

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Product Status	Obsolete
Number of LABs/CLBs	2320
Number of Logic Elements/Cells	20880
Total RAM Bits	1622016
Number of I/O	564
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2vp20-5ffg1152c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Output Swing and Emphasis

The output swing and emphasis levels are fully programmable. Each is controlled via attributes at configuration, and can be modified via the PMA attribute programming bus.

The programmable output swing control can adjust the differential peak-to-peak output level between 200 mV and 1600 mV.

With emphasis, the differential voltage swing is boosted to create a stronger rising or falling waveform. This method compensates for high frequency loss in the transmission media that would otherwise limit the magnitude of this waveform. Lossy transmission lines cause the dissipation of electrical energy. This emphasis technique extends the distance that signals can be driven down lossy line media and increases the signal-to-noise ratio at the receiver.

Emphasis can be described from two perspectives, additive to the smaller voltage (V_{SM}) (pre-emphasis) or subtractive from the larger voltage (V_{LG}) (de-emphasis). The resulting benefits in compensating for channel loss are identical. It is simply a relative way of specifying the effect at the transmitter.

The equations for calculating pre-emphasis as a percentage and dB are as follows:

 $\begin{aligned} \text{Pre-Emphasis}_{\&} &= ((V_{LG} - V_{SM}) / V_{SM}) \times 100 \\ \text{Pre-Emphasis}_{dB} &= 20 \log(V_{LG} / V_{SM}) \end{aligned}$

The equations for calculating de-emphasis as a percentage and dB are as follows:

 $\label{eq:De-Emphasis} \begin{array}{l} \mbox{De-Emphasis}_{\&} = (V_{LG} - V_{SM}) \ / \ V_{LG}) \ \mbox{x 100} \\ \mbox{De-Emphasis}_{B} = 20 \ \log{(V_{SM}/V_{LG})} \end{array}$

The pre-emphasis amount can be programmed in discrete steps between 0% and 500%. The de-emphasis amount can be programmed in discrete steps between 0% and 83%.

Serializer

The serializer multiplies the reference frequency provided on REFCLK by 10, 16, 20, 32, or 40, depending on the operation mode. The multiplication of the clock is achieved by using an embedded PLL.

Data is converted from parallel to serial format and transmitted on the TXP and TXN differential outputs. The electrical connection of TXP and TXN can be interchanged through configuration. This option can be controlled by an input (TXPOLARITY) at the FPGA transmitter interface.

Deserializer

Synchronous serial data reception is facilitated by a clock and data recovery (CDR) circuit. This circuit uses a fully monolithic Phase Lock Loop (PLL), which does not require any external components. The CDR circuit extracts both phase and frequency from the incoming data stream.

The derived clock, RXRECCLK, is generated and locked to as long as it remains within the specified component range.

This clock is presented to the FPGA fabric at 1/10, 1/16, 1/20, 1/32, or 1/40 the incoming data rate depending on the operating mode.

A sufficient number of transitions must be present in the data stream for CDR to work properly. The CDR circuit is guaranteed to work with 8B/10B and 64B/66B encoding. Further, CDR requires approximately 5,000 transitions upon power-up to guarantee locking to the incoming data rate. Once lock is achieved, up to 75 missing transitions can be tolerated before lock to the incoming data stream is lost.

Another feature of CDR is its ability to accept an external precision reference clock, REFCLK, which either acts to clock incoming data or to assist in synchronizing the derived RXRECCLK.

For further clarity, the TXUSRCLK is used to clock data from the FPGA fabric to the TX FIFO. The FIFO depth accounts for the slight phase difference between these two clocks. If the clocks are locked in frequency, then the FIFO acts much like a pass-through buffer.

The receiver can be configured to reverse the RXP and RXN inputs. This can be useful in the event that printed circuit board traces have been reversed.

Receiver Lock Control

The CDR circuits will lock to the reference clock automatically if the data is not present. For proper operation, the frequency of the reference clock must be within ± 100 ppm of the nominal frequency.

During normal operation, the receiver PLL automatically locks to incoming data (when present) or to the local reference clock (when data is not present). This is the default configuration for all primitives. This function can be overridden via the PMARXLOCKSEL port

When receive PLL lock is forced to the local reference, phase information from the incoming data stream is ignored. Data continues to be sampled, but synchronous to the local reference rather than relative to edges in the data stream.

Receive Equalization

In addition to transmit emphasis, the RocketIO X MGT provides a programmable active receive equalization feature to further compensate the effects of channel attenuation at high frequencies.

By adjusting RXFER, the right amount of equalization can be added to reverse the signal degradation caused by a printed circuit board, a backplane, or a line/switch card. RXFER can be set through software configuration or the PMA Attribute Bus.

Receiver Termination

On-chip termination is provided at the receiver, eliminating the need for external termination. The receiver termination supply (V_{TRX}) is the center tap of differential termination to

cation is given at the receiver interface. The realignment indicator is a distinct output.

The transceiver continuously monitors the data for the presence of the 10-bit character(s). Upon each occurrence of a 10-bit character, the data is checked for word alignment. If comma detect is disabled, the data is not aligned to any particular pattern. The programmable option allows a user to align data on comma+, comma-, both, or a unique user-defined and programmed sequence.

Comma detection has been expanded beyond 10-bit symbol detection and alignment to include 8-bit symbol detection and alignment for 16-, 20-, 32-, and 40-bit paths. The ability to detect symbols, and then either align to 1-word, 2-word, or 4-word boundaries is included. The RXSLIDE input allows the user to "slide" or "slip" the alignment by one bit in each 16-, 20-, 32- and 40-bit mode at any time for SONET applications. Comma detection can be bypassed when needed.

