

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Product Status	Obsolete
Number of LABs/CLBs	3424
Number of Logic Elements/Cells	30816
Total RAM Bits	2506752
Number of I/O	644
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2vp30-5ffg1152c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex-II Pro Ordering Examples

Virtex-II Pro ordering examples are shown in Figure 1 (flip-chip package) and Figure 2 (Pb-free wire-bond package).

Figure 2: Virtex-II Pro Ordering Example, Pb-Free Wire-Bond Package

Virtex-II Pro X Ordering Example

A Virtex-II Pro X ordering example is shown in Figure 3.

Figure 3: Virtex-II Pro X Ordering Example, Flip-Chip Package

Receiver Buffer

The receiver includes buffers (FIFOs) in the datapath. This section gives the reasons for including the buffers and outlines their operation.

The receiver buffer is required for two reasons:

- Clock correction to accommodate the slight difference in frequency between the recovered clock RXRECCLK and the internal FPGA user clock RXUSRCLK
- *Channel bonding* to allow realignment of the input stream to ensure proper alignment of data being read through multiple transceivers

The receiver uses an *elastic buffer*, where "elastic" refers to the ability to modify the read pointer for clock correction and channel bonding.

Comma Detection

Word alignment is dependent on the state of comma detect bits. If comma detect is enabled, the transceiver recognizes up to two 10-bit preprogrammed characters. Upon detection of the character or characters, the comma detect output is driven high and the data is synchronously aligned. If a comma is detected and the data is aligned, no further alignment alteration takes place. If a comma is received and realignment is necessary, the data is realigned and an indication is given at the receiver interface. The realignment indicator is a distinct output.

The transceiver continuously monitors the data for the presence of the 10-bit character(s). Upon each occurrence of a 10-bit character, the data is checked for word alignment. If comma detect is disabled, the data is not aligned to any particular pattern. The programmable option allows a user to align data on comma+, comma-, both, or a unique user-defined and programmed sequence.

Clock Correction

RXRECCLK (the recovered clock) reflects the data rate of the incoming data. RXUSRCLK defines the rate at which the FPGA fabric consumes the data. Ideally, these rates are identical. However, since the clocks typically have different sources, one of the clocks will be faster than the other. The receiver buffer accommodates this difference between the clock rates. See Figure 12.

Nominally, the buffer is always half full. This is shown in the top buffer, Figure 12, where the shaded area represents buffered data not yet read. Received data is inserted via the write pointer under control of RXRECCLK. The FPGA fabric reads data via the read pointer under control of RXUS-RCLK. The half full/half empty condition of the buffer gives a cushion for the differing clock rates. This operation continues indefinitely, regardless of whether or not "meaningful" data is being received. When there is no meaningful data to be received, the incoming data will consist of IDLE characters or other padding.

If RXUSRCLK is faster than RXRECCLK, the buffer becomes more empty over time. The clock correction logic

corrects for this by decrementing the read pointer to reread a repeatable byte sequence. This is shown in the middle buffer, Figure 12, where the solid read pointer decrements to the value represented by the dashed pointer.

Figure 12: Clock Correction in Receiver

By decrementing the read pointer instead of incrementing it in the usual fashion, the buffer is partially refilled. The transceiver design will repeat a single repeatable byte sequence when necessary to refill a buffer. If the byte sequence length is greater than one, and if attribute CLK_COR_REPEAT_WAIT is 0, then the transceiver may repeat the same sequence multiple times until the buffer is refilled to the desired extent.

Similarly, if RXUSRCLK is slower than RXRECCLK, the buffer will fill up over time. The clock correction logic corrects for this by incrementing the read pointer to skip over a removable byte sequence that need not appear in the final FPGA fabric byte stream. This is shown in the bottom buffer, Figure 12, where the solid read pointer increments to the value represented by the dashed pointer. This accelerates the emptying of the buffer, preventing its overflow. The transceiver design will skip a single byte sequence when necessary to partially empty a buffer. If attribute CLK_COR_REPEAT_WAIT is 0, the transceiver may also skip two consecutive removable byte sequences in one step to further empty the buffer when necessary.

These operations require the clock correction logic to recognize a byte sequence that can be freely repeated or omitted in the incoming data stream. This sequence is generally an IDLE sequence, or other sequence comprised of special values that occur in the gaps separating packets of meaningful data. These gaps are required to occur sufficiently often to facilitate the timely execution of clock correction.

Channel Bonding

Some gigabit I/O standards such as Infiniband specify the use of multiple transceivers in parallel for even higher data rates. Words of data are split into bytes, with each byte sent over a separate channel (transceiver). See Figure 13.

Figure 24: I/O Banks: Wire-Bond Packages (FG) Top View

Figure 25: I/O Banks: Flip-Chip Packages (FF) Top View

Some input standards require a user-supplied threshold voltage (V_{REF}), and certain user-I/O pins are automatically configured as V_{REF} inputs. Approximately one in six of the I/O pins in the bank assume this role.

 V_{REF} pins within a bank are interconnected internally, thus only one V_{REF} voltage can be used within each bank. However, for correct operation, all V_{REF} pins in the bank must be connected to the external reference voltage source.

The V_{CCO} and the V_{REF} pins for each bank appear in the device pinout tables. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary.

