

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Fixed Point
Interface	SPI, SSP, UART
Clock Rate	600MHz
Non-Volatile Memory	External
On-Chip RAM	328kB
Voltage - I/O	2.50V, 3.30V
Voltage - Core	1.35V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-BGA, CSPBGA
Supplier Device Package	256-CSPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf561skbcz-6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

Features 1
Peripherals 1
Table of Contents 2
Revision History 2
General Description
Portable Low Power Architecture
Blackfin Processor Core 3
Memory Architecture 4
DMA Controllers
Watchdog Timer 8
Timers
Serial Ports (SPORTs)
Serial Peripheral Interface (SPI) Port
UART Port 9
Programmable Flags (PFx) 10
Parallel Peripheral Interface 10
Dynamic Power Management 11
Voltage Regulation 12
Clock Signals 13
Booting Modes 14
Instruction Set Description 14
Development Tools 15

REVISION HISTORY

9/09—Rev. D to Rev. E
Correct all outstanding document errata.
Revised Figure 5
Added 533 MHz operation Table 1020
Removed reference to 1.8 V operation Table 1221
Added Table 17 and Figure 9 Power-Up Reset Timing23
Removed references to T _J from t _{SCLK} parameter Table 20
Added new SPORT timing parameters and diagram
Figure 21

Designing an Emulator-Compatible Processor Board 16
Related Documents 16
Pin Descriptions 17
Specifications
Operating Conditions 20
Electrical Characteristics 21
Absolute Maximum Ratings 22
Package Information 22
ESD Sensitivity 22
Timing Specifications 23
Output Drive Currents 41
Power Dissipation 42
Test Conditions 42
Environmental Conditions 44
256-Ball CSP_BGA (17 mm) Ball Assignment 46
256-Ball CSP_BGA (12 mm) Ball Assignment 51
297-Ball PBGA Ball Assignment 56
Outline Dimensions 61
Surface-Mount Design 63
Automotive Products
Ordering Guide

GENERAL DESCRIPTION

The ADSP-BF561 processor is a high performance member of the Blackfin[®] family of products targeting a variety of multimedia, industrial, and telecommunications applications. At the heart of this device are two independent Analog Devices Blackfin processors. These Blackfin processors combine a dual-MAC state-of-the-art signal processing engine, the advantage of a clean, orthogonal RISC-like microprocessor instruction set, and single instruction, multiple data (SIMD) multimedia capabilities in a single instruction set architecture.

The ADSP-BF561 processor has 328K bytes of on-chip memory. Each Blackfin core includes:

- 16K bytes of instruction SRAM/cache
- 16K bytes of instruction SRAM
- 32K bytes of data SRAM/cache
- 32K bytes of data SRAM
- 4K bytes of scratchpad SRAM

Additional on-chip memory peripherals include:

- 128K bytes of low latency on-chip L2 SRAM
- Four-channel internal memory DMA controller
- External memory controller with glueless support for SDRAM, mobile SDRAM, SRAM, and flash.

PORTABLE LOW POWER ARCHITECTURE

Blackfin processors provide world-class power management and performance. Blackfin processors are designed in a low power and low voltage design methodology and feature dynamic power management, the ability to vary both the voltage and frequency of operation to significantly lower overall power consumption. Varying the voltage and frequency can result in a substantial reduction in power consumption, compared with just varying the frequency of operation. This translates into longer battery life for portable appliances.

BLACKFIN PROCESSOR CORE

As shown in Figure 2, each Blackfin core contains two multiplier/accumulators (MACs), two 40-bit ALUs, four video ALUs, and a single shifter. The computational units process 8-bit, 16-bit, or 32-bit data from the register file.

Each MAC performs a 16-bit by 16-bit multiply in every cycle, with accumulation to a 40-bit result, providing eight bits of extended precision. The ALUs perform a standard set of arithmetic and logical operations. With two ALUs capable of operating on 16-bit or 32-bit data, the flexibility of the computation units covers the signal processing requirements of a varied set of application needs.

Each of the two 32-bit input registers can be regarded as two 16-bit halves, so each ALU can accomplish very flexible single 16-bit arithmetic operations. By viewing the registers as pairs of 16-bit operands, dual 16-bit or single 32-bit operations can be accomplished in a single cycle. By further taking advantage of the second ALU, quad 16-bit operations can be accomplished simply, accelerating the per cycle throughput. The powerful 40-bit shifter has extensive capabilities for performing shifting, rotating, normalization, extraction, and depositing of data. The data for the computational units is found in a multiported register file of sixteen 16-bit entries or eight 32-bit entries.

A powerful program sequencer controls the flow of instruction execution, including instruction alignment and decoding. The sequencer supports conditional jumps and subroutine calls, as well as zero overhead looping. A loop buffer stores instructions locally, eliminating instruction memory accesses for tight looped code.