Clock Correction

RXRECCLK (the recovered clock) reflects the data rate of the incoming data. RXUSRCLK defines the rate at which the FPGA fabric consumes the data. Ideally, these rates are identical. However, since the clocks typically have different sources, one of the clocks will be faster than the other. The receiver buffer accommodates this difference between the clock rates. See Figure 6.

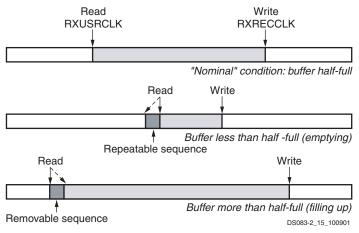


Figure 6: Clock Correction in Receiver

Nominally, the buffer is always half full. This is shown in the top buffer, Figure 6, where the shaded area represents buffered data not yet read. Received data is inserted via the write pointer under control of RXRECCLK. The FPGA fabric reads data via the read pointer under control of RXUS-RCLK. The half full/half empty condition of the buffer gives a cushion for the differing clock rates. This operation continues indefinitely, regardless of whether or not "meaningful" data is being received. When there is no meaningful data to be received, the incoming data will consist of IDLE characters or other padding.

If RXUSRCLK is faster than RXRECCLK, the buffer becomes more empty over time. The clock correction logic corrects for this by decrementing the read pointer to reread a repeatable byte sequence. This is shown in the middle buffer, Figure 6, where the solid read pointer decrements to the value represented by the dashed pointer. By decrementing the read pointer instead of incrementing it in the usual fashion, the buffer is partially refilled. The transceiver design will repeat a single repeatable byte sequence when necessary to refill a buffer. If the byte sequence length is greater than one, and if attribute CLK_COR_REPEAT_WAIT is 0, then the transceiver may repeat the same sequence multiple times until the buffer is refilled to the desired extent.

Similarly, if RXUSRCLK is slower than RXRECCLK, the buffer will fill up over time. The clock correction logic corrects for this by incrementing the read pointer to skip over a removable byte sequence that need not appear in the final FPGA fabric byte stream. This is shown in the bottom buffer, Figure 6, where the solid read pointer increments to the value represented by the dashed pointer. This accelerates the emptying of the buffer, preventing its overflow. The transceiver design will skip a single byte sequence when necessary to partially empty a buffer. If attribute CLK_COR_REPEAT_WAIT is 0, the transceiver may also skip two consecutive removable byte sequences in one step to further empty the buffer when necessary.

These operations require the clock correction logic to recognize a byte sequence that can be freely repeated or omitted in the incoming data stream. This sequence is generally an IDLE sequence, or other sequence comprised of special values that occur in the gaps separating packets of meaningful data. These gaps are required to occur sufficiently often to facilitate the timely execution of clock correction.

Channel Bonding

Some gigabit I/O standards such as Infiniband specify the use of multiple transceivers in parallel for even higher data rates. Words of data are split into bytes, with each byte sent over a separate channel (transceiver). See Figure 7.

The top half of the figure shows the transmission of words split across four transceivers (channels or lanes). PPPP, QQQQ, RRRR, SSSS, and TTTT represent words sent over the four channels.

The bottom-left portion of Figure 7 shows the initial situation in the FPGA's receivers at the other end of the four channels. Due to variations in transmission delay—especially if the channels are routed through repeaters—the FPGA fabric might not correctly assemble the bytes into complete words. The bottom-left illustration shows the incorrect assembly of data words PQPP, QRQQ, RSRR, and so forth. To support correction of this misalignment, the data stream includes special byte sequences that define corresponding points in the several channels. In the bottom half of Figure 7, the shaded "P" bytes represent these special characters. Each receiver recognizes the "P" channel bondCRC may adjust certain trailing bytes to generate the required running disparity at the end of the packet.

On the receiver side, the CRC logic verifies the received CRC value, supporting the same standards as above.

The CRC logic also supports a user mode, with a simple data packet stucture beginning and ending with user-defined SOP and EOP characters.

Loopback

In order to facilitate testing without having the need to either apply patterns or measure data at GHz rates, two programmable loop-back features are available.

One option, serial loopback, places the gigabit transceiver into a state where transmit data is directly fed back to the receiver. An important point to note is that the feedback path is at the output pads of the transmitter. This tests the entirety of the transmitter and receiver.

The second option, parallel loopback, checks the digital circuitry. When parallel loopback is enabled, the serial loopback path is disabled. However, the transmitter outputs remain active, and data can be transmitted. If TXINHIBIT is asserted, TXP is forced to 0 until TXINHIBIT is de-asserted.

Reset

The receiver and transmitter have their own synchronous reset inputs. The transmitter reset recenters the transmission FIFO, and resets all transmitter registers and the 8B/10B decoder. The receiver reset recenters the receiver elastic buffer, and resets all receiver registers and the 8B/10B encoder. Neither reset has any effect on the PLLs.

Power

All RocketIO transceivers in the FPGA, whether instantiated in the design or not, must be connected to power and ground. Unused transceivers can be powered by any 2.5V source, and passive filtering is not required.

Power Down

The Power Down module is controlled by the transceiver's POWERDOWN input pin. The Power Down pin on the FPGA package has no effect on the transceiver.

