

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Fixed Point
Interface	SPI, SSP, UART
Clock Rate	500MHz
Non-Volatile Memory	External
On-Chip RAM	328kB
Voltage - I/O	2.50V, 3.30V
Voltage - Core	1.25V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	297-BGA
Supplier Device Package	297-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf561sbbz500

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADSP-BF561* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- Low Cost ICE-1000 and High Performance ICE-2000 USBbased JTAG Emulators
- Multimedia Starter Kit
- The ADSP-BF561 EZ-Kit Lite evaluation hardware provides a low-cost hardware solution for evaluating the ADSP-BF561 Blackfin processor.
- USB-Based Emulator and High Performance USB-Based Emulator

DOCUMENTATION

Application Notes

- AN-813: Interfacing the ADSP-BF533/ADSP-BF561 Blackfin[®]; Processors to High Speed Parallel ADCs
- EE-120: Interfacing Assembly Language Programs to C
- EE-126: The ABCs of SDRAMemories
- EE-175: Emulator and Evaluation Hardware Troubleshooting Guide for VisualDSP++ Users
- EE-183: Rational Sample Rate Conversion with Blackfin[®] Processors
- EE-185: Fast Floating-Point Arithmetic Emulation on Blackfin® Processors
- EE-228: Switching Regulator Design Considerations for ADSP-BF533 Blackfin[®] Processors
- EE-261: Understanding Jitter Requirements of PLL-Based Processors
- EE-269: A Beginner's Guide to Ethernet 802.3
- EE-281: Hardware Design Checklist for the Blackfin[®] Processors
- EE-289: Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors
- EE-293: Estimating Power for ADSP-BF561 Blackfin[®] Processors
- EE-294: Energy-Aware Programming on Blackfin Processors
- EE-300: Interfacing Blackfin[®] EZ-KIT Lite[®] Boards to CMOS Image Sensors
- EE-314: Booting the ADSP-BF561 Blackfin® Processor
- EE-323: Implementing Dynamically Loaded Software Modules
- EE-326: Blackfin[®] Processor and SDRAM Technology
- EE-330: Windows Vista Compatibility in VisualDSP++ 5.0 Development Tools
- EE-332: Cycle Counting and Profiling
- EE-336: Putting ADSP-BF54x Blackfin[®] Processor Booting into Practice
- EE-339: Using External Switching Regulators with Blackfin® Processors
- EE-340: Connecting SHARC[®] and Blackfin[®] Processors over SPI
- EE-356: Emulator and Evaluation Hardware Troubleshooting Guide for CCES Users

Data Sheet

Figure 2. Blackfin Processor Core

MEMORY ARCHITECTURE

The ADSP-BF561 views memory as a single unified 4G byte address space, using 32-bit addresses. All resources including internal memory, external memory, and I/O control registers occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low latency memory as cache or SRAM very close to the processor, and larger, lower cost and performance memory systems farther away from the processor. The ADSP-BF561 memory map is shown in Figure 3.

The L1 memory system in each core is the highest performance memory available to each Blackfin core. The L2 memory provides additional capacity with lower performance. Lastly, the off-chip memory system, accessed through the External Bus Interface Unit (EBIU), provides expansion with SDRAM, flash memory, and SRAM, optionally accessing more than 768M bytes of physical memory. The memory DMA controllers provide high bandwidth data movement capability. They can perform block transfers of code or data between the internal L1/L2 memories and the external memory spaces.

Internal (On-Chip) Memory

The ADSP-BF561 has four blocks of on-chip memory providing high bandwidth access to the core.

The first is the L1 instruction memory of each Blackfin core consisting of 16K bytes of four-way set-associative cache memory and 16K bytes of SRAM. The cache memory may also be configured as an SRAM. This memory is accessed at full processor speed. When configured as SRAM, each of the two 16K banks of memory is broken into 4K sub-banks which can be independently accessed by the processor and DMA.

The second on-chip memory block is the L1 data memory of each Blackfin core which consists of four banks of 16K bytes each. Two of the L1 data memory banks can be configured as one way of a two-way set-associative cache or as an SRAM. The other two banks are configured as SRAM. All banks are accessed at full processor speed. When configured as SRAM, each of the four 16K banks of memory is broken into 4K sub-banks which can be independently accessed by the processor and DMA.

The third memory block associated with each core is a 4K byte scratchpad SRAM which runs at the same speed as the L1 memories, but is only accessible as data SRAM (it cannot be configured as cache memory and is not accessible via DMA).

writing the appropriate values into the Interrupt Assignment Registers (SIC_IAR7–0). Table 2 describes the inputs into the SIC and the default mappings into the CEC.

Table 2. System Interrupt Controller (SIC)

	Default
Peripheral Interrupt Event	Mapping
PLL Wakeup	IVG7
DMA1 Error (Generic)	IVG7
DMA2 Error (Generic)	IVG7
IMDMA Error	IVG7
PPI0 Error	IVG7
PPI1 Error	IVG7
SPORT0 Error	IVG7
SPORT1 Error	IVG7
SPI Error	IVG7
UART Error	IVG7
Reserved	IVG7
DMA1 Channel 0 Interrupt (PPI0)	IVG8
DMA1 Channel 1 Interrupt (PPI1)	IVG8
DMA1 Channel 2 Interrupt	IVG8
DMA1 Channel 3 Interrupt	IVG8
DMA1 Channel 4 Interrupt	IVG8
DMA1 Channel 5 Interrupt	IVG8
DMA1 Channel 6 Interrupt	IVG8
DMA1 Channel 7 Interrupt	IVG8
DMA1 Channel 8 Interrupt	IVG8
DMA1 Channel 9 Interrupt	IVG8
DMA1 Channel 10 Interrupt	IVG8
DMA1 Channel 11 Interrupt	IVG8
DMA2 Channel 0 Interrupt (SPORT0 Rx)	IVG9
DMA2 Channel 1 Interrupt (SPORT0 Tx)	IVG9
DMA2 Channel 2 Interrupt (SPORT1 Rx)	IVG9
DMA2 Channel 3 Interrupt (SPORT1 Tx)	IVG9
DMA2 Channel 4 Interrupt (SPI)	IVG9
DMA2 Channel 5 Interrupt (UART Rx)	IVG9
DMA2 Channel 6 Interrupt (UART Tx)	IVG9
DMA2 Channel 7 Interrupt	IVG9
DMA2 Channel 8 Interrupt	IVG9
DMA2 Channel 9 Interrupt	IVG9
DMA2 Channel 10 Interrupt	IVG9
DMA2 Channel 11 Interrupt	IVG9
Timer0 Interrupt	IVG10
Timer1 Interrupt	IVG10
Timer2 Interrupt	IVG10
Timer3 Interrupt	IVG10
Timer4 Interrupt	IVG10
Timer5 Interrupt	IVG10
Timer6 Interrupt	IVG10