Two data address generators (DAGs) provide addresses for simultaneous dual operand fetches from memory. The DAGs share a register file containing four sets of 32-bit Index, Modify, Length, and Base registers. Eight additional 32-bit registers provide pointers for general indexing of variables and stack locations.

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. Level 2 (L2) memories are other memories, on-chip or off-chip, that may take multiple processor cycles to access. At the L1 level, the instruction memory holds instructions only. The two data memories hold data, and a dedicated scratchpad data memory stores stack and local variable information. At the L2 level, there is a single unified memory space, holding both instructions and data.

In addition, half of L1 instruction memory and half of L1 data memory may be configured as either Static RAMs (SRAMs) or caches. The Memory Management Unit (MMU) provides memory protection for individual tasks that may be operating on the core and may protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

The Blackfin instruction set has been optimized so that 16-bit op-codes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit op-codes, representing fully featured multifunction instructions. Blackfin processors support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin assembly language uses an algebraic syntax for ease of coding and readability. The architecture has been optimized for use in conjunction with the VisualDSP C/C++ compiler, resulting in fast and efficient software implementations.

Figure 2. Blackfin Processor Core

MEMORY ARCHITECTURE

The ADSP-BF561 views memory as a single unified 4G byte address space, using 32-bit addresses. All resources including internal memory, external memory, and I/O control registers occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low latency memory as cache or SRAM very close to the processor, and larger, lower cost and performance memory systems farther away from the processor. The ADSP-BF561 memory map is shown in Figure 3.

The L1 memory system in each core is the highest performance memory available to each Blackfin core. The L2 memory provides additional capacity with lower performance. Lastly, the off-chip memory system, accessed through the External Bus Interface Unit (EBIU), provides expansion with SDRAM, flash memory, and SRAM, optionally accessing more than 768M bytes of physical memory. The memory DMA controllers provide high bandwidth data movement capability. They can perform block transfers of code or data between the internal L1/L2 memories and the external memory spaces.

Internal (On-Chip) Memory

The ADSP-BF561 has four blocks of on-chip memory providing high bandwidth access to the core.

The first is the L1 instruction memory of each Blackfin core consisting of 16K bytes of four-way set-associative cache memory and 16K bytes of SRAM. The cache memory may also be configured as an SRAM. This memory is accessed at full processor speed. When configured as SRAM, each of the two 16K banks of memory is broken into 4K sub-banks which can be independently accessed by the processor and DMA.

The second on-chip memory block is the L1 data memory of each Blackfin core which consists of four banks of 16K bytes each. Two of the L1 data memory banks can be configured as one way of a two-way set-associative cache or as an SRAM. The other two banks are configured as SRAM. All banks are accessed at full processor speed. When configured as SRAM, each of the four 16K banks of memory is broken into 4K sub-banks which can be independently accessed by the processor and DMA.

The third memory block associated with each core is a 4K byte scratchpad SRAM which runs at the same speed as the L1 memories, but is only accessible as data SRAM (it cannot be configured as cache memory and is not accessible via DMA).

writing the appropriate values into the Interrupt Assignment Registers (SIC_IAR7–0). Table 2 describes the inputs into the SIC and the default mappings into the CEC.

Table 2. System Interrupt Controller (SIC)

	Default
Peripheral Interrupt Event	Mapping
PLL Wakeup	IVG7
DMA1 Error (Generic)	IVG7
DMA2 Error (Generic)	IVG7
IMDMA Error	IVG7
PPI0 Error	IVG7
PPI1 Error	IVG7
SPORT0 Error	IVG7
SPORT1 Error	IVG7
SPI Error	IVG7
UART Error	IVG7
Reserved	IVG7
DMA1 Channel 0 Interrupt (PPI0)	IVG8
DMA1 Channel 1 Interrupt (PPI1)	IVG8
DMA1 Channel 2 Interrupt	IVG8
DMA1 Channel 3 Interrupt	IVG8
DMA1 Channel 4 Interrupt	IVG8
DMA1 Channel 5 Interrupt	IVG8
DMA1 Channel 6 Interrupt	IVG8
DMA1 Channel 7 Interrupt	IVG8
DMA1 Channel 8 Interrupt	IVG8
DMA1 Channel 9 Interrupt	IVG8
DMA1 Channel 10 Interrupt	IVG8
DMA1 Channel 11 Interrupt	IVG8
DMA2 Channel 0 Interrupt (SPORT0 Rx)	IVG9
DMA2 Channel 1 Interrupt (SPORT0 Tx)	IVG9
DMA2 Channel 2 Interrupt (SPORT1 Rx)	IVG9
DMA2 Channel 3 Interrupt (SPORT1 Tx)	IVG9
DMA2 Channel 4 Interrupt (SPI)	IVG9
DMA2 Channel 5 Interrupt (UART Rx)	IVG9
DMA2 Channel 6 Interrupt (UART Tx)	IVG9
DMA2 Channel 7 Interrupt	IVG9
DMA2 Channel 8 Interrupt	IVG9
DMA2 Channel 9 Interrupt	IVG9
DMA2 Channel 10 Interrupt	IVG9
DMA2 Channel 11 Interrupt	IVG9
Timer0 Interrupt	IVG10
Timer1 Interrupt	IVG10
Timer2 Interrupt	IVG10
Timer3 Interrupt	IVG10
Timer4 Interrupt	IVG10
Timer5 Interrupt	IVG10
Timer6 Interrupt	IVG10

