDEXT    | E03      | PPI0D12   | G11      | ADDR03  | K03      | PPI0D8    | M11      | SCK       |
| B12      | BR        | E04      | PPI0SYNC1 | G12      | DATA15  | K04      | PPI1SYNC1 | M12      | DR1PRI    |
| B13      | ABE1      | E05      | ADDR15    | G13      | DATA14  | K05      | PPI1D14   | M13      | NC        |
| B14      | ADDR06    | E06      | ADDR13    | G14      | GND     | K06      | VDDEXT    | M14      | VDDEXT    |
| B15      | ADDR04    | E07      | AMS2      | G15      | DATA13  | K07      | GND       | M15      | DATA31    |
| B16      | DATA0     | E08      | VDDINT    | G16      | VDDEXT  | K08      | VDDINT    | M16      | DTOPRI    |
| C01      | PPI0SYNC2 | E09      | SMS0      | H01      | GND     | K09      | GND       | N01      | PPI1D12   |
| C02      | PPIOCLK   | E10      | SWE       | H02      | GND     | K10      | GND       | N02      | PPI1D10   |
| C03      | ADDR25    | E11      | ABEO      | H03      | PPI0D9  | K11      | VDDINT    | N03      | PPI1D3    |
| C04      | ADDR19    | E12      | DATA2     | H04      | PPI0D7  | K12      | DATA28    | N04      | PPI1D1    |
| C05      | GND       | E13      | GND       | H05      | PPI0D5  | K13      | DATA26    | N05      | PF1       |
| C06      | ADDR11    | E14      | DATA4     | H06      | VDDINT  | K14      | DATA24    | N06      | PF9       |
| C07      | AOE       | E15      | DATA7     | H07      | VDDINT  | K15      | DATA25    | N07      | GND       |
| C08      | AMS0      | E16      | VDDEXT    | H08      | GND     | K16      | VDDEXT    | N08      | PF13      |

### **297-BALL PBGA BALL ASSIGNMENT**

Table 39 lists the 297-Ball PBGA ball assignment numerically by ball number. Table 40 on Page 58 lists the ball assignment alphabetically by signal.

| Table 39. | 297-Ball PBGA | Ball Assignment | (Numerically by | Ball Number) |
|-----------|---------------|-----------------|-----------------|--------------|
|-----------|---------------|-----------------|-----------------|--------------|

| Ball No. | Signal  | Ball No. | Signal    | Ball No. | Signal  | Ball No. | Signal |
|----------|---------|----------|-----------|----------|---------|----------|--------|
| A01      | GND     | B15      | SMS1      | G01      | PPI0D11 | L14      | GND    |
| A02      | ADDR25  | B16      | SMS3      | G02      | PPI0D10 | L15      | GND    |
| A03      | ADDR23  | B17      | SCKE      | G25      | DATA4   | L16      | GND    |
| A04      | ADDR21  | B18      | SWE       | G26      | DATA7   | L17      | GND    |
| A05      | ADDR19  | B19      | SA10      | H01      | BYPASS  | L18      | VDDINT |
| A06      | ADDR17  | B20      | BR        | H02      | RESET   | L25      | DATA12 |
| A07      | ADDR15  | B21      | BG        | H25      | DATA6   | L26      | DATA15 |
| A08      | ADDR13  | B22      | ABE1      | H26      | DATA9   | M01      | VROUT0 |
| A09      | ADDR11  | B23      | ABE3      | J01      | CLKIN   | M02      | GND    |
| A10      | ADDR09  | B24      | ADDR07    | J02      | GND     | M10      | VDDEXT |
| A11      | AMS3    | B25      | GND       | J10      | VDDEXT  | M11      | GND    |
| A12      | AMS1    | B26      | ADDR05    | J11      | VDDEXT  | M12      | GND    |
| A13      | AWE     | C01      | PPI0SYNC3 | J12      | VDDEXT  | M13      | GND    |
| A14      | ARE     | C02      | PPIOCLK   | J13      | VDDEXT  | M14      | GND    |
| A15      | SMS0    | C03      | GND       | J14      | VDDEXT  | M15      | GND    |
| A16      | SMS2    | C04      | GND       | J15      | VDDEXT  | M16      | GND    |
| A17      | SRAS    | C05      | GND       | J16      | VDDINT  | M17      | GND    |
| A18      | SCAS    | C22      | GND       | J17      | VDDINT  | M18      | VDDINT |
| A19      | SCLK0   | C23      | GND       | J18      | VDDINT  | M25      | DATA14 |
| A20      | SCLK1   | C24      | GND       | J25      | DATA8   | M26      | DATA17 |
| A21      | BGH     | C25      | ADDR04    | J26      | DATA11  | N01      | VROUT1 |
| A22      | ABEO    | C26      | ADDR03    | K01      | XTAL    | N02      | PPI0D9 |
| A23      | ABE2    | D01      | PPI0SYNC1 | K02      | NC      | N10      | VDDEXT |
| A24      | ADDR08  | D02      | PPI0SYNC2 | K10      | VDDEXT  | N11      | GND    |
| A25      | ADDR06  | D03      | GND       | K11      | VDDEXT  | N12      | GND    |
| A26      | GND     | D04      | GND       | K12      | VDDEXT  | N13      | GND    |
| B01      | PPI1CLK | D23      | GND       | K13      | VDDEXT  | N14      | GND    |
| B02      | GND     | D24      | GND       | K14      | VDDEXT  | N15      | GND    |
| B03      | ADDR24  | D25      | ADDR02    | K15      | VDDEXT  | N16      | GND    |
| B04      | ADDR22  | D26      | DATA1     | K16      | VDDINT  | N17      | GND    |
| B05      | ADDR20  | E01      | PPI0D15   | K17      | VDDINT  | N18      | VDDINT |
| B06      | ADDR18  | E02      | PPI0D14   | K18      | VDDINT  | N25      | DATA16 |
| B07      | ADDR16  | E03      | GND       | K25      | DATA10  | N26      | DATA19 |
| B08      | ADDR14  | E24      | GND       | K26      | DATA13  | P01      | PPI0D7 |
| B09      | ADDR12  | E25      | DATA0     | L01      | NC      | P02      | PPI0D8 |
| B10      | ADDR10  | E26      | DATA3     | L02      | NC      | P10      | VDDEXT |
| B11      | AMS2    | F01      | PPI0D13   | L10      | VDDEXT  | P11      | GND    |
| B12      | AMS0    | F02      | PPI0D12   | L11      | GND     | P12      | GND    |
| B13      | AOE     | F25      | DATA2     | L12      | GND     | P13      | GND    |
| B14      | ARDY    | F26      | DATA5     | L13      | GND     | P14      | GND    |

