

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf561skbz500
Supplier Device Package	297-PBGA (27x27)
Package / Case	297-BGA
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Voltage - Core	1.25V
Voltage - I/O	2.50V, 3.30V
On-Chip RAM	328kB
Non-Volatile Memory	External
Clock Rate	500MHz
Interface	SPI, SSP, UART
Туре	Fixed Point
Product Status	Obsolete

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

even though the event may be latched in the ILAT register. This register may be read from or written to while in supervisor mode.

Note that general-purpose interrupts can be globally enabled and disabled with the STI and CLI instructions, respectively.

 CEC Interrupt Pending Register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but may be read while in supervisor mode.

The SIC allows further control of event processing by providing six 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 2.

- SIC Interrupt Mask Registers (SIC_IMASKx) These registers control the masking and unmasking of each peripheral interrupt event. When a bit is set in these registers, that peripheral event is unmasked and will be processed by the system when asserted. A cleared bit in these registers masks the peripheral event, thereby preventing the processor from servicing the event.
- SIC Interrupt Status Registers (SIC_ISRx) As multiple peripherals can be mapped to a single event, these registers allow the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt; a cleared bit indicates the peripheral is not asserting the event.
- SIC Interrupt Wakeup Enable Registers (SIC_IWRx) By enabling the corresponding bit in these registers, each peripheral can be configured to wake up the processor, should the processor be in a powered-down mode when the event is generated.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC will recognize and queue the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the generalpurpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the mode of the processor.

DMA CONTROLLERS

The ADSP-BF561 has two independent DMA controllers that support automated data transfers with minimal overhead for the DSP cores. DMA transfers can occur between the ADSP-BF561 internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPIs. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The ADSP-BF561 DMA controllers support both 1-dimensional (1-D) and 2-dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to \pm 32K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the ADSP-BF561 DMA controllers include:

- A single linear buffer that stops upon completion.
- A circular autorefreshing buffer that interrupts on each full or fractionally full buffer.
- 1-D or 2-D DMA using a linked list of descriptors.
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page.

In addition to the dedicated peripheral DMA channels, each DMA Controller has four memory DMA channels provided for transfers between the various memories of the ADSP-BF561 system. These enable transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptorbased methodology or by a standard register-based autobuffer mechanism.

Further, the ADSP-BF561 has a four channel Internal Memory DMA (IMDMA) Controller. The IMDMA Controller allows data transfers between any of the internal L1 and L2 memories.

WATCHDOG TIMER

Each ADSP-BF561 core includes a 32-bit timer, which can be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, via generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in the timer control register, which is set only upon a watchdog generated reset.

The timer is clocked by the system clock (SCLK) at a maximum frequency of $f_{\mbox{\tiny SCLK}}$

TIMERS

There are 14 programmable timer units in the ADSP-BF561.

Each of the 12 general-purpose timer units can be independently programmed as a Pulse Width Modulator (PWM), internally or externally clocked timer, or pulse width counter. The general-purpose timer units can be used in conjunction with the UART to measure the width of the pulses in the data stream to provide an autobaud detect function for a serial channel. The general-purpose timers can generate interrupts to the processor core providing periodic events for synchronization, either to the processor clock or to a count of external signals.

In addition to the 12 general-purpose programmable timers, another timer is also provided for each core. These extra timers are clocked by the internal processor clock (CCLK) and are typically used as a system tick clock for generation of operating system periodic interrupts.

SERIAL PORTS (SPORTs)

The ADSP-BF561 incorporates two dual-channel synchronous serial ports (SPORT0 and SPORT1) for serial and multiprocessor communications. The SPORTs support the following features:

- I²S capable operation.
- Bidirectional operation Each SPORT has two sets of independent transmit and receive pins, enabling eight channels of I²S stereo audio.
- Buffered (8-deep) transmit and receive ports Each port has a data register for transferring data words to and from other DSP components and shift registers for shifting data in and out of the data registers.
- Clocking Each transmit and receive port can either use an external serial clock or generate its own, in frequencies ranging from ($f_{sclk}/131,070$) Hz to ($f_{sclk}/2$) Hz.
- Word length Each SPORT supports serial data words from 3 bits to 32 bits in length, transferred most significant bit first or least significant bit first.
- Framing Each transmit and receive port can run with or without frame sync signals for each data word. Frame sync signals can be generated internally or externally, active high or low, and with either of two pulse widths and early or late frame sync.
- Companding in hardware Each SPORT can perform A-law or μ-law companding according to ITU recommendation G.711. Companding can be selected on the transmit and/or receive channel of the SPORT without additional latencies.

- DMA operations with single-cycle overhead Each SPORT can automatically receive and transmit multiple buffers of memory data. The DSP can link or chain sequences of DMA transfers between a SPORT and memory.
- Interrupts Each transmit and receive port generates an interrupt upon completing the transfer of a data word or after transferring an entire data buffer or buffers through DMA.
- Multichannel capability Each SPORT supports 128 channels out of a 1,024-channel window and is compatible with the H.100, H.110, MVIP-90, and HMVIP standards.

An additional 250 mV of SPORT input hysteresis can be enabled by setting Bit 15 of the PLL_CTL register. When this bit is set, all SPORT input pins have the increased hysteresis.

SERIAL PERIPHERAL INTERFACE (SPI) PORT

The ADSP-BF561 processor has an SPI-compatible port that enables the processor to communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins (master output-slave input, MOSI, and master input-slave output, MISO) and a clock pin (serial clock, SCK). An SPI chip select input pin (SPISS) lets other SPI devices select the processor, and seven SPI chip select output pins (SPISEL7–1) let the processor select other SPI devices. The SPI select pins are reconfigured programmable flag pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface which supports both master/slave modes and multimaster environments.

The baud rate and clock phase/polarities for the SPI port are programmable, and it has an integrated DMA controller, configurable to support transmit or receive data streams. The SPI DMA controller can only service unidirectional accesses at any given time.

The SPI port clock rate is calculated as:

SPI Clock Rate =
$$\frac{f_{SCLK}}{2 \times SPI BAUD}$$

Where the 16-bit SPI_BAUD register contains a value of 2 to 65,535.

During transfers, the SPI port simultaneously transmits and receives by serially shifting data in and out on its two serial data lines. The serial clock line synchronizes the shifting and sampling of data on the two serial data lines.