All V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not con-

nect within the package. These unconnected pins can be left unconnected externally, or, if necessary, they can be connected to V_{CCO} to permit migration to a larger device.

Rules for Combining I/O Standards in the Same Bank

The following rules must be obeyed to combine different input, output, and bi-directional standards in the same bank:

1. Combining output standards only. Output standards with the same output V_{CCO} requirement can be combined in the same bank.

Compatible example:

SSTL2_I and LVDS_25 outputs

- Incompatible example: SSTL2_I (output $V_{CCO} = 2.5V$) and LVCMOS33 (output $V_{CCO} = 3.3V$) outputs
- 2. Combining input standards only. Input standards with the same input V_{CCO} and input V_{REF} requirements can be combined in the same bank.

Compatible example: LVCMOS15 and HSTL_IV inputs Incompatible example:

LVCMOS15 (input $V_{CCO} = 1.5V$) and LVCMOS18 (input $V_{CCO} = 1.8V$) inputs

Incompatible example: HSTL_I_DCI_18 (V_{REF} = 0.9V) and

HSTL_IV_DCI_18 (V_{REF} = 1.1V) inputs
3. Combining input standards and output standards. Input standards and output standards with the same

input V_{CCO} and output V_{CCO} requirement can be combined in the same bank.

Compatible example:

LVDS_25 output and HSTL_I input

Incompatible example: LVDS_25 output (output $V_{CCO} = 2.5V$) and HSTL_I_DCI_18 input (input $V_{CCO} = 1.8V$)

- 4. **Combining bi-directional standards with input or output standards.** When combining bi-directional I/O with other standards, make sure the bi-directional standard can meet rules 1 through 3 above.
- 5. Additional rules for combining DCI I/O standards.
 - a. No more than one Single Termination type (input or output) is allowed in the same bank. *Incompatible example:*

HSTL_IV_DCI input and HSTL_III_DCI input

 No more than one Split Termination type (input or output) is allowed in the same bank.
 Incompatible example:

HSTL_I_DCI input and HSTL_II_DCI input

The implementation tools will enforce the above design rules.

Table 12, page 30, summarizes all standards and voltage supplies.

nally in user logic. In such cases, the width is viewed as 8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored and behave exactly as the other bits, including the timing parameters. Video applications can use the 9-bit ratio of Virtex-II Pro block SelectRAM+ memory to advantage.

Each block SelectRAM+ cell is a fully synchronous memory as illustrated in Figure 47. Input data bus and output data bus widths are identical.

DS031_10_102000

Figure 47: 18 Kb Block SelectRAM+ Memory in Single-Port Mode

Table 22: Dual-Port Mode C	Configurations
----------------------------	----------------

Dual-Port Configuration

As a dual-port RAM, each port of block SelectRAM+ has access to a common 18 Kb memory resource. These are fully synchronous ports with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion.

Table 22 illustrates the different configurations available onports A and B.

If both ports are configured in either 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations, the 18 Kb block is accessible from port A or B. If both ports are configured in either 16K x 1-bit, 8K x 2-bit. or 4K x 4-bit configurations, the 16 K-bit block is accessible from Port A or Port B. All other configurations result in one port having access to an 18 Kb memory block and the other port having access to a 16 K-bit subset of the memory block equal to 16 Kbs.

		ngurunono				
Port A	16K x 1	16K x 1	16K x 1	16K x 1	16K x 1	16K x 1
Port B	16K x 1	8K x 2	4K x 4	2K x 9	1K x 18	512 x 36
Port A	8K x 2	8K x 2	8K x 2	8K x 2	8K x 2	
Port B	8K x 2	4K x 4	2K x 9	1K x 18	512 x 36	
Port A	4K x 4	4K x 4	4K x 4	4K x 4		
Port B	4K x 4	2K x 9	1K x 18	512 x 36		
Port A	2K x 9	2K x 9	2K x 9			
Port B	2K x 9	1K x 18	512 x 36			
Port A	1K x 18	1K x 18				
Port B	1K x 18	512 x 36]			
Port A	512 x 36		-			
Port B	512 x 36	1				

18-Bit x 18-Bit Multipliers

Introduction

A Virtex-II Pro multiplier block is an 18-bit by 18-bit 2's complement signed multiplier. Virtex-II Pro devices incorporate many embedded multiplier blocks. These multipliers can be associated with an 18 Kb block SelectRAM+ resource or can be used independently. They are optimized for high-speed operations and have a lower power consumption compared to an 18-bit x 18-bit multiplier in slices.

Each SelectRAM+ memory and multiplier block is tied to four switch matrices, as shown in Figure 53.

Figure 53: SelectRAM+ and Multiplier Blocks

Association With Block SelectRAM+ Memory

The interconnect is designed to allow SelectRAM+ memory and multiplier blocks to be used at the same time, but some interconnect is shared between the SelectRAM+ and the multiplier. Thus, SelectRAM+ memory can be used only up to 18 bits wide when the multiplier is used, because the multiplier shares inputs with the upper data bits of the SelectRAM+ memory.

This sharing of the interconnect is optimized for an 18-bit-wide block SelectRAM+ resource feeding the multiplier. The use of SelectRAM+ memory and the multiplier with an accumulator in LUTs allows for implementation of a digital signal processor (DSP) multiplier-accumulator (MAC) function, which is commonly used in finite and infinite impulse response (FIR and IIR) digital filters.