| Table 39. | 297-Ball PBGA Ball Assignment (Numerically by Ball Number) (Continued) |
|-----------|------------------------------------------------------------------------|
|           |                                                                        |

| Ball No. | Signal | Ball No. | Signal    | Ball No. | Signal | Ball No. | Signal |
|----------|--------|----------|-----------|----------|--------|----------|--------|
| P15      | GND    | U11      | VDDEXT    | AC04     | GND    | AE21     | RX     |
| P16      | GND    | U12      | VDDEXT    | AC23     | GND    | AE22     | RFS1   |
| P17      | GND    | U13      | VDDEXT    | AC24     | GND    | AE23     | DR1SEC |
| P18      | VDDINT | U14      | GND       | AC25     | DR0SEC | AE24     | TFS1   |
| P25      | DATA18 | U15      | VDDINT    | AC26     | RFS0   | AE25     | GND    |
| P26      | DATA21 | U16      | VDDINT    | AD01     | PPI1D7 | AE26     | NC     |
| R01      | PPI0D5 | U17      | VDDINT    | AD02     | PPI1D6 | AF01     | GND    |
| R02      | PPI0D6 | U18      | VDDINT    | AD03     | GND    | AF02     | PPI1D4 |
| R10      | VDDEXT | U25      | DATA24    | AD04     | GND    | AF03     | PPI1D2 |
| R11      | GND    | U26      | DATA27    | AD05     | GND    | AF04     | PPI1D0 |
| R12      | GND    | V01      | PPI1SYNC3 | AD22     | GND    | AF05     | PF1    |
| R13      | GND    | V02      | PPI0D0    | AD23     | GND    | AF06     | PF3    |
| R14      | GND    | V25      | DATA26    | AD24     | GND    | AF07     | PF5    |
| R15      | GND    | V26      | DATA29    | AD25     | NC     | AF08     | PF7    |
| R16      | GND    | W01      | PPI1SYNC1 | AD26     | RSCLK0 | AF09     | PF9    |
| R17      | GND    | W02      | PPI1SYNC2 | AE01     | PPI1D5 | AF10     | PF11   |
| R18      | VDDINT | W25      | DATA28    | AE02     | GND    | AF11     | PF13   |
| R25      | DATA20 | W26      | DATA31    | AE03     | PPI1D3 | AF12     | PF15   |
| R26      | DATA23 | Y01      | PPI1D15   | AE04     | PPI1D1 | AF13     | NMI1   |
| T01      | PPI0D3 | Y02      | PPI1D14   | AE05     | PF0    | AF14     | ТСК    |
| T02      | PPI0D4 | Y25      | DATA30    | AE06     | PF2    | AF15     | TDI    |
| T10      | VDDEXT | Y26      | DTOPRI    | AE07     | PF4    | AF16     | TMS    |
| T11      | GND    | AA01     | PPI1D13   | AE08     | PF6    | AF17     | SLEEP  |
| T12      | GND    | AA02     | PPI1D12   | AE09     | PF8    | AF18     | NMIO   |
| T13      | GND    | AA25     | DT0SEC    | AE10     | PF10   | AF19     | SCK    |
| T14      | GND    | AA26     | TSCLK0    | AE11     | PF12   | AF20     | ТХ     |
| T15      | GND    | AB01     | PPI1D11   | AE12     | PF14   | AF21     | RSCLK1 |
| T16      | GND    | AB02     | PPI1D10   | AE13     | NC     | AF22     | DR1PRI |
| T17      | GND    | AB03     | GND       | AE14     | TDO    | AF23     | TSCLK1 |
| T18      | VDDINT | AB24     | GND       | AE15     | TRST   | AF24     | DT1SEC |
| T25      | DATA22 | AB25     | TFS0      | AE16     | EMU    | AF25     | DT1PRI |
| T26      | DATA25 | AB26     | DROPRI    | AE17     | BMODE1 | AF26     | GND    |
| U01      | PPI0D1 | AC01     | PPI1D9    | AE18     | BMODE0 |          |        |
| U02      | PPI0D2 | AC02     | PPI1D8    | AE19     | MISO   |          |        |
| U10      | VDDEXT | AC03     | GND       | AE20     | MOSI   |          |        |