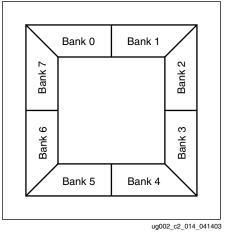


Figure 24: I/O Banks: Wire-Bond Packages (FG) Top View

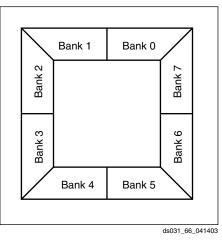


Figure 25: I/O Banks: Flip-Chip Packages (FF) Top View

Some input standards require a user-supplied threshold voltage (V_{REF}), and certain user-I/O pins are automatically configured as V_{REF} inputs. Approximately one in six of the I/O pins in the bank assume this role.

 V_{REF} pins within a bank are interconnected internally, thus only one V_{REF} voltage can be used within each bank. However, for correct operation, all V_{REF} pins in the bank must be connected to the external reference voltage source.

The V_{CCO} and the V_{REF} pins for each bank appear in the device pinout tables. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary.

All V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not con-

nect within the package. These unconnected pins can be left unconnected externally, or, if necessary, they can be connected to V_{CCO} to permit migration to a larger device.

Rules for Combining I/O Standards in the Same Bank

The following rules must be obeyed to combine different input, output, and bi-directional standards in the same bank:

1. Combining output standards only. Output standards with the same output V_{CCO} requirement can be combined in the same bank.

Compatible example:

SSTL2_I and LVDS_25 outputs

- Incompatible example: SSTL2_I (output $V_{CCO} = 2.5V$) and LVCMOS33 (output $V_{CCO} = 3.3V$) outputs
- 2. Combining input standards only. Input standards with the same input $V_{\rm CCO}$ and input $V_{\rm REF}$ requirements can be combined in the same bank.

Compatible example: LVCMOS15 and HSTL_IV inputs Incompatible example:

LVCMOS15 (input $V_{CCO} = 1.5V$) and LVCMOS18 (input $V_{CCO} = 1.8V$) inputs

Incompatible example: HSTL_I_DCI_18 (V_{REF} = 0.9V) and

HSTL_IV_DCI_18 (V_{REF} = 1.1V) inputs

3. Combining input standards and output standards. Input standards and output standards with the same input V_{CCO} and output V_{CCO} requirement can be combined in the same bank.

Compatible example:

LVDS_25 output and HSTL_I input

Incompatible example: LVDS_25 output (output $V_{CCO} = 2.5V$) and HSTL_I_DCI_18 input (input $V_{CCO} = 1.8V$)

- 4. **Combining bi-directional standards with input or output standards.** When combining bi-directional I/O with other standards, make sure the bi-directional standard can meet rules 1 through 3 above.
- 5. Additional rules for combining DCI I/O standards.
 - a. No more than one Single Termination type (input or output) is allowed in the same bank. *Incompatible example:*

HSTL_IV_DCI input and HSTL_III_DCI input

 No more than one Split Termination type (input or output) is allowed in the same bank.
 Incompatible example:

HSTL_I_DCI input and HSTL_II_DCI input

The implementation tools will enforce the above design rules.

Table 12, page 30, summarizes all standards and voltage supplies.

Table 12: Summary of Voltage Supply Requirements for All Input and Output Standards

Table 12: Summary of Voltage Supply Requirements for All Input and Output Standards (Continued)

	vc	v _{cco}		Terminat	ion Type
I/O Standard	Output	Input	Input	Output	Input
LVTTL ⁽¹⁾			N/R	N/R	N/R
LVCMOS33 ⁽¹⁾	-		N/R	N/R	N/R
LVDCI_33 ⁽¹⁾	3.3	3.3	N/R	Series	N/R
PCIX ⁽²⁾	3.3	3.3	N/R	N/R	N/R
PCI33_3 ⁽²⁾	-		N/R	N/R	N/R
PCI66_3 ⁽²⁾	-		N/R	N/R	N/R
LVDS_25			N/R	N/R	N/R
LVDSEXT_25			N/R	N/R	N/R
LDT_25	1		N/R	N/R	N/R
ULVDS_25	-	Note (3)	N/R	N/R	N/R
BLVDS_25	-	Note (3)	N/R	N/R	N/R
LVPECL_25	-		N/R	N/R	N/R
SSTL2_I	-		1.25	N/R	N/R
SSTL2_II	-		1.25	N/R	N/R
LVCMOS25	-		N/R	N/R	N/R
LVDCI_25	2.5		N/R	Series	N/R
LVDCI_DV2_25	-		N/R	Series	N/R
LVDS_25_DCI			N/R	N/R	Split
LVDSEXT_25_DCI	1		N/R	N/R	Split
SSTL2_I_DCI	1	2.5	1.25	N/R	Split
SSTL2_II_DCI			1.25	Split	Split
LVDS_25_DT	1		N/R	N/R	N/R
LVDSEXT_25_DT	1		N/R	N/R	N/R
LDT_25_DT			N/R	N/R	N/R
ULVDS_25_DT	1		N/R	N/R	N/R

