

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E-XF

Product Status	Obsolete
Number of LABs/CLBs	4848
Number of Logic Elements/Cells	43632
Total RAM Bits	3538944
Number of I/O	692
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2vp40-6ff1152c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XILINX[®]

- Single-cycle and multi-cycle mode option for I-side and D-side interfaces
- Single cycle = one CPU clock cycle; multi-cycle = minimum of two and maximum of eight CPU clock cycles
- FPGA configurable DCR addresses within DSOCM and ISOCM.
- Independent 16 MB logical memory space available within PPC405 memory map for each of the DSOCM and ISOCM. The number of block RAMs in the device might limit the maximum amount of OCM supported.
- Maximum of 64K and 128K bytes addressable from DSOCM and ISOCM interfaces, respectively, using address outputs from OCM directly without additional decoding logic.

Data-Side OCM (DSOCM)

- 32-bit Data Read bus and 32-bit Data Write bus
- Byte write access to DSBRAM support
- Second port of dual port DSBRAM is available to read/write from an FPGA interface
- 22-bit address to DSBRAM port
- 8-bit DCR Registers: DSCNTL, DSARC
- Three alternatives to write into DSBRAM: BRAM initialization, CPU, FPGA H/W using second port

Instruction-Side OCM (ISOCM)

The ISOCM interface contains a 64-bit read only port, for instruction fetches, and a 32-bit write only port, to initialize or test the ISBRAM. When implementing the read only port, the user must deassert the write port inputs. The preferred method of initializing the ISBRAM is through the configuration bitstream.

- 64-bit Data Read Only bus (two instructions per cycle)
- 32-bit Data Write Only bus (through DCR)
- Separate 21-bit address to ISBRAM
- 8-bit DCR Registers: ISCNTL, ISARC
- 32-bit DCR Registers: ISINIT, ISFILL
- Two alternatives to write into ISBRAM: BRAM initialization, DCR and write instruction

Clock/Control Interface Logic

The clock/control interface logic provides proper initialization and connections for PPC405 clock/power management, resets, PLB cycle control, and OCM interfaces. It also couples user signals between the FPGA fabric and the embedded PPC405 CPU core.

The processor clock connectivity is similar to CLB clock pins. It can connect either to global clock nets or general routing resources. Therefore the processor clock source can come from DCM, CLB, or user package pin.

CPU-FPGA Interfaces

All Processor Block user pins link up with the general FPGA routing resources through the CPU-FPGA interface. Therefore processor signals have the same routability as other

non-Processor Block user signals. Longlines and hex lines travel across the Processor Block both vertically and horizontally, allowing signals to route through the Processor Block.

Processor Local Bus (PLB) Interfaces

The PPC405 core accesses high-speed system resources through PLB interfaces on the instruction and data cache controllers. The PLB interfaces provide separate 32-bit address/64-bit data buses for the instruction and data sides.

The cache controllers are both PLB masters. PLB arbiters are implemented in the FPGA fabric and are available as soft IP cores.

Device Control Register (DCR) Bus Interface

The device control register (DCR) bus has 10 bits of address space for components external to the PPC405 core. Using the DCR bus to manage status and configuration registers reduces PLB traffic and improves system integrity. System resources on the DCR bus are protected or isolated from wayward code since the DCR bus is not part of the system memory map.

External Interrupt Controller (EIC) Interface

Two level-sensitive user interrupt pins (critical and non-critical) are available. They can be either driven by user defined logic or Xilinx soft interrupt controller IP core outside the Processor Block.

Clock/Power Management (CPM) Interface

The CPM interface supports several methods of clock distribution and power management. Three modes of operation that reduce power consumption below the normal operational level are available.

Reset Interface

There are three user reset input pins (core, chip, and system) and three user reset output pins for different levels of reset, if required.

Debug Interface

Debugging interfaces on the embedded PPC405 core, consisting of the JTAG and Trace ports, offer access to resources internal to the core and assist in software development. The JTAG port provides basic JTAG chip testing functionality as well as the ability for external debug tools to gain control of the processor for debug purposes. The Trace port furnishes programmers with a mechanism for acquiring instruction execution traces.

The JTAG port is compatible with IEEE Std 1149.1, which defines a test access port (TAP) and Boundary-Scan architecture. Extensions to the JTAG interface provide debuggers with processor control that includes stopping, starting, and stepping the PPC405 core. These extensions are compliant with the IEEE 1149.1 specifications for vendor-specific extensions.

- Execution unit
- Timers
- Debug logic unit

It operates on instructions in a five stage pipeline consisting of a fetch, decode, execute, write-back, and load write-back stage. Most instructions execute in a single cycle, including loads and stores.

Instruction and Data Cache

The embedded PPC405 core provides an instruction cache unit (ICU) and a data cache unit (DCU) that allow concurrent accesses and minimize pipeline stalls. The instruction and data cache array are 16 KB each. Both cache units are two-way set associative. Each way is organized into 256 lines of 32 bytes (eight words). The instruction set provides a rich assortment of cache control instructions, including instructions to read tag information and data arrays.

The PPC405 core accesses external memory through the instruction (ICU) and data cache units (DCU). The cache units each include a 64-bit PLB master interface, cache arrays, and a cache controller. The ICU and DCU handle cache misses as requests over the PLB to another PLB device such as an external bus interface unit. Cache hits are handled as single cycle memory accesses to the instruction and data caches.