Table 2.	System	Interrupt	Controller	(SIC)	(Continued)
----------	--------	-----------	------------	-------	-------------

	Default
Peripheral Interrupt Event	Mapping
Timer7 Interrupt	IVG10
Timer8 Interrupt	IVG10
Timer9 Interrupt	IVG10
Timer10 Interrupt	IVG10
Timer11 Interrupt	IVG10
Programmable Flags 15–0 Interrupt A	IVG11
Programmable Flags 15–0 Interrupt B	IVG11
Programmable Flags 31–16 Interrupt A	IVG11
Programmable Flags 31–16 Interrupt B	IVG11
Programmable Flags 47–32 Interrupt A	IVG11
Programmable Flags 47–32 Interrupt B	IVG11
DMA1 Channel 12/13 Interrupt	IVG8
(Memory DMA/Stream 0)	
DMA1 Channel 14/15 Interrupt	IVG8
(Memory DMA/Stream 1)	
DMA2 Channel 12/13 Interrupt	IVG9
(Memory DMA/Stream 0)	
DMA2 Channel 14/15 Interrupt	IVG9
(Memory DMA/Stream 1)	
IMDMA Stream 0 Interrupt	IVG12
IMDMA Stream 1 Interrupt	IVG12
Watchdog Timer Interrupt	IVG13
Reserved	IVG7
Reserved	IVG7
Supplemental Interrupt 0	IVG7
Supplemental Interrupt 1	IVG7

Event Control

The ADSP-BF561 provides the user with a very flexible mechanism to control the processing of events. In the CEC, three registers are used to coordinate and control events. Each of the registers is 16 bits wide, while each bit represents a particular event class.

- CEC Interrupt Latch Register (ILAT) The ILAT register indicates when events have been latched. The appropriate bit is set when the processor has latched the event and cleared when the event has been accepted into the system. This register is updated automatically by the controller, but may also be written to clear (cancel) latched events. This register may be read while in supervisor mode and may only be written while in supervisor mode when the corresponding IMASK bit is cleared.
- CEC Interrupt Mask Register (IMASK) The IMASK register controls the masking and unmasking of individual events. When a bit is set in the IMASK register, that event is unmasked and will be processed by the CEC when asserted. A cleared bit in the IMASK register masks the event, thereby preventing the processor from servicing the event

Frame Capture Mode

Frame capture mode allows the video source(s) to act as a slave (e.g., for frame capture). The ADSP-BF561 processors control when to read from the video source(s). PPI_FS1 is an HSYNC output and PPI_FS2 is a VSYNC output.

Output Mode

Output mode is used for transmitting video or other data with up to three output frame syncs. Typically, a single frame sync is appropriate for data converter applications, whereas two or three frame syncs could be used for sending video with hardware signaling.

ITU-R 656 Mode Descriptions

The ITU-R 656 modes of the PPI are intended to suit a wide variety of video capture, processing, and transmission applications. Three distinct submodes are supported:

- Active video only mode
- · Vertical blanking only mode
- Entire field mode

Active Video Only Mode

Active video only mode is used when only the active video portion of a field is of interest and not any of the blanking intervals. The PPI does not read in any data between the end of active video (EAV) and start of active video (SAV) preamble symbols, or any data present during the vertical blanking intervals. In this mode, the control byte sequences are not stored to memory; they are filtered by the PPI. After synchronizing to the start of Field 1, the PPI ignores incoming samples until it sees an SAV code. The user specifies the number of active video lines per frame (in the PPI_COUNT register).

Vertical Blanking Interval Mode

In this mode, the PPI only transfers vertical blanking interval (VBI) data.

Entire Field Mode

In this mode, the entire incoming bit stream is read in through the PPI. This includes active video, control preamble sequences, and ancillary data that may be embedded in horizontal and vertical blanking intervals. Data transfer starts immediately after synchronization to Field 1.

DYNAMIC POWER MANAGEMENT

The ADSP-BF561 provides four power management modes and one power management state, each with a different performance/power profile. In addition, dynamic power management provides the control functions to dynamically alter the processor core supply voltage, further reducing power dissipation. Control of clocking to each of the ADSP-BF561 peripherals also reduces power consumption. See Table 3 for a summary of the power settings for each mode.