	V _{cco}		V_{REF}	Termination Ty	
I/O Standard	Output	Input	Input	Output	Input
HSTL_III_18			1.1	N/R	N/R
HSTL_IV_18	_		1.1	N/R	N/R
HSTL_I_18	_	Nista (O)	0.9	N/R	N/R
HSTL_II_18		Note (3)	0.9	N/R	N/R
SSTL18_I			0.9	N/R	N/R
SSTL18_II			0.9	N/R	N/R
LVCMOS18			N/R	N/R	N/R
LVDCI_18	1.8		N/R	Series	N/R
LVDCI_DV2_18			N/R	Series	N/R
HSTL_III_DCI_18			1.1	N/R	Single
HSTL_IV_DCI_18		1.8	1.1	Single	Single
HSTL_I_DCI_18			0.9	N/R	Split
HSTL_II_DCI_18			0.9	Split	Split
SSTL18_I_DCI			0.9	N/R	Split
SSTL18_II_DCI			0.9	Split	Split
HSTL_III			0.9	N/R	N/R
HSTL_IV		Note (2)	0.9	N/R	N/R
HSTL_I		Note (3)	0.75	N/R	N/R
HSTL_II			0.75	N/R	N/R
LVCMOS15			N/R	N/R	N/R
LVDCI_15	- 1.5		N/R	Series	N/R
LVDCI_DV2_15	1.5		N/R	Series	N/R
GTLP_DCI		1.5	1	Single	Single
HSTL_III_DCI	1	1.5	0.9	N/R	Single
HSTL_IV_DCI	1		0.9	Single	Single
HSTL_I_DCI	1		0.75	N/R	Split
HSTL_II_DCI	1			Split	Split
GTL_DCI	1.2	1.2	0.8	Single	Single
GTLP	N/R	Note (3)	1	N/R	N/R
GTL	חעיו	14018 (3)	0.8	N/R	N/R

Notes:

See application note XAPP659 for more detailed information. See application note XAPP653 for more detailed information. 1.

2.

Pin voltage must not exceed V_{CCO}. 3. 4.

N/R = no requirement.

Table 34: RocketIO TXUSRCLK2 Switching Characteristics

		S	Speed Grade		
Description	Symbol	-7	-6	-5	Units
Setup and Hold Relative to Clock (TXUSRCLK2)					
CONFIGENABLE control input	T _{GCCK} _CFGEN/T _{GCKC} _CFGEN	0.35/ 0.10	0.35/ 0.10	0.39/ 0.11	ns, min
TXBYPASS8B10B control inputs	T _{GCCK} TBYP/T _{GCKC} TBYP	0.02/ 0.00	0.02/ 0.00	0.02/ 0.00	ns, min
TXFORCECRCERR control input	T _{GCCK} _TCRCE/T _{GCKC} _TCRCE	0.39/ 0.12	0.44/ 0.14	0.49/ 0.15	ns, min
TXPOLARITY control input	T _{GCCK} _TPOL/T _{GCKC} _TPOL	0.02/ 0.00	0.02/ 0.00	0.02/0.00	ns, min
TXINHIBIT control inputs	T _{GCCK} _TINH/T _{GCKC} _TINH	0.02/ 0.00	0.02/ 0.00	0.02/0.00	ns, min
LOOPBACK control inputs	T _{GCCK} _LBK/T _{GCKC} _LBK	0.02/ 0.00	0.02/0.00	0.02/ 0.00	ns, min
TXRESET control input	T _{GCCK} TRST/T _{GCKC} TRST	0.02/ 0.10	0.02/ 0.10	0.02/0.11	ns, min
TXCHARISK control inputs	T _{GCCK} _TKCH/T _{GCKC} _TKCH	0.02/ 0.00	0.02/ 0.00	0.02/0.00	ns, min
TXCHARDISPMODE control inputs	T _{GCCK} _TCDM/T _{GCKC} _TCDM	0.02/ 0.00	0.02/ 0.00	0.02/ 0.00	ns, min
TXCHARDISPVAL control inputs	T _{GCCK} _TCDV/T _{GCKC} _TCDV	0.02/ 0.00	0.02/ 0.00	0.02/0.00	ns, min
CONFIGIN data input	T _{GDCK} _CFGIN/T _{GCKD} _CFGIN	0.35/ 0.10	0.35/ 0.10	0.39/ 0.11	ns, mir
TXDATA data inputs	T _{GDCK} _TDAT/T _{GCKD} _TDAT	0.02/ 0.00	0.02/ 0.00	0.02/0.00	ns, min
Clock to Out					
TXBUFERR status output	T _{GCKST} _TBERR	0.54	0.54	0.60	ns, max
TXKERR status outputs	T _{GCKST} _TKERR	0.41	0.41	0.46	ns, max
TXRUNDISP status outputs	T _{GCKST} _TRDIS	0.41	0.41	0.46	ns, max
CONFIGOUT data output	T _{GCKDO} _CFGOUT	0.25	0.25	0.28	ns, max
Clock					
TXUSRCLK2 minimum pulse width, High	T _{GPWH} TX2	1.42	1.42	2.25	ns, min
TXUSRCLK2 minimum pulse width, Low	T _{GPWL} TX2	1.42	1.42	2.25	ns, min

Table 36: IOB Input Switching Characteristics Standard Adjustments (Continued)