Table 2.	System	Interrupt	Controller	(SIC)	(Continued)
----------	--------	-----------	------------	-------	-------------

	Default
Peripheral Interrupt Event	Mapping
Timer7 Interrupt	IVG10
Timer8 Interrupt	IVG10
Timer9 Interrupt	IVG10
Timer10 Interrupt	IVG10
Timer11 Interrupt	IVG10
Programmable Flags 15–0 Interrupt A	IVG11
Programmable Flags 15–0 Interrupt B	IVG11
Programmable Flags 31–16 Interrupt A	IVG11
Programmable Flags 31–16 Interrupt B	IVG11
Programmable Flags 47–32 Interrupt A	IVG11
Programmable Flags 47–32 Interrupt B	IVG11
DMA1 Channel 12/13 Interrupt	IVG8
(Memory DMA/Stream 0)	
DMA1 Channel 14/15 Interrupt	IVG8
(Memory DMA/Stream 1)	
DMA2 Channel 12/13 Interrupt	IVG9
(Memory DMA/Stream 0)	
DMA2 Channel 14/15 Interrupt	IVG9
(Memory DMA/Stream 1)	
IMDMA Stream 0 Interrupt	IVG12
IMDMA Stream 1 Interrupt	IVG12
Watchdog Timer Interrupt	IVG13
Reserved	IVG7
Reserved	IVG7
Supplemental Interrupt 0	IVG7
Supplemental Interrupt 1	IVG7

Event Control

The ADSP-BF561 provides the user with a very flexible mechanism to control the processing of events. In the CEC, three registers are used to coordinate and control events. Each of the registers is 16 bits wide, while each bit represents a particular event class.

- CEC Interrupt Latch Register (ILAT) The ILAT register indicates when events have been latched. The appropriate bit is set when the processor has latched the event and cleared when the event has been accepted into the system. This register is updated automatically by the controller, but may also be written to clear (cancel) latched events. This register may be read while in supervisor mode and may only be written while in supervisor mode when the corresponding IMASK bit is cleared.
- CEC Interrupt Mask Register (IMASK) The IMASK register controls the masking and unmasking of individual events. When a bit is set in the IMASK register, that event is unmasked and will be processed by the CEC when asserted. A cleared bit in the IMASK register masks the event, thereby preventing the processor from servicing the event

even though the event may be latched in the ILAT register. This register may be read from or written to while in supervisor mode.

Note that general-purpose interrupts can be globally enabled and disabled with the STI and CLI instructions, respectively.

 CEC Interrupt Pending Register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but may be read while in supervisor mode.

The SIC allows further control of event processing by providing six 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 2.

- SIC Interrupt Mask Registers (SIC_IMASKx) These registers control the masking and unmasking of each peripheral interrupt event. When a bit is set in these registers, that peripheral event is unmasked and will be processed by the system when asserted. A cleared bit in these registers masks the peripheral event, thereby preventing the processor from servicing the event.
- SIC Interrupt Status Registers (SIC_ISRx) As multiple peripherals can be mapped to a single event, these registers allow the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt; a cleared bit indicates the peripheral is not asserting the event.
- SIC Interrupt Wakeup Enable Registers (SIC_IWRx) By enabling the corresponding bit in these registers, each peripheral can be configured to wake up the processor, should the processor be in a powered-down mode when the event is generated.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC will recognize and queue the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the generalpurpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the mode of the processor.

DMA CONTROLLERS

The ADSP-BF561 has two independent DMA controllers that support automated data transfers with minimal overhead for the DSP cores. DMA transfers can occur between the ADSP-BF561 internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPIs. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The ADSP-BF561 DMA controllers support both 1-dimensional (1-D) and 2-dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to \pm 32K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the ADSP-BF561 DMA controllers include:

- A single linear buffer that stops upon completion.
- A circular autorefreshing buffer that interrupts on each full or fractionally full buffer.
- 1-D or 2-D DMA using a linked list of descriptors.
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page.

In addition to the dedicated peripheral DMA channels, each DMA Controller has four memory DMA channels provided for transfers between the various memories of the ADSP-BF561 system. These enable transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptorbased methodology or by a standard register-based autobuffer mechanism.

Further, the ADSP-BF561 has a four channel Internal Memory DMA (IMDMA) Controller. The IMDMA Controller allows data transfers between any of the internal L1 and L2 memories.

WATCHDOG TIMER

Each ADSP-BF561 core includes a 32-bit timer, which can be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, via generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

regulator for the processor can be shut off by writing b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and SCLK. Furthermore, it sets the internal power supply voltage (V_{DDINT}) to 0 V to provide the lowest static power dissipation. Any critical information stored internally (memory contents, register contents, etc.) must be written to a nonvolatile storage device prior to removing power if the processor state is to be preserved. Since V_{DDEXT} is still supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to have power still applied without drawing unwanted current. The internal supply regulator can be woken up by asserting the RESET pin.

Power Savings

As shown in Table 4, the ADSP-BF561 supports two different power domains. The use of multiple power domains maximizes flexibility, while maintaining compliance with industry standards and conventions. By isolating the internal logic of the ADSP-BF561 into its own power domain, separate from the I/O, the processor can take advantage of Dynamic Power Management, without affecting the I/O devices. There are no sequencing requirements for the various power domains.

Table 4. ADSP-BF561 Power Domains

Power Domain	V _{DD} Range
All internal logic	V _{DDINT}
I/O	V _{DDEXT}

The power dissipated by a processor is largely a function of the clock frequency of the processor and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation, while reducing the voltage by 25% reduces dynamic power dissipation by more than 40%. Further, these power savings are additive, in that if the clock frequency and supply voltage are both reduced, the power savings can be dramatic.