UART PORT

The ADSP-BF561 processor provides a full-duplex universal asynchronous receiver/transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART port includes support for 5 data bits to 8 data bits, 1 stop bit or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

Frame Capture Mode

Frame capture mode allows the video source(s) to act as a slave (e.g., for frame capture). The ADSP-BF561 processors control when to read from the video source(s). PPI_FS1 is an HSYNC output and PPI_FS2 is a VSYNC output.

Output Mode

Output mode is used for transmitting video or other data with up to three output frame syncs. Typically, a single frame sync is appropriate for data converter applications, whereas two or three frame syncs could be used for sending video with hardware signaling.

ITU-R 656 Mode Descriptions

The ITU-R 656 modes of the PPI are intended to suit a wide variety of video capture, processing, and transmission applications. Three distinct submodes are supported:

- Active video only mode
- · Vertical blanking only mode
- Entire field mode

Active Video Only Mode

Active video only mode is used when only the active video portion of a field is of interest and not any of the blanking intervals. The PPI does not read in any data between the end of active video (EAV) and start of active video (SAV) preamble symbols, or any data present during the vertical blanking intervals. In this mode, the control byte sequences are not stored to memory; they are filtered by the PPI. After synchronizing to the start of Field 1, the PPI ignores incoming samples until it sees an SAV code. The user specifies the number of active video lines per frame (in the PPI_COUNT register).

Vertical Blanking Interval Mode

In this mode, the PPI only transfers vertical blanking interval (VBI) data.

Entire Field Mode

In this mode, the entire incoming bit stream is read in through the PPI. This includes active video, control preamble sequences, and ancillary data that may be embedded in horizontal and vertical blanking intervals. Data transfer starts immediately after synchronization to Field 1.

DYNAMIC POWER MANAGEMENT

The ADSP-BF561 provides four power management modes and one power management state, each with a different performance/power profile. In addition, dynamic power management provides the control functions to dynamically alter the processor core supply voltage, further reducing power dissipation. Control of clocking to each of the ADSP-BF561 peripherals also reduces power consumption. See Table 3 for a summary of the power settings for each mode.

Table 3. Power Settings

		PLL	Core Clock	System Clock	Core
Mode/State	PLL	Bypassed	(CCLK)	(SCLK)	Power
Full-On	Enabled	No	Enabled	Enabled	On
Active	Enabled/ Disabled	Yes	Enabled	Enabled	On
Sleep	Enabled	-	Disabled	Enabled	On
Deep Sleep	Disabled	-	Disabled	Disabled	On
Hibernate	Disabled	-	Disabled	Disabled	Off

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the default execution state in which maximum performance can be achieved. The processor cores and all enabled peripherals run at full speed.

Active Operating Mode—Moderate Power Savings

In the active mode, the PLL is enabled but bypassed. Because the PLL is bypassed, the processor's core clock (CCLK) and system clock (SCLK) run at the input clock (CLKIN) frequency. In this mode, the CLKIN to CCLK multiplier ratio can be changed, although the changes are not realized until the full-on mode is entered. DMA access is available to appropriately configured L1 and L2 memories.

In the active mode, it is possible to disable the PLL through the PLL control register (PLL_CTL). If disabled, the PLL must be re-enabled before transitioning to the full-on or sleep modes.

Sleep Operating Mode—High Dynamic Power Savings

The sleep mode reduces power dissipation by disabling the clock to the processor core (CCLK). The PLL and system clock (SCLK), however, continue to operate in this mode. Typically an external event will wake up the processor. When in the sleep mode, assertion of wakeup will cause the processor to sense the value of the BYPASS bit in the PLL control register (PLL_CTL).

When in the sleep mode, system DMA access is only available to external memory, not to L1 or on-chip L2 memory.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes power savings by disabling the clocks to the processor cores (CCLK) and to all synchronous peripherals (SCLK). Asynchronous peripherals will not be able to access internal resources or external memory. This powered-down mode can only be exited by assertion of the reset pin (RESET). If BYPASS is disabled, the processor will transition to the full-on mode. If BYPASS is enabled, the processor will transition to the active mode.

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core (CCLK) and to all the synchronous peripherals (SCLK). The internal voltage

board. All internal and I/O power supplies should be well bypassed with bypass capacitors placed as close to the ADSP-BF561 processors as possible.

For further details on the on-chip voltage regulator and related board design guidelines, see the *Switching Regulator Design Considerations for ADSP-BF533 Blackfin Processors (EE-228)* applications note on the Analog Devices web site (www.analog.com)—use site search on "EE-228".

CLOCK SIGNALS

The ADSP-BF561 processor can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived from an external clock oscillator.

If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's CLKIN pin. When an external clock is used, the XTAL pin must be left unconnected.

Alternatively, because the ADSP-BF561 processor includes an on-chip oscillator circuit, an external crystal may be used. For fundamental frequency operation, use the circuit shown in Figure 5. A parallel-resonant, fundamental frequency, microprocessor-grade crystal is connected across the CLKIN and XTAL pins. The on-chip resistance between CLKIN and the XTAL pin is in the 500 k Ω range. Further parallel resistors are typically not recommended. The two capacitors and the series resistor shown in Figure 5 fine tune the phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 5 are typical values only. The capacitor values are dependent upon the crystal manufacturer's load capacitance recommendations and the physical PCB layout. The resistor value depends on the drive level specified by the crystal manufacturer. System designs should verify the customized values based on careful investigation on multiple devices over the allowed temperature range.

A third-overtone crystal can be used at frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone, by adding a tuned inductor circuit as shown in Figure 5.

As shown in Figure 6, the core clock (CCLK) and system peripheral clock (SCLK) are derived from the input clock (CLKIN) signal. An on-chip PLL is capable of multiplying the CLKIN signal by a user-programmable 0.5× to 64× multiplication factor. The default multiplier is 10×, but it can be modified by a software instruction sequence. On the fly frequency changes can be effected by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system clock frequency is programmable by means of the SSEL3–0 bits of the PLL_DIV register. The values programmed

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY.

Figure 5. External Crystal Connections

into the SSEL fields define a divide ratio between the PLL output (VCO) and the system clock. SCLK divider values are 1 through 15. Table 5 illustrates typical system clock ratios.