	IOSTANDARD	Timing	Speed Grade			
Description	Attribute	Parameter	-7	-6	-5	Units
HSLVDCI, 1.8V	HSLVDCI_18	T _{IHSLVDCI_18}	0.59	0.68	0.75	ns
HSLVDCI, 2.5V	HSLVDCI_25	T _{IHSLVDCI_25}	0.59	0.68	0.75	ns
HSLVDCI, 3.3V	HSLVDCI_33	T _{IHSLVDCI_33}	0.59	0.68	0.75	ns
GTL (Gunning Transceiver Logic) with DCI	GTL_DCI	T _{IGTL_DCI}	0.49	0.57	0.62	ns
GTL Plus with DCI	GTLP_DCI	T _{IGTLP_DCI}	0.27	0.31	0.35	ns
HSTL (High-Speed Transceiver Logic), Class I, with DCI	HSTL_I_DCI	T _{IHSTL_I_DCI}	0.27	0.31	0.35	ns
HSTL, Class II, with DCI	HSTL_II_DCI	T _{IHSTL_II_DCI}	0.27	0.31	0.35	ns
HSTL, Class III, with DCI	HSTL_III_DCI	T _{IHSTL_III_DCI}	0.27	0.31	0.35	ns
HSTL, Class IV, with DCI	HSTL_IV_DCI	T _{IHSTL_IV_DCI}	0.27	0.31	0.35	ns
HSTL, Class I, 1.8V, with DCI	HSTL_I_DCI_18	T _{IHSTL_I_DCI_18}	0.27	0.31	0.35	ns
HSTL, Class II, 1.8V, with DCI	HSTL_II_DCI_18	T _{IHSTL_II_DCI_18}	0.27	0.31	0.35	ns
HSTL, Class III, 1.8V, with DCI	HSTL_III_DCI_18	T _{IHSTL_III_DCI_18}	0.27	0.31	0.35	ns
HSTL, Class IV, 1.8V, with DCI	HSTL_IV_DCI_18	T _{IHSTL_IV_DCI_18}	0.27	0.31	0.35	ns
SSTL (Stub Series Terminated Logic), Class I, 1.8V, with DCI	SSTL18_I_DCI	T _{ISSTL18_I_DCI}	0.62	0.72	0.79	ns
SSTL, Class II, 1.8V, with DCI	SSTL18_II_DCI	T _{ISSTL18_II_DCI}	0.64	0.73	0.81	ns
SSTL, Class I, 2.5V, with DCI	SSTL2_I_DCI	T _{ISSTL2_I_DCI}	0.17	0.20	0.22	ns
SSTL, Class II, 2.5V, with DCI	SSTL2_II_DCI	T _{ISSTL2_II_DCI}	0.17	0.20	0.22	ns
LVDS, 2.5V, with DCI	LVDS_25_DCI	T _{ILVDS_25_DCI}	0.31	0.36	0.40	ns
LVDSEXT, 2.5V, with DCI	LVDSEXT_25_DCI	T _{ILVDSEXT_25_DCI}	0.33	0.37	0.41	ns
LVDS, 2.5V, with Differential Termination (DT)	LVDS_25_DT	T _{ILVDS_25_DT}	0.31	0.36	0.40	ns
LVDSEXT, 2.5V, with DT	LVDSEXT_25_DT	T _{ILVDSEXT_25_DT}	0.33	0.37	0.41	ns
ULVDS, 2.5V, with DT	ULVDS_25_DT	T _{IULVDS_25_DT}	0.31	0.36	0.40	ns
LDT, 2.5V, with DT	LDT_25_DT	T _{ILDT_25_DT}	0.31	0.36	0.40	ns

www.xilinx.com

Virtex-II Pro Pin Definitions

This section describes the pinouts for Virtex-II Pro devices in the following packages:

- FG256/FGG256, FG456/FGG456, and FG676/FGG676: wire-bond fine-pitch BGA of 1.00 mm pitch
- FF672, FF896, FF1148, FF1152, FF1517, FF1696, and FF1704: flip-chip fine-pitch BGA of 1.00 mm pitch

All of the devices supported in a particular package are pinout-compatible and are listed in the same table (one table

Pin Definitions

 Table 4 provides a description of each pin type listed in Virtex-II Pro pinout tables.

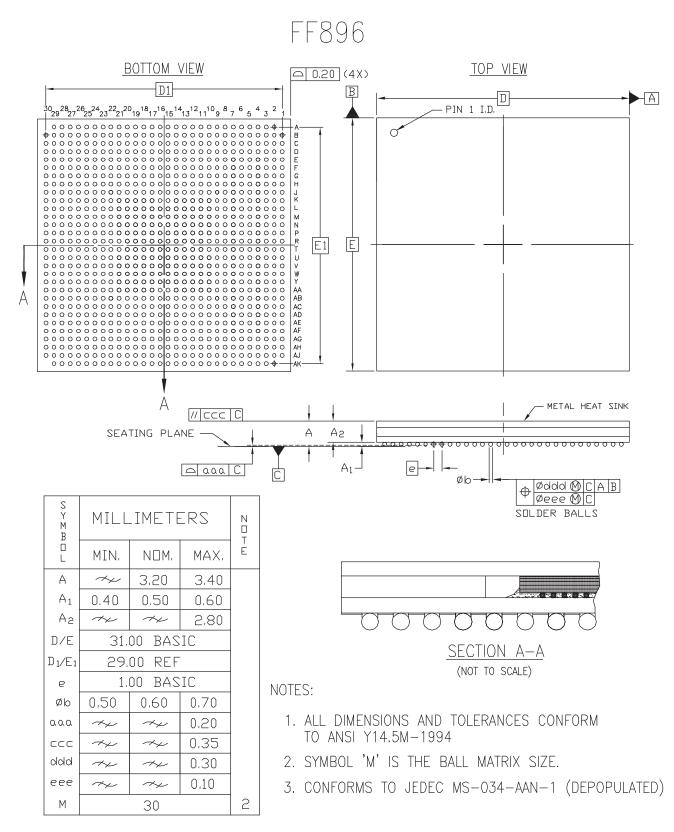
Table 4: Virtex-II Pro Pin Definitions

per package). Pins that are not available for smaller devices are listed in right-hand columns.

Each device is split into eight I/O banks to allow for flexibility in the choice of I/O standards. Global pins, including JTAG, configuration, and power/ground pins, are listed at the end of each table. Table 4 provides definitions for all pin types.

All Virtex-II Pro pinout tables are available on the distribution CD-ROM, or on the web (at http://www.xilinx.com).