Instruction Cache Unit (ICU)

The ICU provides one or two instructions per cycle to the instruction queue over a 64-bit bus. A line buffer (built into the output of the array for manufacturing test) enables the ICU to be accessed only once for every four instructions, to reduce power consumption by the array.

The ICU can forward any or all of the four or eight words of a line fill to the EXU to minimize pipeline stalls caused by cache misses. The ICU aborts speculative fetches abandoned by the EXU, eliminating unnecessary line fills and enabling the ICU to handle the next EXU fetch. Aborting abandoned requests also eliminates unnecessary external bus activity, thereby increasing external bus utilization.

Data Cache Unit (DCU)

The DCU transfers one, two, three, four, or eight bytes per cycle, depending on the number of byte enables presented by the CPU. The DCU contains a single-element command and store data queue to reduce pipeline stalls; this queue enables the DCU to independently process load/store and cache control instructions. Dynamic PLB request prioritization reduces pipeline stalls even further. When the DCU is busy with a low-priority request while a subsequent storage operation requested by the CPU is stalled; the DCU automatically increases the priority of the current request to the PLB.

The DCU provides additional features that allow the programmer to tailor its performance for a given application. The DCU can function in write-back or write-through mode, as controlled by the Data Cache Write-through Register (DCWR) or the Translation Look-aside Buffer (TLB); the cache controller can be tuned for a balance of performance and memory coherency. Write-on-allocate, controlled by the store word on allocate (SWOA) field of the Core Configuration Register 0 (CCR0), can inhibit line fills caused by store misses, to further reduce potential pipeline stalls and unwanted external bus traffic.

Fetch and Decode Logic

The fetch/decode logic maintains a steady flow of instructions to the execution unit by placing up to two instructions in the fetch queue. The fetch queue consists of three buffers: pre-fetch buffer 1 (PFB1), pre-fetch buffer 0 (PFB0), and decode (DCD). The fetch logic ensures that instructions proceed directly to decode when the queue is empty.

Static branch prediction as implemented on the PPC405 core takes advantage of some standard statistical properties of code. Branches with negative address displacement are by default assumed taken. Branches that do not test the condition or count registers are also predicted as taken. The PPC405 core bases branch prediction upon these default conditions when a branch is not resolved and speculatively fetches along the predicted path. The default prediction can be overridden by software at assembly or compile time.

Branches are examined in the decode and pre-fetch buffer 0 fetch queue stages. Two branch instructions can be handled simultaneously. If the branch in decode is not taken, the fetch logic fetches along the predicted path of the branch instruction in pre-fetch buffer 0. If the branch in decode is taken, the fetch logic ignores the branch instruction in pre-fetch buffer 0.

Execution Unit

The embedded PPC405 core has a single issue execution unit (EXU) containing the register file, arithmetic logic unit (ALU), and the multiply-accumulate (MAC) unit. The execution unit performs all 32-bit PowerPC integer instructions in hardware.

The register file is comprised of thirty-two 32-bit general purpose registers (GPR), which are accessed with three read ports and two write ports. During the decode stage, data is read out of the GPRs and fed to the execution unit. Likewise, during the write-back stage, results are written to the GPR. The use of the five ports on the register file enables either a load or a store operation to execute in parallel with an ALU operation.

Memory Management Unit (MMU)

The embedded PPC405 core has a 4 GB address space, which is presented as a flat address space.

The MMU provides address translation, protection functions, and storage attribute control for embedded applications. The MMU supports demand-paged virtual memory and other management schemes that require precise control of logical-to-physical address mapping and flexible

Digitally Controlled Impedance (DCI)

Today's chip output signals with fast edge rates require termination to prevent reflections and maintain signal integrity. High pin count packages (especially ball grid arrays) can not accommodate external termination resistors.

Virtex-II Pro XCITE DCI provides controlled impedance drivers and on-chip termination for single-ended and differential I/Os. This eliminates the need for external resistors and improves signal integrity. The DCI feature can be used on any IOB by selecting one of the DCI I/O standards.

When applied to inputs, DCI provides input parallel termination. When applied to outputs, DCI provides controlled impedance drivers (series termination) or output parallel termination.

DCI operates independently on each I/O bank. When a DCI I/O standard is used in a particular I/O bank, external reference resistors must be connected to two dual-function pins on the bank. These resistors, voltage reference of N transistor (VRN) and the voltage reference of P transistor (VRP) are shown in Figure 26.

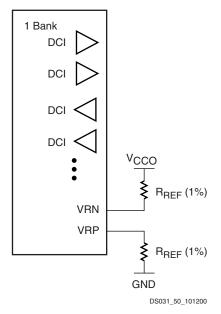


Figure 26: DCI in a Virtex-II Pro Bank

When used with a terminated I/O standard, the value of the resistors are specified by the standard (typically 50 Ω). When used with a controlled impedance driver, the resistors set the output impedance of the driver within the specified range (20 Ω to 100 Ω). For all series and parallel terminations listed in Table 13 and Table 14, the reference resistors must have the same value for any given bank. One percent resistors are recommended.

The DCI system adjusts the I/O impedance to match the two external reference resistors, or half of the reference resistors, and compensates for impedance changes due to voltage and/or temperature fluctuations. The adjustment is done by turning parallel transistors in the IOB on or off.