Configuration

The multiplier block is an 18-bit by 18-bit signed multiplier (2's complement). Both A and B are 18-bit-wide inputs, and the output is 36 bits. Figure 54 shows a multiplier block.

Figure 54: **Multiplier Block**

Locations / Organization

Multiplier organization is identical to the 18 Kb SelectRAM+ organization, because each multiplier is associated with an 18 Kb block SelectRAM+ resource.

Table 26: Multiplier Resources

Device	Columns	Total Multipliers
XC2VP2	4	12
XC2VP4	4	28
XC2VP7	6	44
XC2VP20	8	88
XC2VP30	8	136
XC2VPX20	8	88
XC2VP40	10	192
XC2VP50	12	232
XC2VP70	14	328
XC2VPX70	14	308
XC2VP100	16	444

In addition to the built-in multiplier blocks, the CLB elements have dedicated logic to implement efficient multipliers in logic. (Refer to Configurable Logic Blocks (CLBs), page 35).

Global Clock Multiplexer Buffers

Virtex-II Pro devices have 16 clock input pins that can also be used as regular user I/Os. Eight clock pads center on both the top edge and the bottom edge of the device, as illustrated in Figure 55.

The global clock multiplexer buffer represents the input to dedicated low-skew clock tree distribution in Virtex-II Pro devices. Like the clock pads, eight global clock multiplexer buffers are on the top edge of the device and eight are on the bottom edge.

Figure 55: Virtex-II Pro Clock Pads

Each global clock multiplexer buffer can be driven either by the clock pad to distribute a clock directly to the device, or by the Digital Clock Manager (DCM), discussed in Digital Clock Manager (DCM), page 51. Each global clock multiplexer buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock multiplexer buffer inputs, as shown in Figure 56.

Global clock buffers are used to distribute the clock to some or all synchronous logic elements (such as registers in CLBs and IOBs, and SelectRAM+ blocks.

Eight global clocks can be used in each quadrant of the Virtex-II Pro device. Designers should consider the clock distribution detail of the device prior to pin-locking and floor-planning. (See the *Virtex-II Pro Platform FPGA User Guide.*)

Figure 56: Virtex-II Pro Clock Multiplexer Buffer Configuration

Table 17: Processor Block Switching Characteristics

	Speed Grade			
Symbol	-7	-6	-5	Units
T _{PCCK} _DCR/T _{PCKC} _DCR	0.38/-0.18	0.44/-0.20	0.48/-0.23	ns, min
T _{PDCK} _DCR/T _{PCKD} _DCR	0.65/-0.01	0.75/-0.01	0.82/-0.02	ns, min
T _{PCCK} _CPM/T _{PCKC} _CPM	0.16/ 0.03	0.19/ 0.03	0.20/ 0.03	ns, min
T _{PCCK} _RST/T _{PCKC} _RST	0.16/ 0.03	0.19/ 0.03	0.20/ 0.03	ns, min
T _{PCCK} _DBG/T _{PCKC} _DBG	0.27/ 0.30	0.31/ 0.35	0.34/ 0.38	ns, min
T _{PCCK} TRC/T _{PCKC} TRC	1.37/-0.41	1.57/-0.48	1.73/-0.52	ns, min
T _{PCCK} _EIC/T _{PCKC} _EIC	0.57/-0.22	0.66/-0.25	0.72/-0.27	ns, min
T _{PCKCO} DCR	1.32	1.52	1.67	ns, max
T _{PCKAO} DCR	1.72	1.98	2.17	ns, max
T _{PCKDO} DCR	1.76	2.02	2.22	ns, max
T _{PCKCO} _CPM	1.26	1.45	1.59	ns, max
T _{PCKCO} _RST	1.32	1.51	1.66	ns, max
T _{PCKCO} DBG	1.94	2.22	2.44	ns, max
T _{PCKCO} _TRC	1.35	1.56	1.71	ns, max
T _{CPWH}	1.25	1.42	1.66	ns, min
T _{CPWL}	1.25	1.42	1.66	ns, min
	Symbol Грсск_DCR/Трскс_DCR Трсск_DCR/Трскс_DCR Трсск_CPM/Трскс_CPM Трсск_CPM/Трскс_CPM Трсск_RST/Трскс_RST Трсск_RST/Трскс_DBG Трсск_CK_RST/Tрскс_CPM Трсск_CCM Трсск_DBG/Трскс_DBG Трсск_CK_RST/Tрскс_CPM Трсск_DCR Трсск_DCR Трсск_EIC/Tрскс_EIC Трско_DCR Трско_DCR Трсксо_CPM Трсксо_CPM Трсксо_CPM Tрсксо_CPM Tрсксо_CPM Tрсксо_CPM Tрсксо_CPM Tрсксо_CPM Tрсксо_DCR Tрсксо_CPM Tрсксо_CPM Tрсксо_TRC Tрсксо_TRC Tрсксо_TRC Tсрwн TсрwL	Symbol -7 T _{PCCK} _DCR/T _{PCKC} _DCR 0.38/-0.18 T _{PDCK} _DCR/T _{PCKD} _DCR 0.65/-0.01 T _{PCCK} _CPM/T _{PCKC} _CPM 0.16/ 0.03 T _{PCCK} _CPM/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _CPM/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _RST/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _CPM/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _CPM/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _CDBG/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _DBG/T _{PCKC} _RST 0.16/ 0.03 T _{PCCK} _DCR 1.37/-0.41 T _{PCCK} _DCR_TRC 1.37/-0.41 T _{PCCK} _EIC/T _{PCKC} _EIC 0.57/-0.22 T _{PCCKO} _DCR 1.32 T _{PCKCO} _DCR 1.32 T _{PCKCO} _CPM 1.26 T _{PCKCO} _CPBG 1.94 T _{PCKCO} _DBG 1.94 T _{PCKCO} _DBG 1.35 T _{PCKCO} _TRC 1.35 T _{PCKCO} _TRC 1.25 T _{CPWL} 1.25	Symbol -7 -6 T _{PCCK} _DCR/T _{PCKC} _DCR 0.38/-0.18 0.44/-0.20 T _{PDCK} _DCR/T _{PCKD} _DCR 0.65/-0.01 0.75/-0.01 T _{PCCK} _CPM/T _{PCKC} _CPM 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _RST/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _RST/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _RST/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _RST/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _DBG/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _DBG/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _DBG/T _{PCKC} _RST 0.16/ 0.03 0.19/ 0.03 T _{PCCK} _DCR 0.27/ 0.30 0.31/ 0.35 T _{PCCK} _DCR 0.57/-0.22 0.66/-0.25 T _{PCCK} _DCR 1.32 1.52 T _{PCKCO} _DCR 1.32 1.52 T _{PCKCO} _CPM 1.26 1.45 T _{PCKCO} _DBG 1.94 2.22 T _{PCKCO} _DBG 1.94 2.22 T _{PCKCO} _TRC 1.35 1.56 T _{CPWH}	Symbol -7 -6 -5 TPCCK_DCR/TPCKC_DCR 0.38/-0.18 0.44/-0.20 0.48/-0.23 TPDCK_DCR/TPCKD_DCR 0.65/-0.01 0.75/-0.01 0.82/-0.02 TPCCK_CPM/TPCKC_CPM 0.16/ 0.03 0.19/ 0.03 0.20/ 0.03 TPCCK_RST/TPCKC_RST 0.16/ 0.03 0.31/ 0.35 0.34/ 0.38 TPCCK_DDG/TPCKC_RST 1.37/-0.41 1.57/-0.48 1.73/-0.52 TPCCK_BCO_DCR 1.32 1.52 1.67 TPCKCO_DCR 1.32 1.52 1.67 TPCKCO_DCR 1.72 1.98 2.17 TPCKCO_DCR 1.76 2.02 2.22 TPCKCO_CPM 1.26 1.45