Pin Name	Direction	Description			
User I/O Pins:					
IO_LXXY_#	Input/Output/ Bidirectional	 All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled "IO_LXXY_#", where: IO indicates a user I/O pin. LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for the positive and negative sides of the differential pair. # indicates the bank number (0 through 7) 			
Dual-Function Pins:					
IO_LXXY_#/ZZZ	The <i>dual-function pins</i> are labelled "IO_LXXY_#/ZZZ", where "ZZZ" can be one of the following pi				
		· VRP, VRN, or VREF GCLKX(S/P), BUSY/DOUT, INIT_B, D0/DIN – D7, RDWR_B, or CS_B			
	These dual functions are defined in the following section:				
"ZZZ" (Dual Functi	on) Definitions	S:			
D0/DIN, D1, D2, D3, D4, D5, D6, D7	Input/Output	 In SelectMAP mode, D0 through D7 are configuration data pins. These pins become user I/Os after configuration, unless the SelectMAP port is retained. In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after configuration. 			
CS_B	Input	In SelectMAP mode, this is the active-low Chip Select signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained.			
RDWR_B	Input	In SelectMAP mode, this is the active-low Write Enable signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained.			
BUSY/DOUT	Output	 In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained. In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. 			
INIT_B	Bidirectional (open-drain)	When Low, this pin indicates that the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. The pin becomes a user I/O after configuration.			


Table 5: FG256/FGG256 — XC2VP2 and XC2VP4

Bank	Pin Description	Pin Number
7	IO_L85N_7	G2
7	IO_L06P_7	G3
7	IO_L06N_7	G4
7	IO_L04P_7	F1
7	IO_L04N_7/VREF_7	F2
7	IO_L03P_7	F3
7	IO_L03N_7	F4
7	IO_L02P_7	F5
7	IO_L02N_7	E4
7	IO_L01P_7/VRN_7	E2
7	IO_L01N_7/VRP_7	E3
		· · · · · · · · · · · · · · · · · · ·
0	VCCO_0	F8
0	VCCO_0	F7
0	VCCO_0	E8
1	VCCO_1	F9
1	VCCO_1	F10
1	VCCO_1	E9
2	VCCO_2	H12
2	VCCO_2	H11
2	VCCO_2	G11
3	VCCO_3	K11
3	VCCO_3	J12
3	VCCO_3	J11
4	VCCO_4	M9
4	VCCO_4	L9
4	VCCO_4	L10
5	VCCO_5	M8
5	VCCO_5	L8
5	VCCO_5	L7
6	VCCO_6	K6
6	VCCO_6	J6
6	VCCO_6	J5
7	VCCO_7	H6
7	VCCO_7	H5

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin No Connects			
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7
N/A	VCCINT	U16			
N/A	VCCINT	U18			
N/A	VCCINT	V10			
N/A	VCCINT	V17			
N/A	VCCINT	V18			
N/A	VCCINT	W19			
N/A	VCCAUX	B2			
N/A	VCCAUX	N1			
N/A	VCCAUX	P1			
N/A	VCCAUX	A13			
N/A	VCCAUX	A14			
N/A	VCCAUX	AE2			
N/A	VCCAUX	B25			
N/A	VCCAUX	N26			
N/A	VCCAUX	P26			
N/A	VCCAUX	AE25			
N/A	VCCAUX	AF13			
N/A	VCCAUX	AF14			
N/A	GND	C3			
N/A	GND	D4			
N/A	GND	E5			
N/A	GND	F6			
N/A	GND	G7			
N/A	GND	Y7			
N/A	GND	AA6			
N/A	GND	AB5			
N/A	GND	AC4			
N/A	GND	AD3			
N/A	GND	C24			
N/A	GND	D23			
N/A	GND	E22			
N/A	GND	F21			
N/A	GND	G20			
N/A	GND	K10			
N/A	GND	K12			
N/A	GND	K13			
N/A	GND	K14			

FF896 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50

		Pin		No Co	nnects	
Bank	Pin Description	Number	XC2VP20	XC2VP30	XC2VP40	XC2VP50
6	IO_L53P_6	W25				
6	IO_L53N_6	W26				
6	IO_L54P_6	AB33				
6	IO_L54N_6	AA33				
6	IO_L55P_6	Y28				
6	IO_L55N_6	Y29				
6	IO_L56P_6	W27				
6	IO_L56N_6	W28				
6	IO_L57P_6	Y31				
6	IO_L57N_6/VREF_6	Y32				
6	IO_L58P_6	W29				
6	IO_L58N_6	W30				
6	IO_L59P_6	W24				
6	IO_L59N_6	V24				
6	IO_L60P_6	AA34				
6	IO_L60N_6	Y34				
6	IO_L85P_6	W31				
6	IO_L85N_6	W32				
6	IO_L86P_6	V25				
6	IO_L86N_6	V26				
6	IO_L87P_6	Y33				
6	IO_L87N_6/VREF_6	W33				
6	IO_L88P_6	V29				
6	IO_L88N_6	V30				
6	IO_L89P_6	V27				
6	IO_L89N_6	V28				
6	IO_L90P_6	V31				
6	IO_L90N_6	V32				
7	IO_L90P_7	U32				
7	IO_L90N_7	U31				
7	IO_L89P_7	U28				
7	IO_L89N_7	U27				
7	IO_L88P_7	V33				
7	IO_L88N_7/VREF_7	U33				
7	IO_L87P_7	U30				
7	IO_L87N_7	U29				
7	IO_L86P_7	U26				