Controlled Impedance Drivers (Series Termination)

DCI can be used to provide a buffer with a controlled output impedance. It is desirable for this output impedance to match the transmission line impedance (Z_0). Virtex-II Pro input buffers also support LVDCI and LVDCI_DV2.

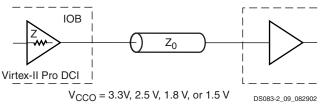


Figure 27: Internal Series Termination

Table 13: SelectIO-Ultra Controlled Impedance Buffers

V _{CCO}	DCI	DCI Half Impedance
3.3V	LVDCI_33	N/A
2.5V	LVDCI_25	LVDCI_DV2_25
1.8V	LVDCI_18	LVDCI_DV2_18
1.5V	LVDCI_15	LVDCI_DV2_15

Controlled Impedance Terminations (Parallel)

DCI also provides on-chip termination for SSTL2, SSTL18, HSTL (Class I, II, III, or IV), LVDS_25, LVDSEXT_25, and GTL/GTLP receivers or transmitters on bidirectional lines. Table 14 and Table 15 list the on-chip parallel terminations available in Virtex-II Pro devices. V_{CCO} must be set according to Table 10. There is a V_{CCO} requirement for GTL_DCI and GTLP_DCI, due to the on-chip termination resistor.

Table 14: SelectIO-Ultra Buffers With On-Chip Parallel Termination

	IOSTANDARD Attribute					
I/O Standard Description	External Termination	On-Chip Termination				
SSTL Class I, 2.5V	SSTL2_I	SSTL2_I_DCI ⁽¹⁾				
SSTL Class II, 2.5V	SSTL2_II	SSTL2_II_DCI ⁽¹⁾				
SSTL Class I, 1.8V	SSTL18_I	SSTL18_I_DCI				
SSTL Class II, 1.8V	SSTL18_II	SSTL18_II_DCI				
HSTL Class I	HSTL_I	HSTL_I_DCI				
HSTL Class I, 1.8V	HSTL_I_18	HSTL_I_DCI_18				
HSTL Class II	HSTL_II	HSTL_II_DCI				
HSTL Class II, 1.8V	HSTL_II_18	HSTL_II_DCI_18				
HSTL Class III	HSTL_III	HSTL_III_DCI				
HSTL Class III, 1.8V	HSTL_III_18	HSTL_III_DCI_18				
HSTL Class IV	HSTL_IV	HSTL_IV_DCI				
HSTL Class IV, 1.8V	HSTL_IV_18	HSTL_IV_DCI_18				
GTL	GTL	GTL_DCI				
GTL Plus	GTLP	GTLP_DCI				

Notes:

1. SSTL compatible.

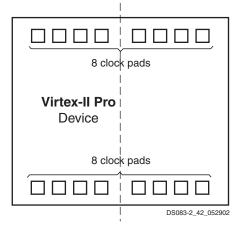


Figure 55: Virtex-II Pro Clock Pads

Each global clock multiplexer buffer can be driven either by the clock pad to distribute a clock directly to the device, or by the Digital Clock Manager (DCM), discussed in Digital Clock Manager (DCM), page 51. Each global clock multiplexer buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock multiplexer buffer inputs, as shown in Figure 56.

Global clock buffers are used to distribute the clock to some or all synchronous logic elements (such as registers in CLBs and IOBs, and SelectRAM+ blocks.

Eight global clocks can be used in each quadrant of the Virtex-II Pro device. Designers should consider the clock distribution detail of the device prior to pin-locking and floor-planning. (See the *Virtex-II Pro Platform FPGA User Guide.*)

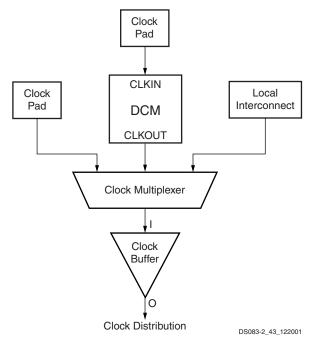


Figure 56: Virtex-II Pro Clock Multiplexer Buffer Configuration

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply.

The V_{CCINT} power supply must ramp on, monotonically, no faster than 200 μ s and no slower than 50 ms. Ramp-on is defined as: 0 V_{DC} to minimum supply voltages (see Table 2).

 V_{CCAUX} and V_{CCO} can power on at any ramp rate. Power supplies can be turned on in any sequence.

Table 5 shows the minimum current required by Virtex-II Prodevices for proper power-on and configuration.

If the current minimums shown in Table 5 are met, the device powers on properly after all three supplies have passed through their power-on reset threshold voltages.

Once initialized and configured, use the power calculator to estimate current drain on these supplies.

For more information on V_{CCAUX} , V_{CCO} , and configuration mode, refer to Chapter 3 in the *Virtex-II Pro Platform FPGA User Guide*.