Table 18: Processor Block PLB Switching Characteristics

			Speed Grad	е	
Description	Symbol	-7	-6	-5	Units
Setup and Hold Relative to Clock (PLBCLK)					
Processor Local Bus(ICU/DCU) control inputs	T _{PCCK} PLB/T _{PCKC} PLB	0.98/ 0.18	1.12/ 0.21	1.23/ 0.23	ns, min
Processor Local Bus (ICU/DCU) data inputs	T _{PDCK} PLB/T _{PCKD} PLB	0.62/ 0.16	0.71/ 0.18	0.78/ 0.20	ns, min
Clock to Out					
Processor Local Bus(ICU/DCU) control outputs	T _{PCKCO} PLB	1.34	1.54	1.69	ns, max
Processor Local Bus(ICU/DCU) address bus outputs	T _{PCKAO} _PLB	1.16	1.34	1.47	ns, max
Processor Local Bus(ICU/DCU) data bus outputs	T _{PCKDO} PLB	1.44	1.65	1.81	ns, max

Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7

	Pin Description		No Connects			
Bank		Pin Number	XC2VP2	XC2VP4	XC2VP7	
N/A	AVCCAUXTX18	AA14				
N/A	AVCCAUXRX19	AA10				
N/A	VTRXPAD19	AA9				
N/A	RXNPAD19	AB10				
N/A	RXPPAD19	AB9				
N/A	GNDA19	Y9				
N/A	TXPPAD19	AB8				
N/A	TXNPAD19	AB7				
N/A	VTTXPAD19	AA7				
N/A	AVCCAUXTX19	AA8				
N/A	AVCCAUXRX21	AA6	NC	NC		
N/A	VTRXPAD21	AA5	NC	NC		
N/A	RXNPAD21	AB6	NC	NC		
N/A	RXPPAD21	AB5	NC	NC		
N/A	GNDA21	Y6	NC	NC		
N/A	TXPPAD21	AB4	NC	NC		
N/A	TXNPAD21	AB3	NC	NC		
N/A	VTTXPAD21	AA3	NC	NC		
N/A	AVCCAUXTX21	AA4	NC	NC		
		L			L	
N/A	VCCINT	U6				
N/A	VCCINT	U17				
N/A	VCCINT	Т8				
N/A	VCCINT	T7				
N/A	VCCINT	T16				
N/A	VCCINT	T15				
N/A	VCCINT	R7				
N/A	VCCINT	R16				
N/A	VCCINT	H7				
N/A	VCCINT	H16				
N/A	VCCINT	G8				
N/A	VCCINT	G7				
N/A	VCCINT	G16				
N/A	VCCINT	G15				
N/A	VCCINT	F6				
N/A	VCCINT	F17				
N/A	VCCAUX	M22				

Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7

			No Connects		6
Bank	Pin Description	Pin Number	XC2VP2	XC2VP4	XC2VP7
N/A	GND	L11			
N/A	GND	L10			
N/A	GND	K9			
N/A	GND	K14			
N/A	GND	K13			
N/A	GND	K12			
N/A	GND	K11			
N/A	GND	K10			
N/A	GND	J9			
N/A	GND	J14			
N/A	GND	J13			
N/A	GND	J12			
N/A	GND	J11			
N/A	GND	J10			
N/A	GND	E5			
N/A	GND	E18			
N/A	GND	D4			
N/A	GND	D19			
N/A	GND	C3			
N/A	GND	C20			
N/A	GND	AB22			
N/A	GND	AB12			
N/A	GND	AB1			
N/A	GND	A22			
N/A	GND	A11			
N/A	GND	A1			

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40

BankPin DescriptionPin NumberXC2VP20XC2VP30XC2VP40N/AGNDH4H4Image: State Stat				No Connects			
N/A GND H4 Image: marked state sta	Bank	Pin Description	Pin Number	XC2VP20	XC2VP30	XC2VP40	
N/AGNDH23N/AGNDK6N/AGNDK21N/AGNDL11N/AGNDL12N/AGNDL12N/AGNDL13N/AGNDL14N/AGNDL16N/AGNDM3N/AGNDM11N/AGNDM12N/AGNDM12N/AGNDM13N/AGNDM14N/AGNDM15N/AGNDN16N/AGNDN11N/AGNDM16N/AGNDM16N/AGNDM16N/AGNDN11N/AGNDN11N/AGNDN12N/AGNDN11N/AGNDN12N/AGNDN14N/AGNDN15N/AGNDP11N/AGNDP11N/AGNDP13N/AGNDP15N/AGNDP16N/AGNDP16N/AGNDR11N/AGNDR11N/AGNDR12N/AGNDR11N/AGNDR14	N/A	GND	H4				
N/A GND K6 Image: constraint of the second seco	N/A	GND	H23				
N/A GND K21 Image: constraint of the system of the sys	N/A	GND	K6				
N/A GND L11 N/A GND L12 N/A GND L13 N/A GND L13 N/A GND L14 N/A GND L15 N/A GND L16 N/A GND M3 N/A GND M11 N/A GND M12 N/A GND M13 N/A GND M14 N/A GND M15 N/A GND M16 N/A GND M16 N/A GND M11 N/A GND M14 N/A GND M14 N/A GND M11 N/A GND N11 N/A GND N12 N/A GND N13 N/A GND N14 N/A GND P10 N/A GND P11 <	N/A	GND	K21				
N/AGNDL12N/AGNDL13N/AGNDL14N/AGNDL15N/AGNDL16N/AGNDM3N/AGNDM1N/AGNDM11N/AGNDM12N/AGNDM13N/AGNDM14N/AGNDM15N/AGNDM16N/AGNDM16N/AGNDM16N/AGNDN11N/AGNDN11N/AGNDN11N/AGNDN11N/AGNDN12N/AGNDN12N/AGNDN13N/AGNDN14N/AGNDN15N/AGNDP11N/AGNDP13N/AGNDP15N/AGNDP16N/AGNDR11N/AGNDR11N/AGNDR11N/AGNDR13N/AGNDR13N/AGNDR13N/AGNDR14	N/A	GND	L11				
N/A GND L13	N/A	GND	L12				
N/A GND L14 Image: constraint of the state of th	N/A	GND	L13				
N/AGNDL15N/AGNDL16N/AGNDM3N/AGNDM11N/AGNDM12N/AGNDM13N/AGNDM14N/AGNDM15N/AGNDM16N/AGNDM16N/AGNDM11N/AGNDM15N/AGNDM16N/AGNDN11N/AGNDN11N/AGNDN12N/AGNDN12N/AGNDN13N/AGNDN14N/AGNDN15N/AGNDP11N/AGNDP11N/AGNDP13N/AGNDP14N/AGNDP15N/AGNDR11N/AGNDR11N/AGNDR11N/AGNDR13N/AGNDR14	N/A	GND	L14				
N/AGNDL16N/AGNDM3N/AGNDM11N/AGNDM12N/AGNDM13N/AGNDM13N/AGNDM14N/AGNDM15N/AGNDM16N/AGNDM11N/AGNDM16N/AGNDM11N/AGNDM12N/AGNDN11N/AGNDN12N/AGNDN13N/AGNDN14N/AGNDN15N/AGNDP11N/AGNDP12N/AGNDP13N/AGNDP14N/AGNDP15N/AGNDP16N/AGNDR11N/AGNDR11N/AGNDR11N/AGNDR13N/AGNDR13N/AGNDR14	N/A	GND	L15				
N/A GND M3 Image: mail of the state	N/A	GND	L16				
N/AGNDM11Image: matrix state	N/A	GND	M3				
N/AGNDM12Image: scalar	N/A	GND	M11				
N/AGNDM13Image: style s	N/A	GND	M12				
N/AGNDM14N/AGNDM15N/AGNDM16N/AGNDM24N/AGNDN11N/AGNDN12N/AGNDN13N/AGNDN13N/AGNDN14N/AGNDN15N/AGNDP11N/AGNDP12N/AGNDP13N/AGNDP15N/AGNDP16N/AGNDR11N/AGNDR11N/AGNDR13N/AGNDR13N/AGNDR14	N/A	GND	M13				
N/A GND M15 Image: constraint of the state of th	N/A	GND	M14				
N/AGNDM16Image: constraint of the symbolic constraint of the symbol constraint	N/A	GND	M15				
N/AGNDM24Image: constraint of the system of	N/A	GND	M16				
N/AGNDN11Image: style s	N/A	GND	M24				
N/AGNDN12Image: constraint of the system of	N/A	GND	N11				
N/AGNDN13Image: constraint of the systemN/AGNDN14Image: constraint of the systemN/AGNDN15Image: constraint of the systemN/AGNDP11Image: constraint of the systemN/AGNDP12Image: constraint of the systemN/AGNDP13Image: constraint of the systemN/AGNDP14Image: constraint of the systemN/AGNDP15Image: constraint of the systemN/AGNDP16Image: constraint of the systemN/AGNDR11Image: constraint of the systemN/AGNDR12Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR14Image: constraint of the system	N/A	GND	N12				
N/AGNDN14Image: constraint of the systemN/AGNDN15Image: constraint of the systemN/AGNDN16Image: constraint of the systemN/AGNDP11Image: constraint of the systemN/AGNDP12Image: constraint of the systemN/AGNDP13Image: constraint of the systemN/AGNDP14Image: constraint of the systemN/AGNDP15Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR14Image: constraint of the system	N/A	GND	N13				
N/AGNDN15Image: constraint of the state	N/A	GND	N14				
N/AGNDN16Image: constraint of the systemN/AGNDP11Image: constraint of the systemN/AGNDP12Image: constraint of the systemN/AGNDP13Image: constraint of the systemN/AGNDP14Image: constraint of the systemN/AGNDP15Image: constraint of the systemN/AGNDP16Image: constraint of the systemN/AGNDR11Image: constraint of the systemN/AGNDR12Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR14Image: constraint of the system	N/A	GND	N15				
N/AGNDP11Image: constraint of the systemN/AGNDP12Image: constraint of the systemN/AGNDP13Image: constraint of the systemN/AGNDP14Image: constraint of the systemN/AGNDP15Image: constraint of the systemN/AGNDP16Image: constraint of the systemN/AGNDR3Image: constraint of the systemN/AGNDR11Image: constraint of the systemN/AGNDR12Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR14Image: constraint of the system	N/A	GND	N16				
N/AGNDP12Image: constraint of the second se	N/A	GND	P11				
N/AGNDP13Image: constraint of the systemN/AGNDP14Image: constraint of the systemN/AGNDP15Image: constraint of the systemN/AGNDP16Image: constraint of the systemN/AGNDR3Image: constraint of the systemN/AGNDR11Image: constraint of the systemN/AGNDR12Image: constraint of the systemN/AGNDR13Image: constraint of the systemN/AGNDR14Image: constraint of the system	N/A	GND	P12				
N/AGNDP14Image: constraint of the state	N/A	GND	P13				
N/AGNDP15Image: Constraint of the second se	N/A	GND	P14				
N/AGNDP16Image: constraint of the second se	N/A	GND	P15				
N/AGNDR3Image: Constraint of the second sec	N/A	GND	P16				
N/A GND R11 N/A GND R12 N/A GND R13 N/A GND R14	N/A	GND	R3				
N/A GND R12 Image: Constraint of the second sec	N/A	GND	R11				
N/A GND R13	N/A	GND	R12				
N/A GND R14	N/A	GND	R13				
	N/A	GND	R14				