Table 3. Power Settings

		PLL	Core Clock	System Clock	Core
Mode/State	PLL	Bypassed	(CCLK)	(SCLK)	Power
Full-On	Enabled	No	Enabled	Enabled	On
Active	Enabled/ Disabled	Yes	Enabled	Enabled	On
Sleep	Enabled	-	Disabled	Enabled	On
Deep Sleep	Disabled	-	Disabled	Disabled	On
Hibernate	Disabled	-	Disabled	Disabled	Off

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the default execution state in which maximum performance can be achieved. The processor cores and all enabled peripherals run at full speed.

Active Operating Mode—Moderate Power Savings

In the active mode, the PLL is enabled but bypassed. Because the PLL is bypassed, the processor's core clock (CCLK) and system clock (SCLK) run at the input clock (CLKIN) frequency. In this mode, the CLKIN to CCLK multiplier ratio can be changed, although the changes are not realized until the full-on mode is entered. DMA access is available to appropriately configured L1 and L2 memories.

In the active mode, it is possible to disable the PLL through the PLL control register (PLL_CTL). If disabled, the PLL must be re-enabled before transitioning to the full-on or sleep modes.

Sleep Operating Mode—High Dynamic Power Savings

The sleep mode reduces power dissipation by disabling the clock to the processor core (CCLK). The PLL and system clock (SCLK), however, continue to operate in this mode. Typically an external event will wake up the processor. When in the sleep mode, assertion of wakeup will cause the processor to sense the value of the BYPASS bit in the PLL control register (PLL_CTL).

When in the sleep mode, system DMA access is only available to external memory, not to L1 or on-chip L2 memory.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes power savings by disabling the clocks to the processor cores (CCLK) and to all synchronous peripherals (SCLK). Asynchronous peripherals will not be able to access internal resources or external memory. This powered-down mode can only be exited by assertion of the reset pin (RESET). If BYPASS is disabled, the processor will transition to the full-on mode. If BYPASS is enabled, the processor will transition to the active mode.

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core (CCLK) and to all the synchronous peripherals (SCLK). The internal voltage

board. All internal and I/O power supplies should be well bypassed with bypass capacitors placed as close to the ADSP-BF561 processors as possible.

For further details on the on-chip voltage regulator and related board design guidelines, see the *Switching Regulator Design Considerations for ADSP-BF533 Blackfin Processors (EE-228)* applications note on the Analog Devices web site (www.analog.com)—use site search on "EE-228".

CLOCK SIGNALS

The ADSP-BF561 processor can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived from an external clock oscillator.

If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's CLKIN pin. When an external clock is used, the XTAL pin must be left unconnected.

Alternatively, because the ADSP-BF561 processor includes an on-chip oscillator circuit, an external crystal may be used. For fundamental frequency operation, use the circuit shown in Figure 5. A parallel-resonant, fundamental frequency, microprocessor-grade crystal is connected across the CLKIN and XTAL pins. The on-chip resistance between CLKIN and the XTAL pin is in the 500 k Ω range. Further parallel resistors are typically not recommended. The two capacitors and the series resistor shown in Figure 5 fine tune the phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 5 are typical values only. The capacitor values are dependent upon the crystal manufacturer's load capacitance recommendations and the physical PCB layout. The resistor value depends on the drive level specified by the crystal manufacturer. System designs should verify the customized values based on careful investigation on multiple devices over the allowed temperature range.

A third-overtone crystal can be used at frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone, by adding a tuned inductor circuit as shown in Figure 5.

As shown in Figure 6, the core clock (CCLK) and system peripheral clock (SCLK) are derived from the input clock (CLKIN) signal. An on-chip PLL is capable of multiplying the CLKIN signal by a user-programmable 0.5× to 64× multiplication factor. The default multiplier is 10×, but it can be modified by a software instruction sequence. On the fly frequency changes can be effected by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system clock frequency is programmable by means of the SSEL3–0 bits of the PLL_DIV register. The values programmed

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY.

Figure 5. External Crystal Connections

into the SSEL fields define a divide ratio between the PLL output (VCO) and the system clock. SCLK divider values are 1 through 15. Table 5 illustrates typical system clock ratios.

Table 5. Example System Clock Ratios

Signal Name	Example Frequency Divider Ratio Ratios (MHz)		equency z)
SSEL3-0	VCO/SCLK	VCO	SCLK
0001	1:1	100	100
0110	6:1	300	50
1010	10:1	500	50

The maximum frequency of the system clock is f_{SCLK} . Note that the divisor ratio must be chosen to limit the system clock frequency to its maximum of f_{SCLK} . The SSEL value can be changed dynamically without any PLL lock latencies by writing the appropriate values to the PLL divisor register (PLL_DIV).