		Device										
Symbol	XC2VP2	XC2VP4	XC2VP7	XC2VP20	XC2VPX20	XC2VP30	XC2VP40	XC2VP50	XC2VP70	XC2VPX70	XC2VP100	Units
ICCINTMIN	500	500	500	600	600	800	1050	1250	1700	1700	2200	mA
I _{CCAUXMIN}	250	250	250	250	250	250	250	250	250	250	250	mA
I _{CCOMIN}	100	100	100	100	100	100	100	100	100	100	100	mA

Table 5: Power-On Current for Virtex-II Pro Devices

Notes:

1. Power-on current parameter values are specified for Commercial Grade. For Industrial Grade values, multiply Commercial Grade values by 1.5.

2. I_{CCOMIN} values listed here apply to the entire device (all banks).

General Power Supply Requirements

Proper decoupling of all FPGA power supplies is essential. Consult Xilinx Application Note <u>XAPP623</u> for detailed information on power distribution system design.

 V_{CCAUX} powers critical resources in the FPGA. Therefore, this supply voltage is especially susceptible to power supply noise. V_{CCAUX} can share a power plane with V_{CCO} , but only if V_{CCO} does not have excessive noise. Staying within simultaneously switching output (SSO) limits is essential for keeping power supply noise to a minimum. Refer to

XAPP689, "Managing Ground Bounce in Large FPGAs," to determine the number of simultaneously switching outputs allowed per bank at the package level.

Changes in V_{CCAUX} voltage beyond 200 mV peak-to-peak should take place at a rate no faster than 10 mV per millisecond.

Recommended practices that can help reduce jitter and period distortion are described in Xilinx Answer Record 13756.

LVDS DC Specifications (LVDS_25)

Table 8: LVDS DC Specifications

DC Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	V _{CCO}		2.38	2.5	2.63	V
Output High Voltage for Q and \overline{Q}	V _{OH}	$R_T = 100 \Omega$ across Q and \overline{Q} signals			1.602	V
Output Low Voltage for Q and \overline{Q}	V _{OL}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.898			V
Differential Output Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High	V _{ODIFF}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	247	350	454	mV
Output Common-Mode Voltage	V _{OCM}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.125	1.250	1.375	V
Differential Input Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	V _{IDIFF}	Common-mode input voltage = 1.25V	100	350	600	mV
Input Common-Mode Voltage	V _{ICM}	Differential input voltage = $\pm 350 \text{ mV}$	0.3	1.2	2.2	V

Extended LVDS DC Specifications (LVDSEXT_25)

Table 9: Extended LVDS DC Specifications

DC Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	V _{CCO}		2.38	2.5	2.63	V
Output High Voltage for Q and \overline{Q}	V _{OH}	$R_T = 100 \Omega$ across Q and \overline{Q} signals			1.785	V
Output Low Voltage for Q and \overline{Q}	V _{OL}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.715			V
Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	V _{ODIFF}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	440		820	mV
Output Common-Mode Voltage	V _{OCM}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	1.125	1.250	1.375	V
Differential Input Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	V _{IDIFF}	Common-mode input voltage = 1.25V	100		1000	mV
Input Common-Mode Voltage	V _{ICM}	Differential input voltage = $\pm 350 \text{ mV}$	0.3	1.2	2.2	V

LVPECL DC Specifications (LVPECL_25)

These values are valid when driving a 100 Ω differential load only, i.e., a 100 Ω resistor between the two receiver pins. The V_{OH} levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower

common-mode ranges. Table 10 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the *Virtex-II Pro Platform FPGA User Guide*.

	V _{CCO} =	V _{CCO} = 2.375V		2.375V $V_{CCO} = 2.5V$ $V_{CCO} = 2.625V$			
DC Parameter	Min	Max	Min	Max	Min	Max	Units
V _{OH}	1.35	1.495	1.475	1.62	1.6	1.745	V
V _{OL}	0.565	0.755	0.69	0.88	0.815	1.005	V
V _{IH}	0.8	2.0	0.8	2.0	0.8	2.0	V
V _{IL}	0.5	1.7	0.5	1.7	0.5	1.7	V
Differential Input Voltage	0.100	1.5	0.100	1.5	0.100	1.5	V

Table 10: LVPECL DC Specifications

Virtex-II Pro Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted

Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM

Table 55: Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM

Description	Symbol	Device	-7	-6	-5	Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard. ⁽¹⁾ For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 25.						
No Delay						
Global Clock and IFF ⁽²⁾ with DCM	T _{PSDCM} /T _{PHDCM}	XC2VP2	1.54/0.58	1.54/0.57	1.54/0.56	ns
		XC2VP4	1.59/-0.59	1.59/0.58	1.59/-0.57	ns
		XC2VP7	1.66/-0.61	1.66/0.59	1.66/-0.57	ns
		XC2VP20	1.68/-0.53	1.68/-0.53	1.68/-0.50	ns
		XC2VPX20	1.68/-0.53	1.68/-0.53	1.68/-0.50	ns
		XC2VP30	1.81/-0.74	1.81/-0.74	1.81/-0.71	ns
		XC2VP40	1.85/-0.65	1.85/-0.64	1.85/-0.60	ns
		XC2VP50	1.85/-0.57	1.85/-0.54	1.85/-0.50	ns
		XC2VP70	1.86/-0.45	1.86/-0.39	1.86/-0.30	ns
		XC2VPX70	1.86/-0.45	1.86/-0.39	1.86/-0.30	ns
		XC2VP100	N/A	1.86/-0.35	1.87/-0.28	ns

Notes:

1. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load.