The dynamic power management feature of the ADSP-BF561 allows both the processor's input voltage (V_{DDINT}) and clock frequency (f_{CCLK}) to be dynamically controlled.

The savings in power dissipation can be modeled using the power savings factor and % power savings calculations.

The power savings factor is calculated as:

power savings factor

$$= \frac{f_{CCLKRED}}{f_{CCLKNOM}} \times \left(\frac{V_{DDINTRED}}{V_{DDINTNOM}}\right)^2 \times \left(\frac{t_{RED}}{t_{NOM}}\right)^2$$

where the variables in the equations are:

 $f_{CCLKNOM}$ is the nominal core clock frequency

 $f_{CCLKRED}$ is the reduced core clock frequency

 $V_{DDINTNOM}$ is the nominal internal supply voltage

 $V_{DDINTRED}$ is the reduced internal supply voltage

 t_{NOM} is the duration running at $f_{CCLKNOM}$

 t_{RED} is the duration running at $f_{CCLKRED}$

The percent power savings is calculated as:

% power savings = $(1 - power savings factor) \times 100\%$

VOLTAGE REGULATION

The ADSP-BF561 processor provides an on-chip voltage regulator that can generate appropriate V_{DDINT} voltage levels from the V_{DDEXT} supply. See Operating Conditions on Page 20 for regulator tolerances and acceptable V_{DDEXT} ranges for specific models.

Figure 4 shows the typical external components required to complete the power management system. The regulator controls the internal logic voltage levels and is programmable with the voltage regulator control register (VR_CTL) in increments of 50 mV. To reduce standby power consumption, the internal voltage regulator can be programmed to remove power to the processor core while keeping I/O power (V_{DDEXT}) supplied. While in the hibernate state, V_{DDEXT} can still be applied, thus eliminating the need for external buffers. The voltage regulator can be activated from this power-down state by asserting RESET, which will then initiate a boot sequence. The regulator can also be disabled and bypassed at the user's discretion.

The internal voltage regulation feature is not available on any of the 600 MHz speed grade models or automotive grade models. External voltage regulation is required to ensure correct operation of these parts at 600 MHz.

Figure 4. Voltage Regulator Circuit

Voltage Regulator Layout Guidelines

Regulator external component placement, board routing, and bypass capacitors all have a significant effect on noise injected into the other analog circuits on-chip. The VROUT1–0 traces and voltage regulator external components should be considered as noise sources when doing board layout and should not be routed or placed near sensitive circuits or components on the

PIN DESCRIPTIONS

ADSP-BF561 pin definitions are listed in Table 8. In order to maintain maximum function and reduce package size and pin count, some pins have multiple functions. In cases where pin function is reconfigurable, the default state is shown in plain text, while alternate functionality is shown in italics.

All pins are three-stated during and immediately after reset, except the external memory interface, asynchronous memory control, and synchronous memory control pins. These pins are all driven high, with the exception of CLKOUT, which toggles at the system clock rate. However if $\overline{\text{BR}}$ is active, the memory pins are also three-stated.

All I/O pins have their input buffers disabled, with the exception of the pins that need pull-ups or pull-downs if unused, as noted in Table 8.

			Driver
Pin Name	Туре	Function	Type ¹
EBIU			
ADDR25–2	0	Address Bus for Async/Sync Access	А
DATA31-0	I/O	Data Bus for Async/Sync Access	A
ABE3-0/SDQM3-0	0	Byte Enables/Data Masks for Async/Sync Access	А
BR	I	Bus Request (This pin should be pulled HIGH if not used.)	
BG	0	Bus Grant	А
BGH	0	Bus Grant Hang	А
EBIU (ASYNC)			
AMS3-0	0	Bank Select	А
ARDY	I	Hardware Ready Control (This pin should be pulled HIGH if not used.)	
AOE	0	Output Enable	А
AWE	0	Write Enable	А
ARE	0	Read Enable	А
EBIU (SDRAM)			
SRAS	0	Row Address Strobe	А
SCAS	0	Column Address Strobe	А
SWE	0	Write Enable	А
SCKE	0	Clock Enable	А
SCLK0/CLKOUT	0	Clock Output Pin 0	В
SCLK1	0	Clock Output Pin 1	В
SA10	0	SDRAM A10 Pin	А
SMS3-0	0	Bank Select	А

Table 8. Pin Descriptions

SPECIFICATIONS

Component specifications are subject to change without notice.

OPERATING CONDITIONS

Parameter		Conditions		Nominal	Max	Unit
V	Internal Supply Voltage ¹	Non automotive 500 MHz and 533 MHz speed grade models ²	0.8	1.25	1.375	V
V_{DDINT}	Internal Supply Voltage ³	600 MHz speed grade models ²	0.8	1.35	1.4185	V
V_{DDINT}	Internal Supply Voltage ³	Automotive grade models ²	0.95	1.25	1.375	v
V_{DDEXT}	External Supply Voltage	Non automotive grade models ²	2.25	2.5, or 3.3	3.6	V
V _{DDEXT}	External Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	v
V⊪	High Level Input Voltage ^{4, 5}		2.0		3.6	v
V _{IL}	Low Level Input Voltage ⁵		-0.3		+0.6	v
ΤJ	Junction Temperature	256-Ball CSP_BGA (12 mm × 12 mm) @ T _{AMBENT} = 0°C to +70°C	0		+105	°C
ΤJ	Junction Temperature	256-Ball CSP_BGA (17 mm × 17 mm) @ T _{AMBENT} = 0°C to +70°C	0		+95	°C
ΤJ	Junction Temperature	256-Ball CSP_BGA (17 mm × 17 mm) @ T _{AMBENT} =-40°C to +85°C	-40		+115	°C
ΤJ	Junction Temperature	297-Ball PBGA @ T _{AMBIENT} = 0°C to +70°C	0		+95	°C
TJ	Junction Temperature	297-Ball PBGA @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+115	°C

 1 Internal voltage (V_{\tiny DDINT}) regulator tolerance is –5% to +10% for all models.

² See Ordering Guide on Page 63.

³ The internal voltage regulation feature is not available. External voltage regulation is required to ensure correct operation.