Table 8. Pin Descriptions (Continued)

Din Nama	Turna	Eurotian	Driver
	туре		туре
	1/0	Sport1 Dessive Serial Clerk (Programmable Flag	D
	1/0	Sport i Receive Senai Ciock/Programmable Flag	
RFS1/PF24	1/0	Sport I Receive Frame SynC/Programmable Flag	C
		Sport I Receive Data Primary	c
DRISEC/PF25	1/0	sport i Receive Data Secondary/Programmable Flag	C
TSCLK1/PF31	1/0	Sport Firansmit Serial Clock/Programmable Flag	D
TFS1/PF21	1/0	Sport Transmit Frame Sync/Programmable Flag	C
DTTPRI/PF23	1/0	Sport1 Transmit Data Primary/Programmable Flag	C
DT1SEC/PF22	I/O	Sport1 Transmit Data Secondary/Programmable Flag	C
SPI			
MOSI	I/O	Master Out Slave In	С
MISO	I/O	Master In Slave Out (This pin should be pulled HIGH through a 4.7 k Ω resistor if booting via the SPI port.)	С
SCK	I/O	SPI Clock	D
UART			
RX/PF27	I/O	UART Receive/Programmable Flag	с
TX/PF26	I/O	UART Transmit/Programmable Flag	с
JTAG			<u> </u>
EMU	0	Emulation Output	с
ТСК	1	JTAG Clock	
TDO	0	ITAG Serial Data Out	c
TDI	i I	ITAG Serial Data In	2
TMS		ITAG Mode Select	
TRST		ITAG Reset (This nin should be nulled LOW if ITAG is not used)	
	1		
		Clock/Crystal Input (This nin needs to be at a level or clocking)	
VTAL	' ^	Crustal Connection	
Mode Controls	0		
DECET		Poset (This pip is always active during core power on)	
	1	Neset (This pill is always active during core power-on.)	
	1	Nonmaskable Interrupt Core A (This pin should be pulled LOW when not used.)	
	1	Nonmaskable interrupt Core B (This pin should be pulled LOW when not used.)	
BMODE1-0		Boot mode Strap (These pins must be pulled to the state required for the desired boot mode.)	~
SLEEP	0		C
BYPASS	1	PLL BYPASS Control (Pull-up or pull-down Required.)	
Voltage Regulator	~		
V _{ROUT} 1–0	0	External FET Drive	
Supplies	_		
V _{DDEXT}	٢	Power Supply	
V _{DDINT}	Р	Power Supply	
GND	G	Power Supply Return	
No Connection	NC	NC	

¹ Refer to Figure 30 on Page 41 to Figure 34 on Page 42.

TIMING SPECIFICATIONS

Clock and Reset Timing

Table 16 and Figure 8 describe clock and reset operations. Per Absolute Maximum Ratings on Page 22, combinations of CLKIN and clock multipliers must not result in core/system clocks exceeding the maximum limits allowed for the processor, including system clock restrictions related to supply voltage.

Table 16. Clock and Normal Reset Timing

Parameter			Max	Unit
Timing Requirements				
t _{ckin}	CLKIN (to PLL) Period ^{1, 2, 3}	25.0	100.0	ns
t _{ckinl}	CLKIN Low Pulse	10.0		ns
t _{ckinh}	CLKIN High Pulse	10.0		ns
\mathbf{t}_{WRST}	RESET Asserted Pulse Width Low ⁴	$11 \times t_{\text{cKIN}}$		ns

¹ If DF bit in PLL_CTL register is set t_{CLKIN} is divided by two before going to PLL, then the t_{CLKIN} maximum period is 50 ns and the t_{CLKIN} minimum period is 12.5 ns.

² Applies to PLL bypass mode and PLL nonbypass mode.

³ Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed f_{VCO}, f_{CCLK}, and f_{SCLK} settings discussed in Table 9 on Page 20 through Table 12 on Page 21.

⁴ Applies after power-up sequence is complete. See Table 17 and Figure 9 for power-up reset timing.

Table 17. Power-Up Reset Timing

CLKIN, V_{DDINT,} V_{DDEXT}

Paramet	Parameter				Max	Unit
Timing Re	equirements					
$t_{\rm RST_IN_PWR}$	RESET Dea Specificati	asserted after t on	he $V_{\mbox{\tiny DDINT}}, V_{\mbox{\tiny DDExT}}$ and CLKIN Pins are Stable and Within	$3500 imes t_{cKIN}$		μs
	RESET		t _{RST_IN_} PWR			

Figure 9. Power-Up Reset Timing

Asynchronous Memory Write Cycle Timing

Table 19.	Asynchronous	Memory	Write	Cycle	Timing
-----------	--------------	--------	-------	-------	--------