2. These measurements include:

- CLK0 and CLK180 DCM jitter

Worst-case duty-cycle distortion using CLK0 and CLK180, T_{DCD_CLK180}.

3. IFF = Input Flip-Flop or Latch

Virtex-II Pro Pin Definitions

This section describes the pinouts for Virtex-II Pro devices in the following packages:

- FG256/FGG256, FG456/FGG456, and FG676/FGG676: wire-bond fine-pitch BGA of 1.00 mm pitch
- FF672, FF896, FF1148, FF1152, FF1517, FF1696, and FF1704: flip-chip fine-pitch BGA of 1.00 mm pitch

All of the devices supported in a particular package are pinout-compatible and are listed in the same table (one table

Pin Definitions

 Table 4 provides a description of each pin type listed in Virtex-II Pro pinout tables.

Table 4: Virtex-II Pro Pin Definitions

per package). Pins that are not available for smaller devices are listed in right-hand columns.

Each device is split into eight I/O banks to allow for flexibility in the choice of I/O standards. Global pins, including JTAG, configuration, and power/ground pins, are listed at the end of each table. Table 4 provides definitions for all pin types.

All Virtex-II Pro pinout tables are available on the distribution CD-ROM, or on the web (at http://www.xilinx.com).

Pin Name	Direction	Description				
User I/O Pins:						
IO_LXXY_#	Input/Output/ Bidirectional	 All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled "IO_LXXY_#", where: IO indicates a user I/O pin. LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for the positive and negative sides of the differential pair. # indicates the bank number (0 through 7) 				
Dual-Function Pins:						
IO_LXXY_#/ZZZ	The dual-funct	ion pins are labelled "IO_LXXY_#/ZZZ", where "ZZZ" can be one of the following pins:				
	Per Bank - VRP, VRN, or VREF Globally - GCLKX(S/P), BUSY/DOUT, INIT_B, D0/DIN – D7, RDWR_B, or CS_B					
	These dual fun	ctions are defined in the following section:				
"ZZZ" (Dual Functi	on) Definitions	S:				
D0/DIN, D1, D2, D3, D4, D5, D6, D7	Input/Output	 In SelectMAP mode, D0 through D7 are configuration data pins. These pins become user I/Os after configuration, unless the SelectMAP port is retained. In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after configuration. 				
CS_B	Input	In SelectMAP mode, this is the active-low Chip Select signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained.				
RDWR_B	Input	In SelectMAP mode, this is the active-low Write Enable signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained.				
BUSY/DOUT	Output	 In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained. In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. 				
INIT_B	Bidirectional (open-drain)	When Low, this pin indicates that the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. The pin becomes a user I/O after configuration.				

FG456/FGG456 Fine-Pitch BGA Package

As shown in Table 6, XC2VP2, XC2VP4, and XC2VP7 Virtex-II Pro devices are available in the FG456/FGG456 fine-pitch BGA package. The pins in these devices are same, except for the differences shown in the "No Connects" column. Following this table are the FG456/FGG456 Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7

				No Connects	3
Bank	Pin Description	Pin Number	XC2VP2	XC2VP4	XC2VP7
0	IO_L01N_0/VRP_0	D5			
0	IO_L01P_0/VRN_0	D6			
0	IO_L02N_0	E6			
0	IO_L02P_0	E7			
0	IO_L03N_0	D7			
0	IO_L03P_0/VREF_0	C7			
0	IO_L05_0/No_Pair	E8			
0	IO_L06N_0	D8			
0	IO_L06P_0	C8			
0	IO_L07N_0	F9			
0	IO_L07P_0	E9			
0	IO_L09N_0	D9			
0	IO_L09P_0/VREF_0	D10			
0	IO_L67N_0	F10			
0	IO_L67P_0	E10			
0	IO_L69N_0	C10			
0	IO_L69P_0/VREF_0	B11			
0	IO_L74N_0/GCLK7P	F11			
0	IO_L74P_0/GCLK6S	E11			
0	IO_L75N_0/GCLK5P	D11			
0	IO_L75P_0/GCLK4S	C11			
1	IO_L75N_1/GCLK3P	C12			
1	IO_L75P_1/GCLK2S	D12			
1	IO_L74N_1/GCLK1P	E12			
1	IO_L74P_1/GCLK0S	F12			
1	IO_L69N_1/VREF_1	B12			
1	IO_L69P_1	C13			
1	IO_L67N_1	E13			
1	IO_L67P_1	F13			
1	IO_L09N_1/VREF_1	D13			
1	IO_L09P_1	D14			
1	IO_L07N_1	E14			

Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7

				No Connects	5
Bank	Pin Description	Pin Number	XC2VP2	XC2VP4	XC2VP7
N/A	GND	L11			
N/A	GND	L10			
N/A	GND	K9			
N/A	GND	K14			
N/A	GND	K13			
N/A	GND	K12			
N/A	GND	K11			
N/A	GND	K10			
N/A	GND	J9			
N/A	GND	J14			
N/A	GND	J13			
N/A	GND	J12			
N/A	GND	J11			
N/A	GND	J10			
N/A	GND	E5			
N/A	GND	E18			
N/A	GND	D4			
N/A	GND	D19			
N/A	GND	C3			
N/A	GND	C20			
N/A	GND	AB22			
N/A	GND	AB12			
N/A	GND	AB1			
N/A	GND	A22			
N/A	GND	A11			
N/A	GND	A1			