Table 5. Example System Clock Ratios

Signal Name	Example Frequency Divider Ratio Ratios (MHz)		equency z)
SSEL3-0	VCO/SCLK	VCO	SCLK
0001	1:1	100	100
0110	6:1	300	50
1010	10:1	500	50

The maximum frequency of the system clock is f_{SCLK} . Note that the divisor ratio must be chosen to limit the system clock frequency to its maximum of f_{SCLK} . The SSEL value can be changed dynamically without any PLL lock latencies by writing the appropriate values to the PLL divisor register (PLL_DIV).

PIN DESCRIPTIONS

ADSP-BF561 pin definitions are listed in Table 8. In order to maintain maximum function and reduce package size and pin count, some pins have multiple functions. In cases where pin function is reconfigurable, the default state is shown in plain text, while alternate functionality is shown in italics.

All pins are three-stated during and immediately after reset, except the external memory interface, asynchronous memory control, and synchronous memory control pins. These pins are all driven high, with the exception of CLKOUT, which toggles at the system clock rate. However if $\overline{\text{BR}}$ is active, the memory pins are also three-stated.

All I/O pins have their input buffers disabled, with the exception of the pins that need pull-ups or pull-downs if unused, as noted in Table 8.

			Driver
Pin Name	Туре	Function	Type ¹
EBIU			
ADDR25–2	0	Address Bus for Async/Sync Access	А
DATA31-0	I/O	Data Bus for Async/Sync Access	A
ABE3-0/SDQM3-0	0	Byte Enables/Data Masks for Async/Sync Access	А
BR	I	Bus Request (This pin should be pulled HIGH if not used.)	
BG	0	Bus Grant	А
BGH	0	Bus Grant Hang	А
EBIU (ASYNC)			
AMS3-0	0	Bank Select	А
ARDY	I	Hardware Ready Control (This pin should be pulled HIGH if not used.)	
AOE	0	Output Enable	А
AWE	0	Write Enable	А
ARE	0	Read Enable	А
EBIU (SDRAM)			
SRAS	0	Row Address Strobe	А
SCAS	0	Column Address Strobe	А
SWE	0	Write Enable	А
SCKE	0	Clock Enable	А
SCLK0/CLKOUT	0	Clock Output Pin 0	В
SCLK1	0	Clock Output Pin 1	В
SA10	0	SDRAM A10 Pin	А
SMS3-0	0	Bank Select	А

Table 8. Pin Descriptions

SPECIFICATIONS

Component specifications are subject to change without notice.

OPERATING CONDITIONS

Parameter		Conditions	Min	Nominal	Max	Unit
V	Internal Supply Voltage ¹	Non automotive 500 MHz and 533 MHz speed grade models ²	0.8	1.25	1.375	V
V_{DDINT}	Internal Supply Voltage ³	600 MHz speed grade models ²	0.8	1.35	1.4185	V
V_{DDINT}	Internal Supply Voltage ³	Automotive grade models ²	0.95	1.25	1.375	v
V_{DDEXT}	External Supply Voltage	Non automotive grade models ²	2.25	2.5, or 3.3	3.6	V
V _{DDEXT}	External Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	v
V⊪	High Level Input Voltage ^{4, 5}		2.0		3.6	v
V _{IL}	Low Level Input Voltage ⁵		-0.3		+0.6	v
ΤJ	Junction Temperature	256-Ball CSP_BGA (12 mm × 12 mm) @ T _{AMBENT} = 0°C to +70°C	0		+105	°C
ΤJ	Junction Temperature	256-Ball CSP_BGA (17 mm × 17 mm) @ T _{AMBENT} = 0°C to +70°C	0		+95	°C
ΤJ	Junction Temperature	256-Ball CSP_BGA (17 mm × 17 mm) @ T _{AMBENT} =-40°C to +85°C	-40		+115	°C
ΤJ	Junction Temperature	297-Ball PBGA @ T _{AMBIENT} = 0°C to +70°C	0		+95	°C
TJ	Junction Temperature	297-Ball PBGA @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+115	°C

 1 Internal voltage (V_{\tiny DDINT}) regulator tolerance is –5% to +10% for all models.

² See Ordering Guide on Page 63.

³ The internal voltage regulation feature is not available. External voltage regulation is required to ensure correct operation.

⁴ The ADSP-BF561 is 3.3 V tolerant (always accepts up to 3.6 V maximum V_{H}), but voltage compliance (on outputs, V_{OH}) depends on the input V_{DDEXT} because V_{OH} (maximum) approximately equals V_{DDEXT} (maximum). This 3.3 V tolerance applies to bidirectional and input only pins.

⁵ Applies to all signal pins.

Table 9 and Table 10 describe the timing requirements for theADSP-BF561 clocks ($t_{CCLK} = 1/f_{CCLK}$). Take care in selectingMSEL, SSEL, and CSEL ratios so as not to exceed the maximumcore clock, system clock, and Voltage Controlled Oscillator

(VCO) operating frequencies, as described in Absolute Maximum Ratings on Page 22. Table 11 describes phase-locked loop operating conditions.

Table 9. Core Clock (CCLK) Requirements—500 MHz and 533 MHz Speed Grade Models¹

Paran	neter	Мах	Unit
f _{CCLK}	CCLK Frequency $(V_{DDNT} = 1.235 \text{ Vminimum})^2$	533	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 1.1875 Vminimum)	500	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 1.045 Vminimum)	444	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDNT} = 0.95 Vminimum)	350	MHz
f_{CCLK}	CCLK Frequency $(V_{DDNT} = 0.855 \text{ Vminimum})^3$	300	MHz
\mathbf{f}_{CCLK}	CCLK Frequency $(V_{DDINT} = 0.8 \text{ V minimum})^3$	250	MHz

¹See Ordering Guide on Page 63.

² External Voltage regulation is required on automotive grade models (see Ordering Guide on Page 63) to ensure correct operation.

³Not applicable to automotive grade models. See Ordering Guide on Page 63.

Table 10. Core Clock (CCLK) Requirements—600 MHz Speed Grade Models¹

Param	eter	Мах	Unit
f _{cclk}	CCLK Frequency $(V_{DDINT} = 1.2825 \text{ V minimum})^2$	600	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 1.235 V minimum)	533	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.1875 V minimum)	500	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.045 V minimum)	444	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.95 V minimum)	350	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.855 V minimum)	300	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.8 V minimum)	250	MHz

¹See Ordering Guide on Page 63.

² External voltage regulator required to ensure proper operation at 600 MHz.