Parame	ter	Min	Мах	Unit
Timing R	iming Requirements			
\mathbf{t}_{sardy}	ARDY Setup Before CLKOUT	4.0		ns
\mathbf{t}_{HARDY}	ARDY Hold After CLKOUT	0.0		ns
Switchin	g Characteristics			
\mathbf{t}_{DDAT}	DATA31-0 Disable After CLKOUT		6.0	ns
t _{endat}	DATA31–0 Enable After CLKOUT	1.0		ns
t _{DO}	Output Delay After CLKOUT ¹		6.0	ns
t _{HO}	Output Hold After CLKOUT ¹	0.8		ns

 1 Output pins include $\overline{AMS3-0}$, $\overline{ABE3-0}$, ADDR25-2, DATA31-0, \overline{AOE} , \overline{AWE} .

Figure 11. Asynchronous Memory Write Cycle Timing

SDRAM Interface Timing

Table 20. SDRAM Interface Timing

Parameter Mir			Max	Unit
Timing Re	equirements			
$\mathbf{t}_{\text{ssdat}}$	DATA Setup Before CLKOUT	1.5		ns
\mathbf{t}_{HSDAT}	DATA Hold After CLKOUT	0.8		ns
Switching	Characteristics			
\mathbf{t}_{DCAD}	Command, ADDR, Data Delay After CLKOUT ¹		4.0	ns
\mathbf{t}_{HCAD}	Command, ADDR, Data Hold After CLKOUT ¹	0.8		ns
$\mathbf{t}_{\text{dsdat}}$	Data Disable After CLKOUT		4.0	ns
t _{ensdat}	Data Enable After CLKOUT	1.0		ns
t _{SCLK}	CLKOUT Period	7.5		ns
t _{sclkh}	CLKOUT Width High	2.5		ns
t _{sclkl}	CLKOUT Width Low	2.5		ns

 1 Command pins include: $\overline{\text{SRAS}}, \overline{\text{SCAS}}, \overline{\text{SWE}}, \text{SDQM}, \overline{\text{SMS3-0}}, \text{SA10}, \text{SCKE}.$

Figure 12. SDRAM Interface Timing

Figure 18. PPI GP Rx Mode with External Frame Sync Timing (Bit 4 of PLL_CTL Set)

Figure 19. PPI GP Tx Mode with External Frame Sync Timing (Bit 4 of PLL_CTL Set)

Serial Peripheral Interface (SPI) Port— Master Timing

Table 27 and Figure 23 describe SPI port master operations.

Table 27. Serial Peripheral Interface (SPI) Port—Master Timing

Paramete	Parameter Min Max			
Timing Re	Timing Requirements			
t _{sspidm}	Data Input Valid to SCK Edge (Data Input Setup)	7.5		ns
t _{hspidm}	SCK Sampling Edge to Data Input Invalid	-1.5		ns
Switching	Characteristics			
t _{sdscim}	SPISELx Low to First SCK Edge	$2 imes t_{\text{sclk}} - 1.5$		ns
t _{spichm}	Serial Clock High Period	$2 imes t_{\text{sclk}} - 1.5$		ns
t _{SPICLM}	Serial Clock Low Period	$2 imes t_{\text{sclk}} - 1.5$		ns
t _{spiclk}	Serial Clock Period	$4 imes t_{\text{SCLK}} - 1.5$		ns
\mathbf{t}_{HDSM}	Last SCK Edge to SPISELx High	$2 imes t_{\text{sclk}} - 1.5$		ns
t _{spitdm}	Sequential Transfer Delay	$2 imes t_{\text{sclk}} - 1.5$		ns
	SCK Edge to Data Out Valid (Data Out Delay)	0	6	ns
	SCK Edge to Data Out Invalid (Data Out Hold)	-1.0	+4.0	ns

Figure 23. Serial Peripheral Interface (SPI) Port—Master Timing

Universal Asynchronous Receiver Transmitter (UART) Port—Receive and Transmit Timing

Figure 25 describes UART port receive and transmit operations. The maximum baud rate is SCLK/16. As shown in Figure 25, there is some latency between the generation internal UART interrupts and the external data operations. These latencies are negligible at the data transmission rates for the UART.

Figure 25. UART Port—Receive and Transmit Timing

JTAG Test and Emulation Port Timing

Table 31 and Figure 28 describe JTAG port operations.