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40

			No Connects		No Connec	;
Bank	Pin Description	Pin Number	XC2VP20	XC2VP30	XC2VP40	
6	IO_L23N_6	Y6	NC			
6	IO_L24P_6	AA4	NC			
6	IO_L24N_6	AA3	NC			
6	IO_L31P_6	AA2				
6	IO_L31N_6	AA1				
6	IO_L33P_6	Y5				
6	IO_L33N_6/VREF_6	W5				
6	IO_L35P_6	Y4				
6	IO_L35N_6	Y3				
6	IO_L36P_6	Y2				
6	IO_L36N_6	Y1				
6	IO_L37P_6	W7				
6	IO_L37N_6	W6				
6	IO_L39P_6	W2				
6	IO_L39N_6/VREF_6	W1				
6	IO_L41P_6	V8				
6	IO_L41N_6	V7				
6	IO_L42P_6	V6				
6	IO_L42N_6	V5				
6	IO_L43P_6	V4				
6	IO_L43N_6	V3				
6	IO_L45P_6	V2				
6	IO_L45N_6/VREF_6	V1				
6	IO_L47P_6	U8				
6	IO_L47N_6	Т8				
6	IO_L48P_6	U5				
6	IO_L48N_6	U4				
6	IO_L49P_6	U3				
6	IO_L49N_6	Т3				
6	IO_L51P_6	U2				
6	IO_L51N_6/VREF_6	U1				
6	IO_L53P_6	T7				
6	IO_L53N_6	R7				
6	IO_L54P_6	T6				
6	IO_L54N_6	T5				

Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30

T	Pin Description	on			No Connects	
Bank	Virtex-II Pro devices	XC2VPX20 (if Different)	Pin Number	XC2VP7	XC2VP20, XC2VPX20	XC2VP30
6	IO_L86P_6		T23			
6	IO_L86N_6		T24			
6	IO_L87P_6		U28			
6	IO_L87N_6/VREF_6		U29			
6	IO_L88P_6		T27			
6	IO_L88N_6		T28			
6	IO_L89P_6		T25			
6	IO_L89N_6		T26			
6	IO_L90P_6		V30			
6	IO_L90N_6		U30			
+				•		
7	IO_L90P_7		R28			
7	IO_L90N_7		R27			
7	IO_L89P_7		R26			
7	IO_L89N_7		R25			
7	IO_L88P_7		T29			
7	IO_L88N_7/VREF_7		R29			
7	IO_L87P_7		P27			
7	IO_L87N_7		P26			
7	IO_L86P_7		R24			
7	IO_L86N_7		R23			
7	IO_L85P_7		P29			
7	IO_L85N_7		P28			
7	IO_L60P_7		N28			
7	IO_L60N_7		N27			
7	IO_L59P_7		P24			
7	IO_L59N_7		P23			
7	IO_L58P_7		P30			
7	IO_L58N_7/VREF_7		N30			
7	IO_L57P_7		M28			
7	IO_L57N_7		M27			
7	IO_L56P_7		R22			
7	IO_L56N_7		P22			
7	IO_L55P_7		N29			
7	IO_L55N_7		M29			
7	IO_L54P_7		L27			

Table 11: FF1148 — XC2VP40 and XC2VP50

			No Co	onnects	
Bank	Pin Description	Pin Number	XC2VP40	XC2VP50	
1	IO_L43P_1	B13			
1	IO_L39N_1	G13			
1	IO_L39P_1	F13			
1	IO_L38N_1	J15			
1	IO_L38P_1	J14			
1	IO_L37N_1	B12			
1	IO_L37P_1	A12			
1	IO_L27N_1/VREF_1	D13			
1	IO_L27P_1	D12			
1	IO_L26N_1	L13			
1	IO_L26P_1	K13			
1	IO_L25N_1	F12			
1	IO_L25P_1	E12			
1	IO_L21N_1	B11			
1	IO_L21P_1	A11			
1	IO_L20N_1	K12			
1	IO_L20P_1	J12			
1	IO_L19N_1	C12			
1	IO_L19P_1	C11			
1	IO_L09N_1/VREF_1	F11			
1	IO_L09P_1	E11			
1	IO_L08N_1	H13			
1	IO_L08P_1	H12			
1	IO_L07N_1	G12			
1	IO_L07P_1	G11			
1	IO_L06N_1	B10			
1	IO_L06P_1	A10			
1	IO_L05_1/No_Pair	G10			
1	IO_L03N_1/VREF_1	D10			
1	IO_L03P_1	C10			
1	IO_L02N_1	K11			
1	IO_L02P_1	J11			
1	IO_L01N_1/VRP_1	F10			
1	IO_L01P_1/VRN_1	E10			
		· · · · · · · · · · · · · · · · · · ·			
2	IO_L01N_2/VRP_2	B8			
2	IO_L01P_2/VRN_2	B9			
2	IO_L02N_2	C9			