⁴ The ADSP-BF561 is 3.3 V tolerant (always accepts up to 3.6 V maximum V_{H}), but voltage compliance (on outputs, V_{OH}) depends on the input V_{DDEXT} because V_{OH} (maximum) approximately equals V_{DDEXT} (maximum). This 3.3 V tolerance applies to bidirectional and input only pins.

⁵ Applies to all signal pins.

Table 9 and Table 10 describe the timing requirements for theADSP-BF561 clocks ($t_{CCLK} = 1/f_{CCLK}$). Take care in selectingMSEL, SSEL, and CSEL ratios so as not to exceed the maximumcore clock, system clock, and Voltage Controlled Oscillator

(VCO) operating frequencies, as described in Absolute Maximum Ratings on Page 22. Table 11 describes phase-locked loop operating conditions.

Table 9. Core Clock (CCLK) Requirements—500 MHz and 533 MHz Speed Grade Models¹

Paran	neter	Мах	Unit
f _{CCLK}	CCLK Frequency $(V_{DDNT} = 1.235 \text{ Vminimum})^2$	533	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 1.1875 Vminimum)	500	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 1.045 Vminimum)	444	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 0.95 Vminimum)	350	MHz
f_{CCLK}	CCLK Frequency $(V_{DDNT} = 0.855 \text{ Vminimum})^3$	300	MHz
\mathbf{f}_{CCLK}	CCLK Frequency $(V_{DDINT} = 0.8 \text{ V minimum})^3$	250	MHz

¹See Ordering Guide on Page 63.

² External Voltage regulation is required on automotive grade models (see Ordering Guide on Page 63) to ensure correct operation.

³Not applicable to automotive grade models. See Ordering Guide on Page 63.

Table 10. Core Clock (CCLK) Requirements—600 MHz Speed Grade Models¹

Param	eter	Мах	Unit
f _{cclk}	CCLK Frequency $(V_{DDINT} = 1.2825 \text{ V minimum})^2$	600	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 1.235 V minimum)	533	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.1875 V minimum)	500	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.045 V minimum)	444	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.95 V minimum)	350	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.855 V minimum)	300	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.8 V minimum)	250	MHz

¹See Ordering Guide on Page 63.

² External voltage regulator required to ensure proper operation at 600 MHz.

Table 11. Phase-Locked Loop Operating Conditions

Parameter	Min	Мах	Unit
Voltage Controlled Oscillator (VCO) Frequency	50	Maximum f _{CCLK}	MHz

Table 12. System Clock (SCLK) Requirements

Parameter ¹		$Max V_{DDEXT} = 2.5V/3.3V$	Unit
f _{sclk}	CLKOUT/SCLK Frequency (V _{DDINT} ≥ 1.14 V)	133 ²	MHz
f _{SCLK}	CLKOUT/SCLK Frequency (V _{DDINT} < 1.14 V)	100	MHz

 1 t_{SCLK} (= 1/f_{SCLK}) must be greater than or equal to t_{CCLK}.

² Rounded number. Guaranteed to $t_{SCLK} = 7.5$ ns. See Table 20 on Page 26.

ELECTRICAL CHARACTERISTICS

Parameter		Test Conditions	Min	Typical	Max	Unit
V _{OH}	High Level Output Voltage ¹	$V_{\text{DDEXT}} = 3.0 \text{ V}, I_{\text{OH}} = -0.5 \text{ mA}$	2.4			V
V _{OL}	Low Level Output Voltage ¹	$V_{\text{DDEXT}} = 3.0 \text{ V}, I_{\text{OL}} = 2.0 \text{ mA}$			0.4	V
I _{IH}	High Level Input Current ²	$V_{DDEXT} = Maximum, V_{IN} = V_{DD} Maximum$			10.0	μΑ
I _{IHP}	High Level Input Current JTAG ³	$V_{DDEXT} = Maximum, V_{IN} = V_{DD} Maximum$			50.0	μΑ
۱ _{IL} 4	Low Level Input Current ²	$V_{DDEXT} = Maximum, V_{IN} = 0 V$			10.0	μΑ
I _{OZH}	Three-State Leakage Current ⁵	$V_{DDEXT} = Maximum, V_{IN} = V_{DD} Maximum$			10.0	μΑ
I _{OZL} ⁴	Three-State Leakage Current ⁵	$V_{DDEXT} = Maximum, V_{IN} = 0 V$			10.0	μΑ
C _{IN}	Input Capacitance ⁶	$f_{IN} = 1 \text{ MHz}, T_{AMBIENT} = 25^{\circ}\text{C}, V_{IN} = 2.5 \text{ V}$		4	8 ⁷	pF
DDHIBERNATE	V _{DDEXT} Current in Hibernate Mode	CLKIN=0 MHz, V_{DDEXT} = 3.65 V with Voltage Regulator Off		50		μΑ
		$(V_{DDINT} = 0 V)$				
DDDEEPSLEEP	V _{DDINT} Current in Deep Sleep Mode	$V_{\text{DDINT}} = 0.8 \text{ V}, \text{T}_{\text{JUNCTION}} = 25^{\circ}\text{C}$		70		mA
9, 10		$V_{\text{DDINT}} = 0.8 \text{ V}, \text{ f}_{\text{CCLK}} = 50 \text{ MHz}, \text{ T}_{\text{JUNCTION}} = 25^{\circ}\text{C}$		127		mA
9, 10		$V_{DDINT} = 1.25 \text{ V}, f_{CCLK} = 500 \text{ MHz}, T_{JUNCTION} = 25^{\circ}\text{C}$		660		mA
I _{DD_TYP} ^{9, 10}		$V_{\text{DDINT}} = 1.35 \text{ V}, f_{\text{CCLK}} = 600 \text{ MHz}, T_{\text{JUNCTION}} = 25^{\circ}\text{C}$		818		mA

¹ Applies to output and bidirectional pins.

² Applies to input pins except JTAG inputs.

³ Applies to JTAG input pins (TCK, TDI, TMS, TRST).

⁴ Absolute value.

⁵ Applies to three-statable pins.

⁶ Applies to all signal pins.

⁷ Guaranteed, but not tested.

 $^8\,\text{CLKIN}$ must be tied to $V_{\text{\tiny DDEXT}}$ or GND during hibernate.