Table 31. JTAG Port Timing

Parame	er	Min	Max	Unit
Timing P	arameters			
t _{TCK}	TCK Period	20		ns
t _{stap}	TDI, TMS Setup Before TCK High	4		ns
t _{htap}	TDI, TMS Hold After TCK High	4		ns
t _{ssys}	System Inputs Setup Before TCK High ¹	4		ns
t _{HSYS}	System Inputs Hold After TCK High ¹	5		ns
t _{TRSTW}	TRST Pulse Width ² (Measured in TCK Cycles)	4		ТСК
Switchin	g Characteristics			
\mathbf{t}_{DTDO}	TDO Delay from TCK Low		10	ns
\mathbf{t}_{DSYS}	System Outputs Delay After TCK Low ³	0	12	ns

¹System Inputs = DATA31–0, ARDY, PF47–0, PPIOCLK, PPI1CLK, RSCLK0–1, RFS0–1, DR0PRI, DR0SEC, TSCLK0–1, TFS0–1, DR1PRI, DR1SEC, MOSI, MISO, SCK, RX, RESET, NMI0, NMI1, BMODE1–0, BR, and PPIxD7–0.

² 50 MHz maximum

³ System Outputs = DATA31-0, ADDR25-2, ABE3-0, AOE, ARE, AWE, AMS3-0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS3-0, PF47-0, RSCLK0-1, RFS0-1, TSCLK0-1, TFS0-1, DT0PRI, DT0SEC, DT1PRI, DT1SEC, MOSI, MISO, SCK, TX, BG, BGH, and PPIxD7-0.

Figure 28. JTAG Port Timing

Figure 43. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver B at V_{DDEXT} (max)

Figure 44. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver C at V_{DDEVT} (min)

Figure 45. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver C at V_{DDET} (max)

Figure 46. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver D at V_{DDEXT} (min)

Figure 47. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance for Driver D at V_{DDET} (max)

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application printed circuit board use:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C).

 T_{CASE} = case temperature (°C) measured by customer at top center of package.

 Ψ_{TT} = from Table 32 on Page 45 through Table 34 on Page 45.

 P_D = power dissipation (see Power Dissipation on Page 42 for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 T_A = ambient temperature (°C).

Figure 48 lists the top view of the 256-Ball CSP_BGA ($17 \text{ mm} \times 17 \text{ mm}$) ball configuration. Figure 49 lists the bottom view.

Figure 49. 256-Ball CSP_BGA Ball Configuration (Bottom View)

Ball No.	Signal	Ball No.	Signal						
N09	TDO	P05	GND	R01	PPI1D7	R13	TX/PF26	T09	TCK
N10	BMODE1	P06	PF5	R02	PPI1D6	R14	TSCLK1	T10	TMS
N11	MOSI	P07	PF11	R03	PPI1D2	R15	DT1PRI	T11	SLEEP
N12	GND	P08	PF15	R04	PPI1D0	R16	RFS0	T12	VDDEXT
N13	RFS1	P09	GND	R05	PF4	T01	VDDEXT	T13	RX/PF27
N14	GND	P10	TRST	R06	PF8	T02	PPI1D4	T14	DR1SEC
N15	DT0SEC	P11	NMIO	R07	PF10	Т03	VDDEXT	T15	DT1SEC
N16	TSCLK0	P12	GND	R08	PF14	T04	PF2	T16	VDDEXT
P01	PPI1D8	P13	RSCLK1	R09	NMI1	T05	PF6		
P02	GND	P14	TFS1	R10	TDI	T06	VDDEXT		
P03	PPI1D5	P15	RSCLK0	R11	EMU	T07	PF12		
P04	PF0	P16	DR0SEC	R12	MISO	T08	VDDEXT		

Table 37. 256-Ball CSP_BGA (12 mm × 12 mm) Ball Assignment (Numerically by Ball Number) (Continued)

Table 39.	297-Ball PBGA Ball Assignment (Numerically by Ball Number) (Continued)