TIMING SPECIFICATIONS

Clock and Reset Timing

Table 16 and Figure 8 describe clock and reset operations. Per Absolute Maximum Ratings on Page 22, combinations of CLKIN and clock multipliers must not result in core/system clocks exceeding the maximum limits allowed for the processor, including system clock restrictions related to supply voltage.

Table 16. Clock and Normal Reset Timing

Parameter Min Max			Unit	
Timing Re	Timing Requirements			
t _{ckin}	CLKIN (to PLL) Period ^{1, 2, 3}	25.0	100.0	ns
t _{ckinl}	CLKIN Low Pulse	10.0		ns
t _{ckinh}	CLKIN High Pulse	10.0		ns
\mathbf{t}_{WRST}	RESET Asserted Pulse Width Low ⁴	$11 \times t_{\text{cKIN}}$		ns

¹ If DF bit in PLL_CTL register is set t_{CLKIN} is divided by two before going to PLL, then the t_{CLKIN} maximum period is 50 ns and the t_{CLKIN} minimum period is 12.5 ns.

² Applies to PLL bypass mode and PLL nonbypass mode.

³ Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed f_{VCO}, f_{CCLK}, and f_{SCLK} settings discussed in Table 9 on Page 20 through Table 12 on Page 21.

⁴ Applies after power-up sequence is complete. See Table 17 and Figure 9 for power-up reset timing.

Table 17. Power-Up Reset Timing

CLKIN, V_{DDINT,} V_{DDEXT}

Paramet	Parameter				Max	Unit
Timing Re	equirements					
$t_{\rm RST_IN_PWR}$	RESET Dea Specificati	asserted after t on	he $V_{\mbox{\tiny DDINT}}, V_{\mbox{\tiny DDExT}}$ and CLKIN Pins are Stable and Within	$3500 imes t_{\text{CKIN}}$		μs
	RESET		t _{RST_IN_} PWR			

Figure 9. Power-Up Reset Timing

Parallel Peripheral Interface Timing

Table 22, and Figure 14 through Figure 17 on Page 30, describe default Parallel Peripheral Interface operations.

If bit 4 of the PLL_CTL register is set, then Figure 18 on Page 30 and Figure 19 on Page 31 apply.

Table 22. Parallel Peripheral Interface Timing

Parameter Min Max			Мах	Unit
Timing	Requirements			
\mathbf{t}_{PCLKW}	PPIxCLK Width ¹	5.0		ns
\mathbf{t}_{PCLK}	PPIxCLK Period ¹	13.3		ns
$\mathbf{t}_{\text{SFSPE}}$	External Frame Sync Setup Before PPIxCLK	4.0		ns
$\mathbf{t}_{\text{HFSPE}}$	External Frame Sync Hold After PPIxCLK	1.0		ns
\mathbf{t}_{SDRPE}	Receive Data Setup Before PPIxCLK	3.5		ns
$\mathbf{t}_{\text{HDRPE}}$	Receive Data Hold After PPIxCLK	2.0		ns
Switchi	ing Characteristics			
$\mathbf{t}_{\text{dfspe}}$	Internal Frame Sync Delay After PPIxCLK		8.0	ns
$\mathbf{t}_{\text{HOFSPE}}$	Internal Frame Sync Hold After PPIxCLK	1.7		ns
$\mathbf{t}_{\text{DDTPE}}$	Transmit Data Delay After PPIxCLK		8.0	ns
$\mathbf{t}_{\text{HDTPE}}$	Transmit Data Hold After PPIxCLK	2.0		ns

¹ For PPI modes that use an internally generated frame sync, the PPIxCLK frequency cannot exceed $f_{sclk}/2$. For modes with no frame syncs or external frame syncs, PPIxCLK cannot exceed 75 MHz and f_{sclk} should be equal to or greater than PPIxCLK.

Figure 14. PPI GP Rx Mode with Internal Frame Sync Timing (Default)

Serial Ports

Table 23 through Table 26 on Page 34 and Figure 20 on Page 33 through Figure 22 on Page 34 describe Serial Port operations.

Table 23. Serial Ports—External Clock

Para	neter	Min	Мах	Unit
Timin	g Requirements			
\mathbf{t}_{SFSE}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ¹	3.0		ns
\mathbf{t}_{HFSE}	TFSx/RFSx Hold After TSCLKx/RSCLKx ¹	3.0		ns
\mathbf{t}_{SDRE}	Receive Data Setup Before RSCLKx ¹	3.0		ns
\mathbf{t}_{HDRE}	Receive Data Hold After RSCLKx ¹	3.0		ns
t _{sclkw}	TSCLKx/RSCLKx Width	4.5		ns
\mathbf{t}_{SCLK}	TSCLKx/RSCLKx Period	15.0		ns
$\mathbf{t}_{\text{sudte}}$	Start-Up Delay From SPORT Enable To First External TFSx	4.0		TSCLKx
$\mathbf{t}_{\text{sudre}}$	Start-Up Delay From SPORT Enable To First External RFSx	4.0		RSCLKx
Switc	hing Characteristics			
\mathbf{t}_{DFSE}	TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ²		10.0	ns
t _{HOFSE}	TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ²	0.0		ns
\mathbf{t}_{DDTE}	Transmit Data Delay After TSCLKx ²		10.0	ns
\mathbf{t}_{HDTE}	Transmit Data Hold After TSCLKx ²	0.0		ns

¹ Referenced to sample edge.

² Referenced to drive edge.

Table 24. Serial Ports—Internal Clock

Paran	neter	Min	Max	Unit
Timing	g Requirements			
\mathbf{t}_{SFSI}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ¹	8.0		ns
t _{HFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx ¹	-2.0		ns
\mathbf{t}_{SDRI}	Receive Data Setup Before RSCLKx ¹	6.0		ns
\mathbf{t}_{HDRI}	Receive Data Hold After RSCLKx ¹	0.0		ns
$\mathbf{t}_{\text{SCLKW}}$	TSCLKx/RSCLKx Width	4.5		ns
\mathbf{t}_{SCLK}	TSCLKx/RSCLKx Period	15.0		ns
Switch	ing Characteristics			
t _{DFSI}	TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ²		3.0	ns
t _{HOFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ²	-1.0		ns
t _{DDTI}	Transmit Data Delay After TSCLKx ²		3.0	ns
t _{HDTI}	Transmit Data Hold After TSCLKx ²	-2.0		ns
t _{sclkiw}	TSCLKx/RSCLKx Width	4.5		ns

¹Referenced to sample edge.