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin			
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7
7	IO_L87N_7	M25			
7	IO_L86P_7	M24			
7	IO_L86N_7	M23			
7	IO_L85P_7	M22			
7	IO_L85N_7	M21			
7	IO_L60P_7	N19	NC		
7	IO_L60N_7	M19	NC		
7	IO_L59P_7	L26	NC		
7	IO_L59N_7	L25	NC		
7	IO_L58P_7	L24	NC		
7	IO_L58N_7/VREF_7	L23	NC		
7	IO_L57P_7	L22	NC		
7	IO_L57N_7	L21	NC		
7	IO_L56P_7	M20	NC		
7	IO_L56N_7	L20	NC		
7	IO_L55P_7	L19	NC		
7	IO_L55N_7	K20	NC		
7	IO_L54P_7	K26	NC		
7	IO_L54N_7	J26	NC		
7	IO_L53P_7	K24	NC		
7	IO_L53N_7	K23	NC		
7	IO_L52P_7	K22	NC		
7	IO_L52N_7/VREF_7	K21	NC		
7	IO_L51P_7	J25	NC		
7	IO_L51N_7	J24	NC		
7	IO_L50P_7	J23	NC		
7	IO_L50N_7	J22	NC		
7	IO_L49P_7	J21	NC		
7	IO_L49N_7	J20	NC		
7	IO_L48P_7	H26	NC		
7	IO_L48N_7	H25	NC		
7	IO_L47P_7	H24	NC		
7	IO_L47N_7	H23	NC		
7	IO_L46P_7	H22	NC		
7	IO_L46N_7/VREF_7	H21	NC		
7	IO_L45P_7	G26	NC		
7	IO_L45N_7	F26	NC		