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
P15	GND	U11	VDDEXT	AC04	GND	AE21	RX
P16	GND	U12	VDDEXT	AC23	GND	AE22	RFS1
P17	GND	U13	VDDEXT	AC24	GND	AE23	DR1SEC
P18	VDDINT	U14	GND	AC25	DR0SEC	AE24	TFS1
P25	DATA18	U15	VDDINT	AC26	RFS0	AE25	GND
P26	DATA21	U16	VDDINT	AD01	PPI1D7	AE26	NC
R01	PPI0D5	U17	VDDINT	AD02	PPI1D6	AF01	GND
R02	PPI0D6	U18	VDDINT	AD03	GND	AF02	PPI1D4
R10	VDDEXT	U25	DATA24	AD04	GND	AF03	PPI1D2
R11	GND	U26	DATA27	AD05	GND	AF04	PPI1D0
R12	GND	V01	PPI1SYNC3	AD22	GND	AF05	PF1
R13	GND	V02	PPI0D0	AD23	GND	AF06	PF3
R14	GND	V25	DATA26	AD24	GND	AF07	PF5
R15	GND	V26	DATA29	AD25	NC	AF08	PF7
R16	GND	W01	PPI1SYNC1	AD26	RSCLK0	AF09	PF9
R17	GND	W02	PPI1SYNC2	AE01	PPI1D5	AF10	PF11
R18	VDDINT	W25	DATA28	AE02	GND	AF11	PF13
R25	DATA20	W26	DATA31	AE03	PPI1D3	AF12	PF15
R26	DATA23	Y01	PPI1D15	AE04	PPI1D1	AF13	NMI1
T01	PPI0D3	Y02	PPI1D14	AE05	PF0	AF14	ТСК
T02	PPI0D4	Y25	DATA30	AE06	PF2	AF15	TDI
T10	VDDEXT	Y26	DTOPRI	AE07	PF4	AF16	TMS
T11	GND	AA01	PPI1D13	AE08	PF6	AF17	SLEEP
T12	GND	AA02	PPI1D12	AE09	PF8	AF18	NMIO
T13	GND	AA25	DT0SEC	AE10	PF10	AF19	SCK
T14	GND	AA26	TSCLK0	AE11	PF12	AF20	ТХ
T15	GND	AB01	PPI1D11	AE12	PF14	AF21	RSCLK1
T16	GND	AB02	PPI1D10	AE13	NC	AF22	DR1PRI
T17	GND	AB03	GND	AE14	TDO	AF23	TSCLK1
T18	VDDINT	AB24	GND	AE15	TRST	AF24	DT1SEC
T25	DATA22	AB25	TFS0	AE16	EMU	AF25	DT1PRI
T26	DATA25	AB26	DROPRI	AE17	BMODE1	AF26	GND
U01	PPI0D1	AC01	PPI1D9	AE18	BMODE0		
U02	PPI0D2	AC02	PPI1D8	AE19	MISO		
U10	VDDEXT	AC03	GND	AE20	MOSI		

Signal	Ball No.						
ABEO	A22	BR	B20	DT0SEC	AA25	GND	N15
ABE1	B22	BYPASS	H01	DT1PRI	AF25	GND	N16
ABE2	A23	CLKIN	J01	DT1SEC	AF24	GND	N17
ABE3	B23	DATA0	E25	EMU	AE16	GND	P11
ADDR02	D25	DATA1	D26	GND	A01	GND	P12
ADDR03	C26	DATA2	F25	GND	A26	GND	P13
ADDR04	C25	DATA3	E26	GND	B02	GND	P14
ADDR05	B26	DATA4	G25	GND	B25	GND	P15
ADDR06	A25	DATA5	F26	GND	C03	GND	P16
ADDR07	B24	DATA6	H25	GND	C04	GND	P17
ADDR08	A24	DATA7	G26	GND	C05	GND	R11
ADDR09	A10	DATA8	J25	GND	C22	GND	R12
ADDR10	B10	DATA9	H26	GND	C23	GND	R13
ADDR11	A09	DATA10	K25	GND	C24	GND	R14
ADDR12	B09	DATA11	J26	GND	D03	GND	R15
ADDR13	A08	DATA12	L25	GND	D04	GND	R16
ADDR14	B08	DATA13	K26	GND	D23	GND	R17
ADDR15	A07	DATA14	M25	GND	D24	GND	T11
ADDR16	B07	DATA15	L26	GND	E03	GND	T12
ADDR17	A06	DATA16	N25	GND	E24	GND	T13
ADDR18	B06	DATA17	M26	GND	J02	GND	T14
ADDR19	A05	DATA18	P25	GND	L11	GND	T15
ADDR20	B05	DATA19	N26	GND	L12	GND	T16
ADDR21	A04	DATA20	R25	GND	L13	GND	T17
ADDR22	B04	DATA21	P26	GND	L14	GND	U14
ADDR23	A03	DATA22	T25	GND	L15	GND	AB03
ADDR24	B03	DATA23	R26	GND	L16	GND	AB24
ADDR25	A02	DATA24	U25	GND	L17	GND	AC03
AMS0	B12	DATA25	T26	GND	M02	GND	AC04
AMS1	A12	DATA26	V25	GND	M11	GND	AC23
AMS2	B11	DATA27	U26	GND	M12	GND	AC24
AMS3	A11	DATA28	W25	GND	M13	GND	AD03
AOE	B13	DATA29	V26	GND	M14	GND	AD04
ARDY	B14	DATA30	Y25	GND	M15	GND	AD05
ARE	A14	DATA31	W26	GND	M16	GND	AD22
AWE	A13	DROPRI	AB26	GND	M17	GND	AD23
BG	B21	DR0SEC	AC25	GND	N11	GND	AD24
BGH	A21	DR1PRI	AF22	GND	N12	GND	AE02
BMODE0	AE18	DR1SEC	AE23	GND	N13	GND	AE25
BMODE1	AE17	DTOPRI	Y26	GND	N14	GND	AF01

 Table 40.
 297-Ball PBGA Ball Assignment (Alphabetically by Signal)