Table 11: FF1148 — XC2VP40 and XC2VP50

			No Connects		
Bank	Pin Description	Pin Number	XC2VP40	XC2VP50	
5	IO_L27P_5	AL23			
5	IO_L26N_5	AD22			
5	IO_L26P_5	AE22			
5	IO_L25N_5	AJ23			
5	IO_L25P_5	AK23			
5	IO_L21N_5	AN24			
5	IO_L21P_5	AP24			
5	IO_L20N_5	AE23			
5	IO_L20P_5	AF23			
5	IO_L19N_5	AM23			
5	IO_L19P_5	AM24			
5	IO_L09N_5/VREF_5	AJ24			
5	IO_L09P_5	AK24			
5	IO_L08N_5	AG22			
5	IO_L08P_5	AG23			
5	IO_L07N_5/VREF_5	AH23			
5	IO_L07P_5	AH24			
5	IO_L06N_5/VRP_5	AN25			
5	IO_L06P_5/VRN_5	AP25			
5	IO_L05_5/No_Pair	AH25			
5	IO_L03N_5/D4	AL25			
5	IO_L03P_5/D5	AM25			
5	IO_L02N_5/D6	AE24			
5	IO_L02P_5/D7	AF24			
5	IO_L01N_5/RDWR_B	AJ25			
5	IO_L01P_5/CS_B	AK25			
				1	
6	IO_L01P_6/VRN_6	AP32			
6	IO_L01N_6/VRP_6	AN32			
6	IO_L02P_6	AP28			
6	IO_L02N_6	AN28			
6	IO_L03P_6	AP31			
6	IO_L03N_6/VREF_6	AN31			
6	IO_L04P_6	AP29			
6	IO_L04N_6	AN29			
6	IO_L05P_6	AN26			
6	IO_L05N_6	AN27			
6	IO_L06P_6	AM33			

		Pin	No Co	nnects
Bank	Pin Description	Number	XC2VP50	XC2VP70
2	IO_L11N_2	L9		
2	IO_L11P_2	M10		
2	IO_L12N_2	H4		
2	IO_L12P_2	J5		
2	IO_L13N_2	J1		
2	IO_L13P_2	J2		
2	IO_L14N_2	M8		
2	IO_L14P_2	N9		
2	IO_L15N_2	K6		
2	IO_L15P_2	K7		
2	IO_L16N_2/VREF_2	K4		
2	IO_L16P_2	K5		
2	IO_L17N_2	P10		
2	IO_L17P_2	N10		
2	IO_L18N_2	K3		
2	IO_L18P_2	J3		
2	IO_L19N_2	K1		
2	IO_L19P_2	K2		
2	IO_L20N_2	M11		
2	IO_L20P_2	N11		
2	IO_L21N_2	L7		
2	IO_L21P_2	L8		
2	IO_L22N_2/VREF_2	L5		
2	IO_L22P_2	L6		
2	IO_L23N_2	P8		
2	IO_L23P_2	P9		
2	IO_L24N_2	L3		
2	IO_L24P_2	L4		
2	IO_L25N_2	L1		
2	IO_L25P_2	L2		
2	IO_L26N_2	P11		
2	IO_L26P_2	P12		
2	 IO_L27N_2	M6		
2	 IO_L27P_2	M7		
2	IO_L28N_2/VREF_2	M2		
2	IO_L28P_2	М3		
2	 IO_L29N_2	R9		
2	IO_L29P_2	R10		

		Pin	No Connects		
Bank	Pin Description	Number	XC2VP50	XC2VP70	
2	VCCO_2	F8			
2	VCCO_2	U7			
2	VCCO_2	Y5			
2	VCCO_2	N4			
2	VCCO_2	J4			
2	VCCO_2	E4			
2	VCCO_2	U3			
2	VCCO_2	E1			
1	VCCO_1	N14			
1	VCCO_1	K13			
1	VCCO_1	F13			
1	VCCO_1	P19			
1	VCCO_1	P18			
1	VCCO_1	P17			
1	VCCO_1	K17			
1	VCCO_1	F17			
1	VCCO_1	P16			
1	VCCO_1	N16			
1	VCCO_1	P15			
1	VCCO_1	N15			
0	VCCO_0	K27			
0	VCCO_0	F27			
0	VCCO_0	N26			
0	VCCO_0	P25			
0	VCCO_0	N25			
0	VCCO_0	P24			
0	VCCO_0	N24			
0	VCCO_0	P23			
0	VCCO_0	K23			
0	VCCO_0	F23			
0	VCCO_0	P22			
0	VCCO_0	P21			
N/A	CCLK	AJ10			
N/A	PROG_B	D32			
N/A	DONE	AJ11			
N/A	МО	AP31			
N/A	M1	AJ30			

Bank	Pin Description	Pin	No Connects		
		Number	XC2VP50	XC2VP70	
N/A	TXNPAD23	AW36			
N/A	VTTXPAD23	AV36			
N/A	AVCCAUXTX23	AV35			
N/A	VCCINT	AH28			
N/A	VCCINT	M28			
N/A	VCCINT	AG27			
N/A	VCCINT	N27			
N/A	VCCINT	AF26			
N/A	VCCINT	P26			
N/A	VCCINT	AE25			
N/A	VCCINT	AD25			
N/A	VCCINT	AC25			
N/A	VCCINT	AB25			
N/A	VCCINT	AA25			
N/A	VCCINT	Y25			
N/A	VCCINT	W25			
N/A	VCCINT	V25			
N/A	VCCINT	U25			
N/A	VCCINT	T25			
N/A	VCCINT	R25			
N/A	VCCINT	AE24			
N/A	VCCINT	AD24			
N/A	VCCINT	T24			
N/A	VCCINT	R24			
N/A	VCCINT	AE23			
N/A	VCCINT	R23			
N/A	VCCINT	AE22			
N/A	VCCINT	R22			
N/A	VCCINT	AE21			
N/A	VCCINT	R21			
N/A	VCCINT	AE20			
N/A	VCCINT	R20			
N/A	VCCINT	AE19			
N/A	VCCINT	R19			
N/A	VCCINT	AE18			
N/A	VCCINT	R18			
N/A	VCCINT	AE17			