FF1517 Flip-Chip Fine-Pitch BGA Package

As shown in Table 12, XC2VP50 and XC2VP70 Virtex-II Pro devices are available in the FF1517 flip-chip fine-pitch BGA package. Following this table are the FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Co	nnects
Bank	Pin Description	Number	XC2VP50	XC2VP70
0	IO_L01N_0/VRP_0	D31		
0	IO_L01P_0/VRN_0	E31		
0	IO_L02N_0	K30		
0	IO_L02P_0	J30		
0	IO_L03N_0	G30		
0	IO_L03P_0/VREF_0	H30		
0	IO_L05_0/No_Pair	K28		
0	IO_L06N_0	E30		
0	IO_L06P_0	F30		
0	IO_L07N_0	C30		
0	IO_L07P_0	D30		
0	IO_L08N_0	J29		
0	IO_L08P_0	K29		
0	IO_L09N_0	G29		
0	IO_L09P_0/VREF_0	H29		
0	IO_L19N_0	E29		
0	IO_L19P_0	F29		
0	IO_L20N_0	L28		
0	IO_L20P_0	L27		
0	IO_L21N_0	C29		
0	IO_L21P_0	D29		
0	IO_L25N_0	H28		
0	IO_L25P_0	J28		
0	IO_L26N_0	M27		
0	IO_L26P_0	M26		
0	IO_L27N_0	D28		
0	IO_L27P_0/VREF_0	E28		
0	IO_L28N_0	H27	NC	
0	IO_L28P_0	J27	NC	
0	IO_L29N_0	J26	NC	
0	IO_L29P_0	K26	NC	
0	IO_L30N_0	F28	NC	
0	IO_L30P_0	G27	NC	
0	IO_L34N_0	D27	NC	

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Co	inects	
Bank	Pin Description	Number	XC2VP50	XC2VP70	
3	IO_L09P_3	AM3			
3	IO_L08N_3	AK8			
3	IO_L08P_3	AK9			
3	IO_L07N_3	AN6			
3	IO_L07P_3	AN7			
3	IO_L84N_3	AN3	NC		
3	IO_L84P_3	AN4	NC		
3	IO_L82N_3	AN1	NC		
3	IO_L82P_3	AN2	NC		
3	IO_L81N_3/VREF_3	AN5	NC		
3	IO_L81P_3	AP5	NC		
3	IO_L79N_3	AP3	NC		
3	IO_L79P_3	AP4	NC		
3	IO_L78N_3	AP1	NC		
3	IO_L78P_3	AP2	NC		
3	IO_L76N_3	AR2	NC		
3	IO_L76P_3	AR3	NC		
3	IO_L75N_3/VREF_3	AT1	NC		
3	IO_L75P_3	AT2	NC		
3	IO_L73N_3	AT5	NC		
3	IO_L73P_3	AU5	NC		
3	IO_L06N_3	AR6			
3	IO_L06P_3	AT6			
3	IO_L05N_3	AL9			
3	IO_L05P_3	AM8			
3	IO_L04N_3	AP7			
3	IO_L04P_3	AR7			
3	IO_L03N_3/VREF_3	AM9			
3	IO_L03P_3	AN9			
3	IO_L02N_3	AR8			
3	IO_L02P_3	AT8			
3	IO_L01N_3/VRP_3	AT7			
3	IO_L01P_3/VRN_3	AU7			
	·				
4	IO_L01N_4/BUSY/DOUT ⁽¹⁾	AT9			
4	IO_L01P_4/INIT_B	AR9			
4	IO_L02N_4/D0/DIN ⁽¹⁾	AK11			
4	IO_L02P_4/D1	AK12			

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Co	nnects
Bank	Pin Description	Number	XC2VP50	XC2VP70
4	IO_L38P_4	AH16		
4	IO_L39N_4	AR14		
4	IO_L39P_4	AP14		
4	IO_L43N_4	AU14		
4	IO_L43P_4	AT14		
4	IO_L44N_4	AH17		
4	IO_L44P_4	AG17		
4	IO_L45N_4	AN15		
4	IO_L45P_4/VREF_4	AM15		
4	IO_L46N_4	AR15		
4	IO_L46P_4	AP15		
4	IO_L47N_4	AK16		
4	IO_L47P_4	AJ17		
4	IO_L48N_4	AU15		
4	IO_L48P_4	AT15		
4	IO_L49N_4	AM16		
4	IO_L49P_4	AL16		
4	IO_L50_4/No_Pair	AM17		
4	IO_L53_4/No_Pair	AL17		
4	IO_L54N_4	AP16		
4	IO_L54P_4	AN17		
4	IO_L55N_4	AR16		
4	IO_L55P_4	AR17		
4	IO_L56N_4	AH18		
4	IO_L56P_4	AG18		
4	IO_L57N_4	AU17		
4	IO_L57P_4/VREF_4	AT17		
4	IO_L58N_4	AM18		
4	IO_L58P_4	AL18		
4	IO_L59N_4	AK18		
4	IO_L59P_4	AJ18		
4	IO_L60N_4	AP18		
4	IO_L60P_4	AN18		
4	IO_L64N_4	AT18		
4	IO_L64P_4	AR18		
4	IO_L65N_4	AH19		
4	IO_L65P_4	AG19		
4	IO_L66N_4	AU18		

Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

	Pin Description	on			No Connects	
Bank	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100	
4	IO_L87P_4/VREF_4		AP15	NC		
4	IO_L37N_4		AV15			
4	IO_L37P_4		AU15			
4	IO_L38N_4		AY14			
4	IO_L38P_4		AY15			
4	IO_L39N_4		AM16			
4	IO_L39P_4		AL16			
4	IO_L43N_4		AP16			
4	IO_L43P_4		AN16			
4	IO_L44N_4		AR16			
4	IO_L44P_4		AT16			
4	IO_L45N_4		AV16			
4	IO_L45P_4/VREF_4		AU16			
4	IO_L46N_4		AL18			
4	IO_L46P_4		AL17			
4	IO_L47N_4		AM17			
4	IO_L47P_4		AN17			
4	IO_L48N_4		AR17			
4	IO_L48P_4		AP17			
4	IO_L49N_4		AU17			
4	IO_L49P_4		AT17			
4	IO_L50_4/No_Pair		AW16			
4	IO_L53_4/No_Pair		AW17			
4	IO_L54N_4		AN18			
4	IO_L54P_4		AM18			
4	IO_L55N_4		AT18			
4	IO_L55P_4		AR18			
4	IO_L56N_4		AV17			
4	IO_L56P_4		AV18			
4	IO_L57N_4		AY18			
4	IO_L57P_4/VREF_4		AY17			
4	IO_L58N_4		AM19			
4	IO_L58P_4		AL19			
4	IO_L59N_4		AP19			
4	IO_L59P_4		AN19			
4	IO_L60N_4		AT19			

Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

	Pin Description	on		No Connects	
Bank	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
7	IO_L03P_7		D37		
7	IO_L03N_7		E37		
7	IO_L02P_7		D36		
7	IO_L02N_7		E36		
7	IO_L01P_7/VRN_7		C37		
7	IO_L01N_7/VRP_7		C38		
0	VCCO_0		D25		
0	VCCO_0		G23		
0	VCCO_0		G28		
0	VCCO_0		G32		
0	VCCO_0		J25		
0	VCCO_0		J29		
0	VCCO_0		P22		
0	VCCO_0		P23		
0	VCCO_0		P24		
0	VCCO_0		P25		
0	VCCO_0		P26		
0	VCCO_0		R22		
0	VCCO_0		R23		
0	VCCO_0		R24		
0	VCCO_0		R25		
1	VCCO_1		R21		
1	VCCO_1		R20		
1	VCCO_1		R19		
1	VCCO_1		R18		
1	VCCO_1		P21		
1	VCCO_1		P20		
1	VCCO_1		P19		
1	VCCO_1		P18		
1	VCCO_1		P17		
1	VCCO_1		J18		
1	VCCO_1		J14		
1	VCCO_1		G20		
1	VCCO_1		G15		
1	VCCO_1		G11		

Table 14: FF1696 — XC2VP100

			No Connects
Bank	Pin Description	Pin Number	XC2VP100
2	IO_L69P_2	F6	
2	IO_L70N_2/VREF_2	G5	
2	IO_L70P_2	F5	
2	IO_L71N_2	P10	
2	IO_L71P_2	P11	
2	IO_L72N_2	G3	
2	IO_L72P_2	G4	
2	IO_L07N_2	G1	
2	IO_L07P_2	G2	
2	IO_L08N_2	N8	
2	IO_L08P_2	P9	
2	IO_L09N_2	H6	
2	IO_L09P_2	H7	
2	IO_L10N_2/VREF_2	H4	
2	IO_L10P_2	H5	
2	IO_L11N_2	R12	
2	IO_L11P_2	T12	
2	IO_L12N_2	H2	
2	IO_L12P_2	H3	
2	IO_L13N_2	J6	
2	IO_L13P_2	J7	
2	IO_L14N_2	R10	
2	IO_L14P_2	R11	
2	IO_L15N_2	J3	
2	IO_L15P_2	J4	
2	IO_L16N_2/VREF_2	J2	
2	IO_L16P_2	H1	
2	IO_L17N_2	R8	
2	IO_L17P_2	R9	
2	IO_L18N_2	K5	
2	IO_L18P_2	K6	
2	IO_L19N_2	K1	
2	IO_L19P_2	K2	
2	IO_L20N_2	T10	
2	IO_L20P_2	T11	
2	IO_L21N_2	L7	
2	IO_L21P_2	K7	

Table 14: FF1696 — XC2VP100

			No Connects
Bank	Pin Description	Pin Number	XC2VP100
N/A	GND	AD22	
N/A	GND	AC22	
N/A	GND	AB22	
N/A	GND	AA22	
N/A	GND	Y22	
N/A	GND	W22	
N/A	GND	V22	
N/A	GND	U22	
N/A	GND	AF21	
N/A	GND	AE21	
N/A	GND	AD21	
N/A	GND	AC21	
N/A	GND	AB21	
N/A	GND	AA21	
N/A	GND	Y21	
N/A	GND	W21	
N/A	GND	V21	
N/A	GND	U21	
N/A	GND	BB20	
N/A	GND	AV20	
N/A	GND	AP20	
N/A	GND	AF20	
N/A	GND	AE20	
N/A	GND	AD20	
N/A	GND	AC20	
N/A	GND	AB20	
N/A	GND	AA20	
N/A	GND	Y20	
N/A	GND	W20	
N/A	GND	V20	
N/A	GND	U20	
N/A	GND	J20	
N/A	GND	E20	
N/A	GND	A20	
N/A	GND	AL19	
N/A	GND	AF19	
N/A	GND	AE19	