⁹ Maximum current drawn. See *Estimating Power for ADSP-BF561 Blackfin Processors (EE-293)* on the Analog Devices website (www.analog.com)—use site search on "EE-293". ¹⁰Both cores executing 75% dual MAC, 25% ADD instructions with moderate data bus activity.

System designers should refer to *Estimating Power for the ADSP-BF561 (EE-293)*, which provides detailed information for optimizing designs for lowest power. All topics discussed in this section are described in detail in EE-293. Total power dissipation has two components:

1. Static, including leakage current

2. Dynamic, due to transistor switching characteristics

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. Electrical Characteristics on Page 21 shows the current dissipation for internal circuitry (V_{DDINT}).

Asynchronous Memory Read Cycle Timing

Table 18. Asynchronous Memory Read Cycle Timing

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{sdat}	DATA31-0 Setup Before CLKOUT	2.1		ns
t _{HDAT}	DATA31–0 Hold After CLKOUT	0.8		ns
t _{sardy}	ARDY Setup Before CLKOUT	4.0		ns
t _{HARDY}	ARDY Hold After CLKOUT	0.0		ns
Switching Ch	naracteristics			
t _{DO}	Output Delay After CLKOUT ¹		6.0	ns
t _{HO}	Output Hold After CLKOUT ¹	0.8		ns

¹ Output pins include $\overline{AMS3-0}$, $\overline{ABE3-0}$, ADDR25-2, \overline{AOE} , \overline{ARE} .

Figure 15. PPI GP Rx Mode with External Frame Sync Timing (Default)

Figure 16. PPI GP Tx Mode with Internal Frame Sync Timing (Default)

Figure 18. PPI GP Rx Mode with External Frame Sync Timing (Bit 4 of PLL_CTL Set)

Table 25. Serial Ports—Enable and Three-State

Param	eter	Min	Мах	Unit
Switchi	ng Characteristics			
t _{dtene}	Data Enable Delay from External TSCLKx ¹	0		ns
t _{ddtte}	Data Disable Delay from External TSCLKx ¹		10.0	ns
t _{dteni}	Data Enable Delay from Internal TSCLKx ¹	-2.0		ns
t _{DDTTI}	Data Disable Delay from Internal TSCLKx ¹		3.0	ns

¹Referenced to drive edge.

Table 26. External Late Frame Sync

Paran	neter	Min	Max	Unit
Switch	ing Characteristics			
t _{DDTLFSE}	Data Delay from Late External TFSx or External RFSx with MCMEN = 1, MFD = $0^{1,2}$		10.0	ns
$\mathbf{t}_{\text{DTENLFS}}$	Data Enable from Late FS or MCMEN = 1, MFD = $0^{1, 2}$	0		ns

 $^1\,MCMEN$ = 1, TFSx enable and TFSx valid follow $t_{\mbox{\tiny DTENLFS}}$ and $t_{\mbox{\tiny DDTLESE}}$

DTx

 $^{2} If external RFSx/TFSx setup to RSCLKx/TSCLKx > t_{\text{SCLKE}}/2, then t_{\text{DDTTE/1}} and t_{\text{DTENE/1}} apply; otherwise t_{\text{DDTLFSE}} and t_{\text{DTENLFS}} apply.$

tDDTENFS

t_{DDTLFSE}

DRIVE SAMPLE DRIVE RSCLKx t_{HFSE/I} t_{SFSE/I} RFSx t_{DDTE/I} tDDTENFS t_{HDTE/I} 7 DTx 2ND BIT 1ST BIT t_{DDTLFSE} LATE EXTERNAL TRANSMIT FS DRIVE SAMPLE DRIVE TSCLKx t_{HFSE/I} t_{SFSE/I} TFSx

EXTERNAL RECEIVE FS WITH MCMEN = 1, MFD = 0

Figure 22. External Late Frame Sync

t_{HDTE/I}

1ST BIT

t_{DDTE/I}

7

2ND BIT

Universal Asynchronous Receiver Transmitter (UART) Port—Receive and Transmit Timing

Figure 25 describes UART port receive and transmit operations. The maximum baud rate is SCLK/16. As shown in Figure 25, there is some latency between the generation internal UART interrupts and the external data operations. These latencies are negligible at the data transmission rates for the UART.

Figure 25. UART Port—Receive and Transmit Timing

256-BALL CSP_BGA (17 mm) BALL ASSIGNMENT

Table 35 lists the 256-Ball CSP_BGA (17 mm \times 17 mm) ball assignment by ball number. Table 36 on Page 48 lists the ball assignment alphabetically by signal.

Table 35. 256-Ball CSP	_BGA (17 mm × 17 mm)	Ball Assignment (Numerically by Ball Number)
------------------------	----------------------	-------------------	-----------------------------