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin			
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7
7	VCCO_7	L18			
7	VCCO_7	M18			
7	VCCO_7	N18			
N/A	CCLK	W7			
N/A	PROG_B	D22			
N/A	DONE	AB6			
N/A	МО	AC22			
N/A	M1	W20			
N/A	M2	AB21			
N/A	ТСК	G8			
N/A	TDI	H20			
N/A	TDO	H7			
N/A	TMS	F7			
N/A	PWRDWN_B	AC5			
N/A	HSWAP_EN	E21			
N/A	RSVD	D5			
N/A	VBATT	E6			
N/A	DXP	F20			
N/A	DXN	G19			
N/A	AVCCAUXTX7	B11			
N/A	VTTXPAD7	B12			
N/A	TXNPAD7	A12			
N/A	TXPPAD7	A11			
N/A	GNDA7	C11			
N/A	RXPPAD7	A10			
N/A	RXNPAD7	A9			
N/A	VTRXPAD7	B10			
N/A	AVCCAUXRX7	B9			
N/A	AVCCAUXTX9	B6	NC	NC	
N/A	VTTXPAD9	B7	NC	NC	
N/A	TXNPAD9	A7	NC	NC	
N/A	TXPPAD9	A6	NC	NC	
N/A	GNDA9	C5	NC	NC	
N/A	RXPPAD9	A5	NC	NC	
N/A	RXNPAD9	A4	NC	NC	
N/A	VTRXPAD9	B5	NC	NC	

Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50

		Pin	No Connects			
Bank	Pin Description	Number	XC2VP20	XC2VP30	XC2VP40	XC2VP50
N/A	GND	AF34				
N/A	GND	B34				
N/A	GND	C1				
N/A	GND	C2				
N/A	GND	C10				
N/A	GND	C16				
N/A	GND	C19				
N/A	GND	C25				
N/A	GND	C33				
N/A	GND	C34				
N/A	GND	D4				
N/A	GND	D31				
N/A	GND	E5				
N/A	GND	E12				
N/A	GND	E23				
N/A	GND	E30				
N/A	GND	F6				
N/A	GND	F29				
N/A	GND	G7				
N/A	GND	G28				
N/A	GND	B1				
N/A	GND	H8				
N/A	GND	H12				
N/A	GND	H15				
N/A	GND	H20				
N/A	GND	J1				
N/A	GND	H27				
N/A	GND	AF1				
N/A	GND	K3				
N/A	GND	K32				
N/A	GND	M5				
N/A	GND	M8				
N/A	GND	M27				
N/A	GND	M30				
N/A	GND	P14				
N/A	GND	P15				
N/A	GND	P16				

FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 6: FF1152 Flip-Chip Fine-Pitch BGA Package Specifications

Table 11: FF1148 — XC2VP40 and XC2VP50

			No Connects	
Bank	Pin Description	Pin Number	XC2VP40	XC2VP50
N/A	VCCINT	M23		
N/A	VCCINT	AB22		
N/A	VCCINT	AA22		
N/A	VCCINT	Y22		
N/A	VCCINT	W22		
N/A	VCCINT	V22		
N/A	VCCINT	U22		
N/A	VCCINT	T22		
N/A	VCCINT	R22		
N/A	VCCINT	P22		
N/A	VCCINT	N22		
N/A	VCCINT	AB21		
N/A	VCCINT	N21		
N/A	VCCINT	AB20		
N/A	VCCINT	N20		
N/A	VCCINT	AB19		
N/A	VCCINT	N19		
N/A	VCCINT	AB18		
N/A	VCCINT	N18		
N/A	VCCINT	AB17		
N/A	VCCINT	N17		
N/A	VCCINT	AB16		
N/A	VCCINT	N16		
N/A	VCCINT	AB15		
N/A	VCCINT	N15		
N/A	VCCINT	AB14		
N/A	VCCINT	N14		
N/A	VCCINT	AB13		
N/A	VCCINT	AA13		
N/A	VCCINT	Y13		
N/A	VCCINT	W13		
N/A	VCCINT	V13		
N/A	VCCINT	U13		
N/A	VCCINT	T13		
N/A	VCCINT	R13		
N/A	VCCINT	P13		
N/A	VCCINT	N13		
N/A	VCCINT	AC12		

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Co	nnects
Bank	Pin Description	Number	XC2VP50	XC2VP70
2	IO_L30N_2	N6		
2	IO_L30P_2	N7		
2	IO_L31N_2	M4		
2	IO_L31P_2	N5		
2	IO_L32N_2	R11		
2	IO_L32P_2	R12		
2	IO_L33N_2	N1		
2	IO_L33P_2	N2		
2	IO_L34N_2/VREF_2	P6		
2	IO_L34P_2	P7		
2	IO_L35N_2	R13		
2	IO_L35P_2	T13		
2	IO_L36N_2	P4		
2	IO_L36P_2	P5		
2	IO_L37N_2	P3		
2	IO_L37P_2	N3		
2	IO_L38N_2	T10		
2	IO_L38P_2	T11		
2	IO_L39N_2	P1		
2	IO_L39P_2	P2		
2	IO_L40N_2/VREF_2	R7		
2	IO_L40P_2	R8		
2	IO_L41N_2	T12		
2	IO_L41P_2	U12		
2	IO_L42N_2	R5		
2	IO_L42P_2	R6		
2	IO_L43N_2	R3		
2	IO_L43P_2	R4		
2	IO_L44N_2	U8		
2	IO_L44P_2	Т8		
2	IO_L45N_2	R1		
2	IO_L45P_2	R2		
2	IO_L46N_2/VREF_2	Т6		
2	IO_L46P_2	T7		
2	IO_L47N_2	U9		
2	IO_L47P_2	U10		
2	IO_L48N_2	T2		
2	IO_L48P_2	Т3		