² Referenced to drive edge.

JTAG Test and Emulation Port Timing

Table 31 and Figure 28 describe JTAG port operations.

Table 31. JTAG Port Timing

Parame	er	Min	Max	Unit
Timing P	arameters			
t _{TCK}	TCK Period	20		ns
t _{stap}	TDI, TMS Setup Before TCK High	4		ns
t _{htap}	TDI, TMS Hold After TCK High	4		ns
t _{ssys}	System Inputs Setup Before TCK High ¹	4		ns
t _{HSYS}	System Inputs Hold After TCK High ¹	5		ns
t _{TRSTW}	TRST Pulse Width ² (Measured in TCK Cycles)	4		ТСК
Switchin	g Characteristics			
t _{DTDO}	TDO Delay from TCK Low		10	ns
\mathbf{t}_{DSYS}	System Outputs Delay After TCK Low ³	0	12	ns

¹System Inputs = DATA31–0, ARDY, PF47–0, PPIOCLK, PPI1CLK, RSCLK0–1, RFS0–1, DR0PRI, DR0SEC, TSCLK0–1, TFS0–1, DR1PRI, DR1SEC, MOSI, MISO, SCK, RX, RESET, NMI0, NMI1, BMODE1–0, BR, and PPIxD7–0.

² 50 MHz maximum

³ System Outputs = DATA31-0, ADDR25-2, ABE3-0, AOE, ARE, AWE, AMS3-0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS3-0, PF47-0, RSCLK0-1, RFS0-1, TSCLK0-1, TFS0-1, DT0PRI, DT0SEC, DT1PRI, DT1SEC, MOSI, MISO, SCK, TX, BG, BGH, and PPIxD7-0.

Figure 28. JTAG Port Timing

In Table 32 through Table 34, airflow measurements comply with JEDEC standards JESD51–2 and JESD51–6, and the junction-to-board measurement complies with JESD51–8. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Thermal resistance θ_{JA} in Table 32 through Table 34 is the figure of merit relating to performance of the package and board in a convective environment. θ_{JMA} represents the thermal resistance under two conditions of airflow. θ_{JB} represents the heat extracted from the periphery of the board. Ψ_{JT} represents the correlation between T_J and T_{CASE} . Values of θ_{JB} are provided for package comparison and printed circuit board design considerations.

Table 32. Thermal Characteristics for BC-256-4(17 mm × 17 mm) Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	18.1	°C/W
θ_{JMA}	1 Linear m/s Airflow	15.9	°C/W
θ_{JMA}	2 Linear m/s Airflow	15.1	°C/W
θ_{JC}	Not Applicable	3.72	°C/W
Ψ_{π}	0 Linear m/s Airflow	0.11	°C/W
Ψ_{π}	1 Linear m/s Airflow	0.18	°C/W
Ψ_{π}	2 Linear m/s Airflow	0.18	°C/W

Table 33. Thermal Characteristics for BC-256-1 (12 mm × 12 mm) Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	25.6	°C/W
θ_{JMA}	1 Linear m/s Airflow	22.4	°C/W
θ_{JMA}	2 Linear m/s Airflow	21.6	°C/W
θ_{JB}	Not Applicable	18.9	°C/W
θ_{JC}	Not Applicable	4.85	°C/W
Ψ_{π}	0 Linear m/s Airflow	0.15	°C/W
Ψ_{π}	1 Linear m/s Airflow	n/a	°C/W
Ψ_{π}	2 Linear m/s Airflow	n/a	°C/W

Table 34. Thermal Characteristics for B-297 Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	20.6	°C/W
θ_{JMA}	1 Linear m/s Airflow	17.8	°C/W
θ_{JMA}	2 Linear m/s Airflow	17.4	°C/W
$\theta_{\sf JB}$	Not Applicable	16.3	°C/W
θ_{JC}	Not Applicable	7.15	°C/W
Ψ_{π}	0 Linear m/s Airflow	0.37	°C/W
Ψ_{π}	1 Linear m/s Airflow	n/a	°C/W
Ψ_{π}	2 Linear m/s Airflow	n/a	°C/W

256-BALL CSP_BGA (17 mm) BALL ASSIGNMENT

Table 35 lists the 256-Ball CSP_BGA (17 mm \times 17 mm) ball assignment by ball number. Table 36 on Page 48 lists the ball assignment alphabetically by signal.

Table 35. 256-Ball CSP	_BGA (17 mm × 17 mm)	Ball Assignment (Numerically by Ball Number)
------------------------	----------------------	-------------------	-----------------------------