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
A1	VDDEXT	С9	SMS3	F1	CLKIN	H9	GND	L1	PPI0D3
A2	ADDR22	C10	SWE	F2	PPI0D10	H10	GND	L2	PPI0D2
A3	ADDR18	C11	SA10	F3	RESET	H11	GND	L3	PPI0D1
A4	ADDR14	C12	ABE0	F4	BYPASS	H12	GND	L4	PPI0D0
A5	ADDR11	C13	ADDR07	F5	VDDEXT	H13	GND	L5	VDDEXT
A6	AMS3	C14	ADDR04	F6	VDDEXT	H14	DATA21	L6	VDDEXT
A7	AMS0	C15	DATA0	F7	VDDEXT	H15	DATA19	L7	VDDEXT
A8	ARDY	C16	DATA05	F8	GND	H16	DATA23	L8	VDDEXT
A9	SMS2	D1	PPI0D15	F9	GND	J1	VROUT1	L9	GND
A10	SCLK0	D2	PPI0SYNC3	F10	VDDEXT	J2	PPI0D8	L10	VDDEXT
A11	SCLK1	D3	PPI0SYNC2	F11	VDDEXT	J3	PPI0D7	L11	VDDEXT
A12	ABE2	D4	ADDR21	F12	VDDEXT	J4	PPI0D9	L12	VDDEXT
A13	ABE3	D5	ADDR15	F13	DATA11	J5	GND	L13	NC
A14	ADDR06	D6	ADDR09	F14	DATA08	J6	GND	L14	DTOPRI
A15	ADDR03	D7	AWE	F15	DATA10	J7	GND	L15	DATA31
A16	VDDEXT	D8	SMS0	F16	DATA16	18	GND	L16	DATA28
B1	ADDR24	D9	SRAS	G1	XTAL	19	GND	M1	PPI1SYNC2
B2	ADDR23	D10	SCAS	G2	VDDEXT	J10	GND	M2	PPI1D15
B3	ADDR19	D11	BGH	G3	VDDEXT	J11	GND	М3	PPI1D14
B4	ADDR17	D12	ABE1	G4	GND	J12	VDDINT	M4	PPI1D9
B5	ADDR12	D13	DATA02	G5	GND	J13	VDDINT	M5	VDDINT
B6	ADDR10	D14	DATA01	G6	VDDEXT	J14	DATA20	M6	VDDINT
B7	AMS1	D15	DATA03	G7	GND	J15	DATA22	M7	GND
B8	AOE	D16	DATA07	G8	GND	J16	DATA24	M8	VDDINT
B9	SMS1	E1	PPI0D11	G9	GND	K1	PPI0D6	M9	GND
B10	SCKE	E2	PPI0D13	G10	GND	К2	PPI0D5	M10	VDDINT
B11	BR	E3	PPI0D12	G11	VDDEXT	К3	PPI0D4	M11	GND
B12	BG	E4	PPI0D14	G12	VDDEXT	К4	PPI1SYNC3	M12	VDDINT
B13	ADDR08	E5	PPI1CLK	G13	DATA17	K5	VDDEXT	M13	RSCLK0
B14	ADDR05	E6	VDDINT	G14	DATA14	Кб	VDDEXT	M14	DROPRI
B15	ADDR02	E7	GND	G15	DATA15	K7	GND	M15	TSCLK0
B16	DATA04	E8	VDDINT	G16	DATA18	K8	GND	M16	DATA29
C1	PPI0SYNC1	E9	GND	H1	VROUT0	К9	GND	N1	PPI1SYNC1
C2	ADDR25	E10	VDDINT	H2	GND	K10	GND	N2	PPI1D10
C3	PPIOCLK	E11	GND	H3	GND	K11	VDDEXT	N3	PPI1D7
C4	ADDR20	E12	VDDINT	H4	VDDINT	K12	GND	N4	PPI1D5
C5	ADDR16	E13	DATA06	H5	VDDINT	K13	GND	N5	PF0
C6	ADDR13	E14	DATA13	H6	GND	K14	DATA26	N6	PF04
C7	AMS2	E15	DATA09	H7	GND	K15	DATA25	N7	PF09
C8	ARE	E16	DATA12	H8	GND	K16	DATA27	N8	PF12

Signal	Ball No.								
SMS1	B9	TSCLK0	M15	VDDEXT	G3	VDDEXT	L11	VDDINT	M5
SMS2	A9	TSCLK1	R14	VDDEXT	G6	VDDEXT	L12	VDDINT	M6
SMS3	С9	тх	T13	VDDEXT	G11	VDDEXT	T1	VDDINT	M8
SRAS	D9	VDDEXT	A1	VDDEXT	G12	VDDEXT	T16	VDDINT	M10
SWE	C10	VDDEXT	A16	VDDEXT	K5	VDDINT	E6	VDDINT	M12
ТСК	R9	VDDEXT	F5	VDDEXT	K6	VDDINT	E8	VROUT0	H1
TDI	T10	VDDEXT	F6	VDDEXT	K11	VDDINT	E10	VROUT1	J1
TDO	Т9	VDDEXT	F7	VDDEXT	L5	VDDINT	E12	XTAL	G1
TFS0	R16	VDDEXT	F10	VDDEXT	L6	VDDINT	H4		
TFS1	P14	VDDEXT	F11	VDDEXT	L7	VDDINT	H5		
TMS	P10	VDDEXT	F12	VDDEXT	L8	VDDINT	J12		
TRST	R10	VDDEXT	G2	VDDEXT	L10	VDDINT	J13		

Table 36. 256-Ball CSP_BGA (17 mm × 17 mm) Ball Assignment (Alphabetically by Signal) (Continued)

256-BALL CSP_BGA (12 mm) BALL ASSIGNMENT

Table 37 lists the 256-Ball CSP_BGA (12 mm \times 12 mm) ball assignment by ball number. Table 38 on Page 53 lists the ball assignment alphabetically by signal.

Table 37.	256-Ball CSP	BGA (12 mm >	< 12 mm) Ball	Assignment (Numerically b	y Ball Number)
	-	- ``	,			,