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Co	onnects
Bank	Pin Description	Number	XC2VP50	XC2VP70
3	IO_L90P_3	AA8		
3	IO_L89N_3	Y11		
3	IO_L89P_3	Y12		
3	IO_L88N_3	AA5		
3	IO_L88P_3	AA6		
3	IO_L87N_3/VREF_3	AA3		
3	IO_L87P_3	AA4		
3	IO_L86N_3	Y13		
3	IO_L86P_3	AA13		
3	IO_L85N_3	AB7		
3	IO_L85P_3	AB8		
3	IO_L60N_3	AB5		
3	IO_L60P_3	AB6		
3	IO_L59N_3	AA9		
3	IO_L59P_3	AA10		
3	IO_L58N_3	AB3		
3	IO_L58P_3	AB4		
3	IO_L57N_3/VREF_3	AB1		
3	IO_L57P_3	AB2		
3	IO_L56N_3	AA11		
3	IO_L56P_3	AA12		
3	IO_L55N_3	AC5		
3	IO_L55P_3	AC6		
3	IO_L54N_3	AC1		
3	IO_L54P_3	AC2		
3	IO_L53N_3	AB9		
3	IO_L53P_3	AB10		
3	IO_L52N_3	AC8		
3	IO_L52P_3	AD8		
3	IO_L51N_3/VREF_3	AC4		
3	IO_L51P_3	AD4		
3	IO_L50N_3	AB11		
3	IO_L50P_3	AB12		
3	IO_L49N_3	AD6		
3	IO_L49P_3	AD7		
3	IO_L48N_3	AD2		
3	IO_L48P_3	AD3		
3	IO_L47N_3	AC9		

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Connects	
Bank	Pin Description	Number	XC2VP50	XC2VP70
6	IO_L34P_6	AG37		
6	IO_L34N_6	AF37		
6	IO_L35P_6	AE30		
6	IO_L35N_6	AE31		
6	IO_L36P_6	AG33		
6	IO_L36N_6	AG34		
6	IO_L37P_6	AF38		
6	IO_L37N_6	AF39		
6	IO_L38P_6	AD28		
6	IO_L38N_6	AC28		
6	IO_L39P_6	AF35		
6	IO_L39N_6/VREF_6	AF36		
6	IO_L40P_6	AF33		
6	IO_L40N_6	AF34		
6	IO_L41P_6	AD29		
6	IO_L41N_6	AD30		
6	IO_L42P_6	AE38		
6	IO_L42N_6	AE39		
6	IO_L43P_6	AE36		
6	IO_L43N_6	AE37		
6	IO_L44P_6	AC27		
6	IO_L44N_6	AB27		
6	IO_L45P_6	AE34		
6	IO_L45N_6/VREF_6	AE35		
6	IO_L46P_6	AE32		
6	IO_L46N_6	AE33		
6	IO_L47P_6	AC30		
6	IO_L47N_6	AC31		
6	IO_L48P_6	AD37		
6	IO_L48N_6	AD38		
6	IO_L49P_6	AD33		
6	IO_L49N_6	AD34		
6	IO_L50P_6	AB28		
6	IO_L50N_6	AB29		
6	IO_L51P_6	AD36		
6	IO_L51N_6/VREF_6	AC36		
6	IO_L52P_6	AD32		
6	IO_L52N_6	AC32		

FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 8: FF1517 Flip-Chip Fine-Pitch BGA Package Specifications

Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

	Pin Description			No Connects	
Bank	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
7	IO_L27P_7		P33		
7	IO_L27N_7		P34		
7	IO_L26P_7		N31		
7	IO_L26N_7		N32		
7	IO_L25P_7		N41		
7	IO_L25N_7		N42		
7	IO_L24P_7		N39		
7	IO_L24N_7		N40		
7	IO_L23P_7		N33		
7	IO_L23N_7		N34		
7	IO_L22P_7		N37		
7	IO_L22N_7/VREF_7		N38		
7	IO_L21P_7		N35		
7	IO_L21N_7		N36		
7	IO_L20P_7		M38		
7	IO_L20N_7		M39		
7	IO_L19P_7		M40		
7	IO_L19N_7		M41		
7	IO_L18P_7		M33		
7	IO_L18N_7		M34		
7	IO_L17P_7		M31		
7	IO_L17N_7		M32		
7	IO_L16P_7		M35		
7	IO_L16N_7/VREF_7		M36		
7	IO_L15P_7		L41		
7	IO_L15N_7		L42		
7	IO_L14P_7		L39		
7	IO_L14N_7		L38		
7	IO_L13P_7		L40		
7	IO_L13N_7		K40		
7	IO_L12P_7		L36		
7	IO_L12N_7		L37		
7	IO_L11P_7		L34		
7	IO_L11N_7		L35		
7	IO_L10P_7		K42		
7	IO_L10N_7/VREF_7		K41		