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
A1	VDDEXT	С9	SMS3	F1	CLKIN	H9	GND	L1	PPI0D3
A2	ADDR22	C10	SWE	F2	PPI0D10	H10	GND	L2	PPI0D2
A3	ADDR18	C11	SA10	F3	RESET	H11	GND	L3	PPI0D1
A4	ADDR14	C12	ABE0	F4	BYPASS	H12	GND	L4	PPI0D0
A5	ADDR11	C13	ADDR07	F5	VDDEXT	H13	GND	L5	VDDEXT
A6	AMS3	C14	ADDR04	F6	VDDEXT	H14	DATA21	L6	VDDEXT
A7	AMS0	C15	DATA0	F7	VDDEXT	H15	DATA19	L7	VDDEXT
A8	ARDY	C16	DATA05	F8	GND	H16	DATA23	L8	VDDEXT
A9	SMS2	D1	PPI0D15	F9	GND	J1	VROUT1	L9	GND
A10	SCLK0	D2	PPI0SYNC3	F10	VDDEXT	J2	PPI0D8	L10	VDDEXT
A11	SCLK1	D3	PPI0SYNC2	F11	VDDEXT	J3	PPI0D7	L11	VDDEXT
A12	ABE2	D4	ADDR21	F12	VDDEXT	J4	PPI0D9	L12	VDDEXT
A13	ABE3	D5	ADDR15	F13	DATA11	J5	GND	L13	NC
A14	ADDR06	D6	ADDR09	F14	DATA08	J6	GND	L14	DTOPRI
A15	ADDR03	D7	AWE	F15	DATA10	J7	GND	L15	DATA31
A16	VDDEXT	D8	SMS0	F16	DATA16	18	GND	L16	DATA28
B1	ADDR24	D9	SRAS	G1	XTAL	19	GND	M1	PPI1SYNC2
B2	ADDR23	D10	SCAS	G2	VDDEXT	J10	GND	M2	PPI1D15
B3	ADDR19	D11	BGH	G3	VDDEXT	J11	GND	М3	PPI1D14
B4	ADDR17	D12	ABE1	G4	GND	J12	VDDINT	M4	PPI1D9
B5	ADDR12	D13	DATA02	G5	GND	J13	VDDINT	M5	VDDINT
B6	ADDR10	D14	DATA01	G6	VDDEXT	J14	DATA20	M6	VDDINT
B7	AMS1	D15	DATA03	G7	GND	J15	DATA22	M7	GND
B8	AOE	D16	DATA07	G8	GND	J16	DATA24	M8	VDDINT
B9	SMS1	E1	PPI0D11	G9	GND	K1	PPI0D6	M9	GND
B10	SCKE	E2	PPI0D13	G10	GND	К2	PPI0D5	M10	VDDINT
B11	BR	E3	PPI0D12	G11	VDDEXT	К3	PPI0D4	M11	GND
B12	BG	E4	PPI0D14	G12	VDDEXT	К4	PPI1SYNC3	M12	VDDINT
B13	ADDR08	E5	PPI1CLK	G13	DATA17	K5	VDDEXT	M13	RSCLK0
B14	ADDR05	E6	VDDINT	G14	DATA14	Кб	VDDEXT	M14	DROPRI
B15	ADDR02	E7	GND	G15	DATA15	K7	GND	M15	TSCLK0
B16	DATA04	E8	VDDINT	G16	DATA18	К8	GND	M16	DATA29
C1	PPI0SYNC1	E9	GND	H1	VROUT0	К9	GND	N1	PPI1SYNC1
C2	ADDR25	E10	VDDINT	H2	GND	K10	GND	N2	PPI1D10
C3	PPIOCLK	E11	GND	H3	GND	K11	VDDEXT	N3	PPI1D7
C4	ADDR20	E12	VDDINT	H4	VDDINT	K12	GND	N4	PPI1D5
C5	ADDR16	E13	DATA06	H5	VDDINT	K13	GND	N5	PF0
C6	ADDR13	E14	DATA13	H6	GND	K14	DATA26	N6	PF04
C7	AMS2	E15	DATA09	H7	GND	K15	DATA25	N7	PF09
C8	ARE	E16	DATA12	H8	GND	K16	DATA27	N8	PF12

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
N9	GND	P5	PF01	R1	PPI1D12	R13	RSCLK1	Т9	TDO
N10	BMODE1	P6	PF06	R2	PPI1D11	R14	TSCLK1	T10	TDI
N11	BMODE0	P7	PF08	R3	PPI1D4	R15	NC	T11	EMU
N12	RX	P8	PF15	R4	PPI1D1	R16	TFS0	T12	MISO
N13	DR1SEC	P9	NMI1	R5	PF02	Т1	VDDEXT	T13	ТХ
N14	DT1SEC	P10	TMS	R6	PF07	T2	NC	T14	DR1PRI
N15	RFS0	P11	NMI0	R7	PF11	Т3	PPI1D3	T15	DT1PRI
N16	DATA30	P12	SCK	R8	PF14	T4	PPI1D2	T16	VDDEXT
P1	PPI1D13	P13	RFS1	R9	ТСК	Т5	PF03		
P2	PPI1D8	P14	TFS1	R10	TRST	Т6	PF05		
P3	PPI1D6	P15	DR0SEC	R11	SLEEP	Т7	PF10		
P4	PPI1D0	P16	DT0SEC	R12	MOSI	Т8	PF13		

Table 35. 256-Ball CSP_BGA (17 mm × 17 mm) Ball Assignment (Numerically by Ball Number) (Continued)

256-BALL CSP_BGA (12 mm) BALL ASSIGNMENT

Table 37 lists the 256-Ball CSP_BGA (12 mm \times 12 mm) ball assignment by ball number. Table 38 on Page 53 lists the ball assignment alphabetically by signal.

Table 37.	256-Ball CSP	BGA (12 mm >	< 12 mm) Ball	Assignment (Numerically b	y Ball Number)
	-	- ``	,			,

Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal
A01	VDDEXT	C09	SMS2	F01	CLKIN	H09	GND	L01	PPI0D0
A02	ADDR24	C10	SRAS	F02	VDDEXT	H10	GND	L02	PPI1SYNC2
A03	ADDR20	C11	GND	F03	RESET	H11	VDDINT	L03	GND
A04	VDDEXT	C12	BGH	F04	PPI0D10	H12	DATA16	L04	PPI1SYNC3
A05	ADDR14	C13	GND	F05	ADDR21	H13	DATA18	L05	VDDEXT
A06	ADDR10	C14	ADDR07	F06	ADDR17	H14	DATA20	L06	PPI1D11
A07	AMS3	C15	DATA1	F07	VDDINT	H15	DATA17	L07	GND
A08	AWE	C16	DATA3	F08	GND	H16	DATA19	L08	VDDINT
A09	VDDEXT	D01	PPI0D13	F09	VDDINT	J01	VROUT0	L09	GND
A10	SMS3	D02	PPI0D15	F10	GND	J02	VROUT1	L10	VDDEXT
A11	SCLK0	D03	PPI0SYNC3	F11	ADDR08	J03	PPI0D2	L11	GND
A12	SCLK1	D04	ADDR23	F12	DATA10	J04	PPI0D3	L12	DROPRI
A13	BG	D05	GND	F13	DATA8	J05	PPI0D1	L13	TFS0
A14	ABE2	D06	GND	F14	DATA12	J06	VDDEXT	L14	GND
A15	ABE3	D07	ADDR09	F15	DATA9	J07	GND	L15	DATA27
A16	VDDEXT	D08	GND	F16	DATA11	308	VDDINT	L16	DATA29
B01	PPI1CLK	D09	ARDY	G01	XTAL	J09	VDDINT	M01	PPI1D15
B02	ADDR22	D10	SCAS	G02	GND	J10	VDDINT	M02	PPI1D13
B03	ADDR18	D11	SA10	G03	VDDEXT	J11	GND	M03	PPI1D9
B04	ADDR16	D12	VDDEXT	G04	BYPASS	J12	DATA30	M04	GND
B05	ADDR12	D13	ADDR02	G05	PPI0D14	J13	DATA22	M05	NC
B06	VDDEXT	D14	GND	G06	GND	J14	GND	M06	PF3
B07	AMS1	D15	DATA5	G07	GND	J15	DATA21	M07	PF7
B08	ARE	D16	DATA6	G08	GND	J16	DATA23	M08	VDDINT
B09	SMS1	E01	GND	G09	VDDINT	K01	PPI0D6	M09	GND
B10	SCKE	E02	PPI0D11	G10	ADDR05	K02	PPI0D4	M10	BMODE0
B11	VDDEXT	E03	PPI0D12	G11	ADDR03	K03	PPI0D8	M11	SCK
B12	BR	E04	PPI0SYNC1	G12	DATA15	K04	PPI1SYNC1	M12	DR1PRI
B13	ABE1	E05	ADDR15	G13	DATA14	K05	PPI1D14	M13	NC
B14	ADDR06	E06	ADDR13	G14	GND	K06	VDDEXT	M14	VDDEXT
B15	ADDR04	E07	AMS2	G15	DATA13	K07	GND	M15	DATA31
B16	DATA0	E08	VDDINT	G16	VDDEXT	K08	VDDINT	M16	DTOPRI
C01	PPI0SYNC2	E09	SMS0	H01	GND	K09	GND	N01	PPI1D12
C02	PPIOCLK	E10	SWE	H02	GND	K10	GND	N02	PPI1D10
C03	ADDR25	E11	ABEO	H03	PPI0D9	K11	VDDINT	N03	PPI1D3
C04	ADDR19	E12	DATA2	H04	PPI0D7	K12	DATA28	N04	PPI1D1
C05	GND	E13	GND	H05	PPI0D5	K13	DATA26	N05	PF1
C06	ADDR11	E14	DATA4	H06	VDDINT	K14	DATA24	N06	PF9
C07	AOE	E15	DATA7	H07	VDDINT	K15	DATA25	N07	GND
C08	AMS0	E16	VDDEXT	H08	GND	K16	VDDEXT	N08	PF13

Ball No.	Signal	Ball No.	Signal						
N09	TDO	P05	GND	R01	PPI1D7	R13	TX/PF26	T09	ТСК
N10	BMODE1	P06	PF5	R02	PPI1D6	R14	TSCLK1	T10	TMS
N11	MOSI	P07	PF11	R03	PPI1D2	R15	DT1PRI	T11	SLEEP
N12	GND	P08	PF15	R04	PPI1D0	R16	RFS0	T12	VDDEXT
N13	RFS1	P09	GND	R05	PF4	T01	VDDEXT	T13	RX/PF27
N14	GND	P10	TRST	R06	PF8	T02	PPI1D4	T14	DR1SEC
N15	DT0SEC	P11	NMIO	R07	PF10	T03	VDDEXT	T15	DT1SEC
N16	TSCLK0	P12	GND	R08	PF14	T04	PF2	T16	VDDEXT
P01	PPI1D8	P13	RSCLK1	R09	NMI1	T05	PF6		
P02	GND	P14	TFS1	R10	TDI	T06	VDDEXT		
P03	PPI1D5	P15	RSCLK0	R11	EMU	T07	PF12		
P04	PF0	P16	DR0SEC	R12	MISO	T08	VDDEXT		

Table 37. 256-Ball CSP_BGA (12 mm × 12 mm) Ball Assignment (Numerically by Ball Number) (Continued)

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
PPI0D12	E03	PPI1SYNC1	K04	TDO	N09	VDDEXT	M14
PPI0D13	D01	PPI1SYNC2	L02	TFS0	L13	VDDEXT	T01
PPI0D14	G05	PPI1SYNC3	L04	TFS1	P14	VDDEXT	T03
PPI0D15	D02	RESET	F03	TMS	T10	VDDEXT	T06
PPI0SYNC1	E04	RFS0	R16	TRST	P10	VDDEXT	T08
PPI0SYNC2	C01	RFS1	N13	TSCLK0	N16	VDDEXT	T12
PPI0SYNC3	D03	RSCLK0	P15	TSCLK1	R14	VDDEXT	T16
PPI1CLK	B01	RSCLK1	P13	TX/PF26	R13	VDDINT	E08
PPI1D0	R04	RX	T13	VDDEXT	A01	VDDINT	F07
PPI1D1	N04	SA10	D11	VDDEXT	A04	VDDINT	F09
PPI1D2	R03	SCAS	D10	VDDEXT	A09	VDDINT	G09
PPI1D3	N03	SCK	M11	VDDEXT	A16	VDDINT	H06
PPI1D4	T02	SCKE	B10	VDDEXT	B06	VDDINT	H07
PPI1D5	P03	SCLK0	A11	VDDEXT	B11	VDDINT	H11
PPI1D6	R02	SCLK1	A12	VDDEXT	D12	VDDINT	J08
PPI1D7	R01	SLEEP	T11	VDDEXT	E16	VDDINT	J09
PPI1D8	P01	<u>SMS0</u>	E09	VDDEXT	F02	VDDINT	J10
PPI1D9	M03	SMS1	B09	VDDEXT	G03	VDDINT	K08
PPI1D10	N02	SMS2	C09	VDDEXT	G16	VDDINT	K11
PPI1D11	L06	SMS3	A10	VDDEXT	J06	VDDINT	L08
PPI1D12	N01	SRAS	C10	VDDEXT	K06	VDDINT	M08
PPI1D13	M02	SWE	E10	VDDEXT	K16	VROUT0	J01
PPI1D14	K05	ТСК	T09	VDDEXT	L05	VROUT1	J02
PPI1D15	M01	TDI	R10	VDDEXT	L10	XTAL	G01

Table 38. 256-Ball CSP_BGA (12 mm × 12 mm) Ball Assignment (Alphabetically by Signal) (Continued)

Figure 50 lists the top view of the 256-Ball CSP_BGA (12 mm × 12 mm) ball configuration. Figure 51 lists the bottom view.