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
A01	VDDEXT	C09	SMS2	F01	CLKIN	H09	GND	L01	PPI0D0
A02	ADDR24	C10	SRAS	F02	VDDEXT	H10	GND	L02	PPI1SYNC2
A03	ADDR20	C11	GND	F03	RESET	H11	VDDINT	L03	GND
A04	VDDEXT	C12	BGH	F04	PPI0D10	H12	DATA16	L04	PPI1SYNC3
A05	ADDR14	C13	GND	F05	ADDR21	H13	DATA18	L05	VDDEXT
A06	ADDR10	C14	ADDR07	F06	ADDR17	H14	DATA20	L06	PPI1D11
A07	AMS3	C15	DATA1	F07	VDDINT	H15	DATA17	L07	GND
A08	AWE	C16	DATA3	F08	GND	H16	DATA19	L08	VDDINT
A09	VDDEXT	D01	PPI0D13	F09	VDDINT	J01	VROUT0	L09	GND
A10	SMS3	D02	PPI0D15	F10	GND	J02	VROUT1	L10	VDDEXT
A11	SCLK0	D03	PPI0SYNC3	F11	ADDR08	J03	PPI0D2	L11	GND
A12	SCLK1	D04	ADDR23	F12	DATA10	J04	PPI0D3	L12	DROPRI
A13	BG	D05	GND	F13	DATA8	J05	PPI0D1	L13	TFS0
A14	ABE2	D06	GND	F14	DATA12	J06	VDDEXT	L14	GND
A15	ABE3	D07	ADDR09	F15	DATA9	J07	GND	L15	DATA27
A16	VDDEXT	D08	GND	F16	DATA11	308	VDDINT	L16	DATA29
B01	PPI1CLK	D09	ARDY	G01	XTAL	J09	VDDINT	M01	PPI1D15
B02	ADDR22	D10	SCAS	G02	GND	J10	VDDINT	M02	PPI1D13
B03	ADDR18	D11	SA10	G03	VDDEXT	J11	GND	M03	PPI1D9
B04	ADDR16	D12	VDDEXT	G04	BYPASS	J12	DATA30	M04	GND
B05	ADDR12	D13	ADDR02	G05	PPI0D14	J13	DATA22	M05	NC
B06	VDDEXT	D14	GND	G06	GND	J14	GND	M06	PF3
B07	AMS1	D15	DATA5	G07	GND	J15	DATA21	M07	PF7
B08	ARE	D16	DATA6	G08	GND	J16	DATA23	M08	VDDINT
B09	SMS1	E01	GND	G09	VDDINT	K01	PPI0D6	M09	GND
B10	SCKE	E02	PPI0D11	G10	ADDR05	K02	PPI0D4	M10	BMODE0
B11	VDDEXT	E03	PPI0D12	G11	ADDR03	K03	PPI0D8	M11	SCK
B12	BR	E04	PPI0SYNC1	G12	DATA15	K04	PPI1SYNC1	M12	DR1PRI
B13	ABE1	E05	ADDR15	G13	DATA14	K05	PPI1D14	M13	NC
B14	ADDR06	E06	ADDR13	G14	GND	K06	VDDEXT	M14	VDDEXT
B15	ADDR04	E07	AMS2	G15	DATA13	K07	GND	M15	DATA31
B16	DATA0	E08	VDDINT	G16	VDDEXT	K08	VDDINT	M16	DTOPRI
C01	PPI0SYNC2	E09	SMS0	H01	GND	K09	GND	N01	PPI1D12
C02	PPIOCLK	E10	SWE	H02	GND	K10	GND	N02	PPI1D10
C03	ADDR25	E11	ABEO	H03	PPI0D9	K11	VDDINT	N03	PPI1D3
C04	ADDR19	E12	DATA2	H04	PPI0D7	K12	DATA28	N04	PPI1D1
C05	GND	E13	GND	H05	PPI0D5	K13	DATA26	N05	PF1
C06	ADDR11	E14	DATA4	H06	VDDINT	K14	DATA24	N06	PF9
C07	AOE	E15	DATA7	H07	VDDINT	K15	DATA25	N07	GND
C08	AMS0	E16	VDDEXT	H08	GND	K16	VDDEXT	N08	PF13

297-BALL PBGA BALL ASSIGNMENT

Table 39 lists the 297-Ball PBGA ball assignment numerically by ball number. Table 40 on Page 58 lists the ball assignment alphabetically by signal.

Table 39.	297-Ball PBGA	Ball Assignment	(Numerically by	Ball Number)
-----------	---------------	-----------------	-----------------	--------------

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
A01	GND	B15	SMS1	G01	PPI0D11	L14	GND
A02	ADDR25	B16	SMS3	G02	PPI0D10	L15	GND
A03	ADDR23	B17	SCKE	G25	DATA4	L16	GND
A04	ADDR21	B18	SWE	G26	DATA7	L17	GND
A05	ADDR19	B19	SA10	H01	BYPASS	L18	VDDINT
A06	ADDR17	B20	BR	H02	RESET	L25	DATA12
A07	ADDR15	B21	BG	H25	DATA6	L26	DATA15
A08	ADDR13	B22	ABE1	H26	DATA9	M01	VROUT0
A09	ADDR11	B23	ABE3	J01	CLKIN	M02	GND
A10	ADDR09	B24	ADDR07	J02	GND	M10	VDDEXT
A11	AMS3	B25	GND	J10	VDDEXT	M11	GND
A12	AMS1	B26	ADDR05	J11	VDDEXT	M12	GND
A13	AWE	C01	PPI0SYNC3	J12	VDDEXT	M13	GND
A14	ARE	C02	PPIOCLK	J13	VDDEXT	M14	GND
A15	SMS0	C03	GND	J14	VDDEXT	M15	GND
A16	SMS2	C04	GND	J15	VDDEXT	M16	GND
A17	SRAS	C05	GND	J16	VDDINT	M17	GND
A18	SCAS	C22	GND	J17	VDDINT	M18	VDDINT
A19	SCLK0	C23	GND	J18	VDDINT	M25	DATA14
A20	SCLK1	C24	GND	J25	DATA8	M26	DATA17
A21	BGH	C25	ADDR04	J26	DATA11	N01	VROUT1
A22	ABEO	C26	ADDR03	K01	XTAL	N02	PPI0D9
A23	ABE2	D01	PPI0SYNC1	K02	NC	N10	VDDEXT
A24	ADDR08	D02	PPI0SYNC2	K10	VDDEXT	N11	GND
A25	ADDR06	D03	GND	K11	VDDEXT	N12	GND
A26	GND	D04	GND	K12	VDDEXT	N13	GND
B01	PPI1CLK	D23	GND	K13	VDDEXT	N14	GND
B02	GND	D24	GND	K14	VDDEXT	N15	GND
B03	ADDR24	D25	ADDR02	K15	VDDEXT	N16	GND
B04	ADDR22	D26	DATA1	K16	VDDINT	N17	GND
B05	ADDR20	E01	PPI0D15	K17	VDDINT	N18	VDDINT
B06	ADDR18	E02	PPI0D14	K18	VDDINT	N25	DATA16
B07	ADDR16	E03	GND	K25	DATA10	N26	DATA19
B08	ADDR14	E24	GND	K26	DATA13	P01	PPI0D7
B09	ADDR12	E25	DATA0	L01	NC	P02	PPI0D8
B10	ADDR10	E26	DATA3	L02	NC	P10	VDDEXT
B11	AMS2	F01	PPI0D13	L10	VDDEXT	P11	GND
B12	AMS0	F02	PPI0D12	L11	GND	P12	GND
B13	AOE	F25	DATA2	L12	GND	P13	GND
B14	ARDY	F26	DATA5	L13	GND	P14	GND