Bank	Pin Description	Pin	No Connects		
		Number	XC2VP50	XC2VP70	
N/A	GND	W18			
N/A	GND	V18			
N/A	GND	U18			
N/A	GND	T18			
N/A	GND	AD17			
N/A	GND	AC17			
N/A	GND	AB17			
N/A	GND	AA17			
N/A	GND	Y17			
N/A	GND	W17			
N/A	GND	V17			
N/A	GND	U17			
N/A	GND	P20			
N/A	GND	L20			
N/A	GND	G20			
N/A	GND	C20			
N/A	GND	AD19			
N/A	GND	AC19			
N/A	GND	AB19			
N/A	GND	AA19			
N/A	GND	Y19			
N/A	GND	W19			
N/A	GND	V19			
N/A	GND	U19			
N/A	GND	T19			
N/A	GND	AD18			
N/A	GND	AC18			
N/A	GND	U21			
N/A	GND	T21			
N/A	GND	AU20			
N/A	GND	AN20			
N/A	GND	AJ20			
N/A	GND	AF20			
N/A	GND	AD20			
N/A	GND	AC20			
N/A	GND	AB20			
N/A	GND	AA20			
N/A	GND	Y20			

Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

Bank	Pin Description			No Connects	
	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
3	IO_L17N_3		AL9		
3	IO_L17P_3		AL10		
3	IO_L16N_3		AM1		
3	IO_L16P_3		AM2		
3	IO_L15N_3/VREF_3		AM3		
3	IO_L15P_3		AN3		
3	IO_L14N_3		AM8		
3	IO_L14P_3		AM9		
3	IO_L13N_3		AM4		
3	IO_L13P_3		AM5		
3	IO_L12N_3		AM6		
3	IO_L12P_3		AM7		
3	IO_L11N_3		AN9		
3	IO_L11P_3		AM10		
3	IO_L10N_3		AN1		
3	IO_L10P_3		AN2		
3	IO_L09N_3/VREF_3		AN5		
3	IO_L09P_3		AN6		
3	IO_L08N_3		AN7		
3	IO_L08P_3		AN8		
3	IO_L07N_3		AP1		
3	IO_L07P_3		AP2		
3	IO_L84N_3		AP4		
3	IO_L84P_3		AP5		
3	IO_L83N_3		AR7		
3	IO_L83P_3		AP8		
3	IO_L82N_3		AP6		
3	IO_L82P_3		AP7		
3	IO_L81N_3/VREF_3		AR2		
3	IO_L81P_3		AR3		
3	IO_L80N_3		AT5		
3	IO_L80P_3		AR6		
3	IO_L79N_3		AR4		
3	IO_L79P_3		AR5		
3	IO_L78N_3		AT1		
3	IO_L78P_3		AT2		

FF1704 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

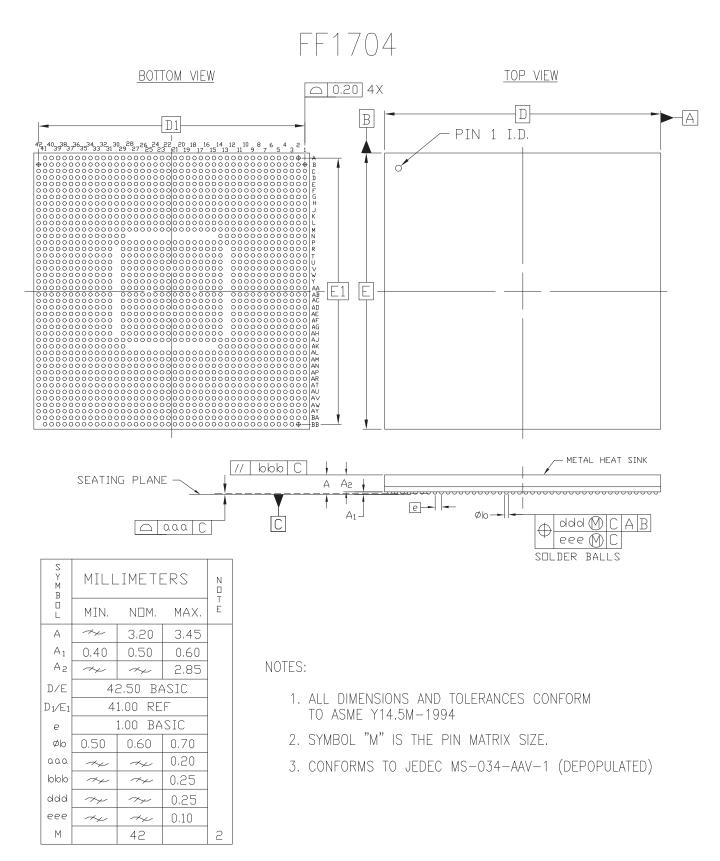


Figure 9: FF1704 Flip-Chip Fine-Pitch BGA Package Specifications

www.xilinx.com

Table 14: **FF1696 — XC2VP100**

			No Connects
Bank	Pin Description	Pin Number	XC2VP100
N/A	GND	AF1	
N/A	GND	AC1	
N/A	GND	Y1	
N/A	GND	U1	
N/A	GND	N1	
N/A	GND	J1	
N/A	GND	E1	

Notes:

1. See Table 4 for an explanation of the signals available on this pin.