Figure 50. 256-Ball CSP_BGA Ball Configuration (Top View)

Figure 51. 256-Ball CSP_BGA Ball Configuration (Bottom View)

Signal	Ball No.						
ABEO	A22	BR	B20	DT0SEC	AA25	GND	N15
ABE1	B22	BYPASS	H01	DT1PRI	AF25	GND	N16
ABE2	A23	CLKIN	J01	DT1SEC	AF24	GND	N17
ABE3	B23	DATA0	E25	EMU	AE16	GND	P11
ADDR02	D25	DATA1	D26	GND	A01	GND	P12
ADDR03	C26	DATA2	F25	GND	A26	GND	P13
ADDR04	C25	DATA3	E26	GND	B02	GND	P14
ADDR05	B26	DATA4	G25	GND	B25	GND	P15
ADDR06	A25	DATA5	F26	GND	C03	GND	P16
ADDR07	B24	DATA6	H25	GND	C04	GND	P17
ADDR08	A24	DATA7	G26	GND	C05	GND	R11
ADDR09	A10	DATA8	J25	GND	C22	GND	R12
ADDR10	B10	DATA9	H26	GND	C23	GND	R13
ADDR11	A09	DATA10	K25	GND	C24	GND	R14
ADDR12	B09	DATA11	J26	GND	D03	GND	R15
ADDR13	A08	DATA12	L25	GND	D04	GND	R16
ADDR14	B08	DATA13	K26	GND	D23	GND	R17
ADDR15	A07	DATA14	M25	GND	D24	GND	T11
ADDR16	B07	DATA15	L26	GND	E03	GND	T12
ADDR17	A06	DATA16	N25	GND	E24	GND	T13
ADDR18	B06	DATA17	M26	GND	J02	GND	T14
ADDR19	A05	DATA18	P25	GND	L11	GND	T15
ADDR20	B05	DATA19	N26	GND	L12	GND	T16
ADDR21	A04	DATA20	R25	GND	L13	GND	T17
ADDR22	B04	DATA21	P26	GND	L14	GND	U14
ADDR23	A03	DATA22	T25	GND	L15	GND	AB03
ADDR24	B03	DATA23	R26	GND	L16	GND	AB24
ADDR25	A02	DATA24	U25	GND	L17	GND	AC03
AMS0	B12	DATA25	T26	GND	M02	GND	AC04
AMS1	A12	DATA26	V25	GND	M11	GND	AC23
AMS2	B11	DATA27	U26	GND	M12	GND	AC24
AMS3	A11	DATA28	W25	GND	M13	GND	AD03
AOE	B13	DATA29	V26	GND	M14	GND	AD04
ARDY	B14	DATA30	Y25	GND	M15	GND	AD05
ARE	A14	DATA31	W26	GND	M16	GND	AD22
AWE	A13	DROPRI	AB26	GND	M17	GND	AD23
BG	B21	DR0SEC	AC25	GND	N11	GND	AD24
BGH	A21	DR1PRI	AF22	GND	N12	GND	AE02
BMODE0	AE18	DR1SEC	AE23	GND	N13	GND	AE25
BMODE1	AE17	DTOPRI	Y26	GND	N14	GND	AF01

 Table 40.
 297-Ball PBGA Ball Assignment (Alphabetically by Signal)

Table 40. 297-Ball PBGA Ball Assignment	(Alphabetically by Signal) (Continued)
---	--

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
GND	AF26	PPI0D7	P01	RSCLK0	AD26	VDDEXT	K13
MISO	AE19	PPI0D8	P02	RSCLK1	AF21	VDDEXT	K14
MOSI	AE20	PPI0D9	N02	RX	AE21	VDDEXT	K15
NC	K02	PPI0D10	G02	SA10	B19	VDDEXT	L10
NC	L01	PPI0D11	G01	SCAS	A18	VDDEXT	M10
NC	L02	PPI0D12	F02	SCK	AF19	VDDEXT	N10
NC	AD25	PPI0D13	F01	SCKE	B17	VDDEXT	P10
NC	AE13	PPI0D14	E02	SCLK0	A19	VDDEXT	R10
NC	AE26	PPI0D15	E01	SCLK1	A20	VDDEXT	T10
NMIO	AF18	PPI0SYNC1	D01	SLEEP	AF17	VDDEXT	U10
NMI1	AF13	PPI0SYNC2	D02	<u>SMS0</u>	A15	VDDEXT	U11
PF0	AE05	PPI0SYNC3	C01	SMS1	B15	VDDEXT	U12
PF1	AF05	PPI1CLK	B01	SMS2	A16	VDDEXT	U13
PF2	AE06	PPI1D0	AF04	SMS3	B16	VDDINT	J16
PF3	AF06	PPI1D1	AE04	SRAS	A17	VDDINT	J17
PF4	AE07	PPI1D2	AF03	SWE	B18	VDDINT	J18
PF5	AF07	PPI1D3	AE03	ТСК	AF14	VDDINT	K16
PF6	AE08	PPI1D4	AF02	TDI	AF15	VDDINT	K17
PF7	AF08	PPI1D5	AE01	TDO	AE14	VDDINT	K18
PF8	AE09	PPI1D6	AD02	TFS0	AB25	VDDINT	L18
PF9	AF09	PPI1D7	AD01	TFS1	AE24	VDDINT	M18
PF10	AE10	PPI1D8	AC02	TMS	AF16	VDDINT	N18
PF11	AF10	PPI1D9	AC01	TRST	AE15	VDDINT	P18
PF12	AE11	PPI1D10	AB02	TSCLK0	AA26	VDDINT	R18
PF13	AF11	PPI1D11	AB01	TSCLK1	AF23	VDDINT	T18
PF14	AE12	PPI1D12	AA02	TX/PF26	AF20	VDDINT	U15
PF15	AF12	PPI1D13	AA01	VDDEXT	J10	VDDINT	U16
PPIOCLK	C02	PPI1D14	Y02	VDDEXT	J11	VDDINT	U17
PPI0D0	V02	PPI1D15	Y01	VDDEXT	J12	VDDINT	U18
PPI0D1	U01	PPI1SYNC1	W01	VDDEXT	J13	VROUT0	M01
PPI0D2	U02	PPI1SYNC2	W02	VDDEXT	J14	VROUT1	N01
PPI0D3	T01	PPI1SYNC3	V01	VDDEXT	J15	XTAL	K01
PPI0D4	T02	RESET	H02	VDDEXT	K10		
PPI0D5	R01	RFS0	AC26	VDDEXT	K11		
PPI0D6	R02	RFS1	AE22	VDDEXT	K12		

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04696-0-9/09(E)

Ιο.

.