Signal	Ball No.						
ABEO	A22	BR	B20	DT0SEC	AA25	GND	N15
ABE1	B22	BYPASS	H01	DT1PRI	AF25	GND	N16
ABE2	A23	CLKIN	J01	DT1SEC	AF24	GND	N17
ABE3	B23	DATA0	E25	EMU	AE16	GND	P11
ADDR02	D25	DATA1	D26	GND	A01	GND	P12
ADDR03	C26	DATA2	F25	GND	A26	GND	P13
ADDR04	C25	DATA3	E26	GND	B02	GND	P14
ADDR05	B26	DATA4	G25	GND	B25	GND	P15
ADDR06	A25	DATA5	F26	GND	C03	GND	P16
ADDR07	B24	DATA6	H25	GND	C04	GND	P17
ADDR08	A24	DATA7	G26	GND	C05	GND	R11
ADDR09	A10	DATA8	J25	GND	C22	GND	R12
ADDR10	B10	DATA9	H26	GND	C23	GND	R13
ADDR11	A09	DATA10	K25	GND	C24	GND	R14
ADDR12	B09	DATA11	J26	GND	D03	GND	R15
ADDR13	A08	DATA12	L25	GND	D04	GND	R16
ADDR14	B08	DATA13	K26	GND	D23	GND	R17
ADDR15	A07	DATA14	M25	GND	D24	GND	T11
ADDR16	B07	DATA15	L26	GND	E03	GND	T12
ADDR17	A06	DATA16	N25	GND	E24	GND	T13
ADDR18	B06	DATA17	M26	GND	J02	GND	T14
ADDR19	A05	DATA18	P25	GND	L11	GND	T15
ADDR20	B05	DATA19	N26	GND	L12	GND	T16
ADDR21	A04	DATA20	R25	GND	L13	GND	T17
ADDR22	B04	DATA21	P26	GND	L14	GND	U14
ADDR23	A03	DATA22	T25	GND	L15	GND	AB03
ADDR24	B03	DATA23	R26	GND	L16	GND	AB24
ADDR25	A02	DATA24	U25	GND	L17	GND	AC03
AMS0	B12	DATA25	T26	GND	M02	GND	AC04
AMS1	A12	DATA26	V25	GND	M11	GND	AC23
AMS2	B11	DATA27	U26	GND	M12	GND	AC24
AMS3	A11	DATA28	W25	GND	M13	GND	AD03
AOE	B13	DATA29	V26	GND	M14	GND	AD04
ARDY	B14	DATA30	Y25	GND	M15	GND	AD05
ARE	A14	DATA31	W26	GND	M16	GND	AD22
AWE	A13	DROPRI	AB26	GND	M17	GND	AD23
BG	B21	DR0SEC	AC25	GND	N11	GND	AD24
BGH	A21	DR1PRI	AF22	GND	N12	GND	AE02
BMODE0	AE18	DR1SEC	AE23	GND	N13	GND	AE25
BMODE1	AE17	DTOPRI	Y26	GND	N14	GND	AF01

 Table 40.
 297-Ball PBGA Ball Assignment (Alphabetically by Signal)

Table 40. 297-Ball PBGA Ball Assignment	(Alphabetically by Signal) (Continued)
---	--

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
GND	AF26	PPI0D7	P01	RSCLK0	AD26	VDDEXT	K13
MISO	AE19	PPI0D8	P02	RSCLK1	AF21	VDDEXT	K14
MOSI	AE20	PPI0D9	N02	RX	AE21	VDDEXT	K15
NC	K02	PPI0D10	G02	SA10	B19	VDDEXT	L10
NC	L01	PPI0D11	G01	SCAS	A18	VDDEXT	M10
NC	L02	PPI0D12	F02	SCK	AF19	VDDEXT	N10
NC	AD25	PPI0D13	F01	SCKE	B17	VDDEXT	P10
NC	AE13	PPI0D14	E02	SCLK0	A19	VDDEXT	R10
NC	AE26	PPI0D15	E01	SCLK1	A20	VDDEXT	T10
NMIO	AF18	PPI0SYNC1	D01	SLEEP	AF17	VDDEXT	U10
NMI1	AF13	PPI0SYNC2	D02	<u>SMS0</u>	A15	VDDEXT	U11
PF0	AE05	PPI0SYNC3	C01	SMS1	B15	VDDEXT	U12
PF1	AF05	PPI1CLK	B01	SMS2	A16	VDDEXT	U13
PF2	AE06	PPI1D0	AF04	SMS3	B16	VDDINT	J16
PF3	AF06	PPI1D1	AE04	SRAS	A17	VDDINT	J17
PF4	AE07	PPI1D2	AF03	SWE	B18	VDDINT	J18
PF5	AF07	PPI1D3	AE03	ТСК	AF14	VDDINT	K16
PF6	AE08	PPI1D4	AF02	TDI	AF15	VDDINT	K17
PF7	AF08	PPI1D5	AE01	TDO	AE14	VDDINT	K18
PF8	AE09	PPI1D6	AD02	TFS0	AB25	VDDINT	L18
PF9	AF09	PPI1D7	AD01	TFS1	AE24	VDDINT	M18
PF10	AE10	PPI1D8	AC02	TMS	AF16	VDDINT	N18
PF11	AF10	PPI1D9	AC01	TRST	AE15	VDDINT	P18
PF12	AE11	PPI1D10	AB02	TSCLK0	AA26	VDDINT	R18
PF13	AF11	PPI1D11	AB01	TSCLK1	AF23	VDDINT	T18
PF14	AE12	PPI1D12	AA02	TX/PF26	AF20	VDDINT	U15
PF15	AF12	PPI1D13	AA01	VDDEXT	J10	VDDINT	U16
PPIOCLK	C02	PPI1D14	Y02	VDDEXT	J11	VDDINT	U17
PPI0D0	V02	PPI1D15	Y01	VDDEXT	J12	VDDINT	U18
PPI0D1	U01	PPI1SYNC1	W01	VDDEXT	J13	VROUT0	M01
PPI0D2	U02	PPI1SYNC2	W02	VDDEXT	J14	VROUT1	N01
PPI0D3	T01	PPI1SYNC3	V01	VDDEXT	J15	XTAL	K01
PPI0D4	T02	RESET	H02	VDDEXT	K10		
PPI0D5	R01	RFS0	AC26	VDDEXT	K11		
PPI0D6	R02	RFS1	AE22	VDDEXT	K12		

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04696-0-9/09(E)

Ιο.

.