Figure 52 lists the top view of the 297-Ball PBGA ball configuration. Figure 53 lists the bottom view.





Figure 52. 297-Ball PBGA Ball Configuration (Top View)



Figure 53. 297-Ball PBGA Ball Configuration (Bottom View)

#### SURFACE-MOUNT DESIGN

Table 41 is provided as an aid to PCB design. For industrystandard design recommendations, refer to IPC-7351, *Generic Requirements for Surface Mount Design and Land Pattern Standard.* 

Table 41. BGA Data for Use with Surface-Mount Design

| Package                     | Ball Attach Type    | Solder Mask Opening | Ball Pad Size    |
|-----------------------------|---------------------|---------------------|------------------|
| 256-Ball CSP_BGA (BC-256-1) | Solder Mask Defined | 0.30 mm diameter    | 0.43 mm diameter |
| 256-Ball CSP_BGA (BC-256-4) | Solder Mask Defined | 0.43 mm diameter    | 0.55 mm diameter |
| 297-Ball PBGA (B-297)       | Solder Mask Defined | 0.43 mm diameter    | 0.58 mm diameter |

#### **AUTOMOTIVE PRODUCTS**

Some ADSP-BF561 models are available for automotive applications with controlled manufacturing. Note that these special models may have specifications that differ from the general release models. The automotive grade products shown in Table 42 are available for use in automotive applications. Contact your local ADI account representative or authorized ADI product distributor for specific product ordering information. Note that all automotive products are RoHS compliant.

#### Table 42. Automotive Products

| Product Family <sup>1</sup> | Temperature<br>Range <sup>2</sup> | Speed Grade<br>(Max) <sup>3</sup> | Package Description | Package<br>Option |
|-----------------------------|-----------------------------------|-----------------------------------|---------------------|-------------------|
| ADBF561WBBZ5xx              | –40°C to +85°C                    | 533 MHz                           | 297-Ball PBGA       | B-297             |
| ADBF561WBBCZ5xx             | –40°C to +85°C                    | 533 MHz                           | 256-Ball CSP_BGA    | BC-256-4          |

<sup>1</sup> xx denotes silicon revision.

<sup>2</sup> Referenced temperature is ambient temperature.

<sup>3</sup> The internal voltage regulation feature is not available. External voltage regulation is required to ensure correct operation.

#### **ORDERING GUIDE**

|                                 | Temperature        |                   |                     | Package  |
|---------------------------------|--------------------|-------------------|---------------------|----------|
| Model                           | Range <sup>1</sup> | Speed Grade (Max) | Package Description | Option   |
| ADSP-BF561SKBCZ-6V <sup>2</sup> | 0°C to +70°C       | 600 MHz           | 256-Ball CSP_BGA    | BC-256-1 |
| ADSP-BF561SKBCZ-5V <sup>2</sup> | 0°C to +70°C       | 533 MHz           | 256-Ball CSP_BGA    | BC-256-1 |
| ADSP-BF561SKBCZ500 <sup>2</sup> | 0°C to +70°C       | 500 MHz           | 256-Ball CSP_BGA    | BC-256-1 |
| ADSP-BF561SKB500                | 0°C to +70°C       | 500 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SKB600                | 0°C to +70°C       | 600 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SKBZ500 <sup>2</sup>  | 0°C to +70°C       | 500 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SKBZ600 <sup>2</sup>  | 0°C to +70°C       | 600 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SBB600                | –40°C to +85°C     | 600 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SBB500                | –40°C to +85°C     | 500 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SBBZ600 <sup>2</sup>  | –40°C to +85°C     | 600 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SBBZ500 <sup>2</sup>  | –40°C to +85°C     | 500 MHz           | 297-Ball PBGA       | B-297    |
| ADSP-BF561SKBCZ-6A <sup>2</sup> | 0°C to +70°C       | 600 MHz           | 256-Ball CSP_BGA    | BC-256-4 |
| ADSP-BF561SKBCZ-5A <sup>2</sup> | 0°C to +70°C       | 500 MHz           | 256-Ball CSP_BGA    | BC-256-4 |
| ADSP-BF561SBBCZ-5A <sup>2</sup> | -40°C to +85°C     | 500 MHz           | 256-Ball CSP_BGA    | BC-256-4 |

<sup>1</sup>Referenced temperature is ambient temperature.

 $^{2}$ Z = RoHS compliant part.